JP2004138441A - Interference type contactless measuring unit - Google Patents

Interference type contactless measuring unit Download PDF

Info

Publication number
JP2004138441A
JP2004138441A JP2002301880A JP2002301880A JP2004138441A JP 2004138441 A JP2004138441 A JP 2004138441A JP 2002301880 A JP2002301880 A JP 2002301880A JP 2002301880 A JP2002301880 A JP 2002301880A JP 2004138441 A JP2004138441 A JP 2004138441A
Authority
JP
Japan
Prior art keywords
objective lens
measurement
reference mirror
interference
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301880A
Other languages
Japanese (ja)
Inventor
Tomio Itsubo
井坪 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VERNO GIKEN KK
Original Assignee
VERNO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VERNO GIKEN KK filed Critical VERNO GIKEN KK
Priority to JP2002301880A priority Critical patent/JP2004138441A/en
Publication of JP2004138441A publication Critical patent/JP2004138441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference type contactless measuring unit also capable of measuring the step or thickness of an object whose surface has a fine shape, such as paper, cloth, and rubber, to be measured and an object having a low reflection factor to be measured. <P>SOLUTION: The interference type contactless measuring unit measures the step or thickness of the object to be measured by driving an objective lens for focusing on the surface of the object to be measured. The interference type contactless measuring unit comprises a light source 1 for irradiating the object 6 to be measured with light; a beam splitter 2 for dividing luminous flux from the light source 1 into the side of the object 6 to be measured and the side of a reference mirror 3; a first objective lens 4 provided between the beam splitter 2 and the object 6 to be measured; and a second objective lens 5 that is provided between the beam splitter 2 and the reference mirror 3 and at a position, where distance from the splitter 2 equals the first objective lens 4 and is homogeneous to the first objective lens 4; and the reference mirror 3 provided at the focus position of the second objective lens 5. There is provided a focusing mechanism 10 the focusing of which is made by interference fringes generated by the interference of reflected light from the object 6 to be measured and the reference mirror 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、測定対象物の段差又は厚みを非接触で測定する干渉式非接触測定装置に関する。
【0002】
【従来の技術】
従来、測定対象物の段差又は厚さを非接触で測定する測定装置として、対物レンズを駆動して測定対象物の表面に焦点を合わせることにより該測定対象物の段差又は厚さを測定するようにした非接触式測定装置があった。本装置において、合焦操作を行うにあたり合焦判断を容易にするために、本装置の照明系にターゲットマークを設置して、ターゲットマークを投影レンズによって対物レンズに導入し、測定対象物の表面にターゲットマークを投影することは知られている(例えば、特許文献1参照)。
【0003】
また、対物レンズと測定対象物との間に光源からの光束を測定対象物側と参照鏡側に分割するビームスプリッターを設け、測定対象物及び参照鏡からの反射光束の干渉により干渉縞を発生させ、この干渉縞により測定対象物の表面形状を測定する干渉対物レンズ装置は知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平10−221013号公報
【特許文献2】
実開平5−84803号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1のように、測定対象物の表面にターゲットマークを投影して合焦操作を行う測定装置では、ターゲットマークを測定対象物の表面に投影するための投影レンズ等が必要で光学系が複雑になると共に、ターゲットマークを測定箇所に正確に投影するための光学系の調整が煩雑であった。また、測定対象物の表面の反射率が低い場合や形状が複雑な場合には、ターゲットマークの視認性が悪く目視による合焦操作が困難であるという課題があった。
【0006】
また、特許文献2のように、対物レンズと測定対象物との間にビームスプリッターを設けた干渉対物レンズ装置は、比較的広い範囲に干渉法を適用して干渉縞により測定対象物の平面度等の表面形状を測定するものであり、測定対象物の表面の微細形状部に対して焦点を合わせて測定対象物の段差又は厚さを測定することが困難であるのみならず、測定対象物及び参照鏡からの反射光束を干渉させて干渉縞が発生するように参照鏡の向き及び位置を調整する調節機構が複雑になるという課題があった。
【0007】
【課題を解決するための手段】
そこで、本発明は、上記課題を解決するために、対物レンズを駆動して測定対象物の表面に焦点を合わせることにより該測定対象物の段差又は厚さを測定するようにした非接触式測定装置であって、測定対象物を照射する光源と、該光源からの光束を測定対象物側と参照鏡側に分割するビームスプリッターと、該ビームスプリッターと測定対象物の間に設けた第1対物レンズと、前記ビームスプリッターと前記参照鏡の間で且つ前記ビームスプリッターからの距離が前記第1対物レンズと等価な位置に設けた前記第1対物レンズと等質な第2対物レンズと、該第2対物レンズの焦点位置に設けた参照鏡とからなり、前記測定対象物と前記参照鏡からの反射光の干渉によって生じる干渉縞により焦点を合わせる合焦機構を備えた干渉式非接触測定装置を提供するものである。
【0008】
本発明によれば、ビームスプリッターと測定対象物の間に第1対物レンズを設けると共に、ビームスプリッターと参照鏡の間に第2対物レンズを設けたことにより、第1対物レンズ自体の作動距離がそのまま生かされ、測定対象物の表面の微細部分に干渉法を適用して干渉縞を発生させることができ、微細形状の段差又は厚さを測定することができる。また、測定対象物の表面が光を反射すれば干渉縞が発生するから、紙、布、ゴム等のように表面が微細形状をしている測定対象物や反射率の低い測定対象物の段差又は厚さを測定することもできる。
【0009】
また、本発明は、測定対象物の上側及び下側に前記合焦機構を設けた請求項1に記載の干渉式非接触測定装置を提供するものである。
本発明によれば、測定対象物の上側及び下側に設けた合焦機構によって、測定対象物の上側の表面及び下側の表面に焦点を合わせて、測定対象物の厚さを測定することができる。
【0010】
また、本発明は、測定対象物の少なくとも上側の合焦機構の第2対物レンズ側に開閉可能な遮蔽板を設けた請求項1又は2に記載の干渉式非接触測定装置を提供するものである。
本発明によれば、第2対物レンズ側を遮蔽板によって遮蔽することにより、参照鏡への光束が遮断されて干渉縞が発生しないから、測定対象物側の第1対物レンズからの像のみが結象されて明視野顕微鏡として使用することができ、特に、測定対象物のXY測定時には干渉縞が発生しないので測定し易い。
【0011】
また、本発明は、前記参照鏡を焦点方向に調整可能に設けると共に、2対の押ねじにより光軸に対して上下方向及び左右方向に調整可能に設けた請求項1乃至3のいずれかに記載の干渉式非接触測定装置を提供するものである。
本発明によれば、2対の押ねじを操作することにより参照鏡の方向を容易に微調整することができ、参照鏡の方向を調整して干渉縞を発生させるための向き及び間隔を微調整することができる。
【0012】
また、本発明は、測定対象物の上側及び下側の前記合焦機構に測長器を設け、これらの測長器の値から測定対象物の厚さを演算する演算処理機能を備えた請求項2乃至4のいずれかに記載の干渉式非接触測定装置を提供するものである。
本発明によれば、測長器により対物レンズの位置を測ることができ、合焦時の上側の対物レンズの位置と下側の対物レンズの位置から演算処理機能によって測定対象物の厚さを求めることができる。
【0013】
また、本発明は、測定対象物をXY方向に動かすXYステージを設けると共に、該XYステージに測長器を設けた請求項1乃至5のいずれかに記載の干渉式非接触測定装置を提供するものである。
本発明によれば、XYステージに測長器を設けたから、測定対象物のXY方向の位置を測ることができ、測定対象物の測定箇所をXY方向の数値により把握することができる。また、パソコンと接続して、測定対象物のXY方向の位置をパソコン管理することができる。
【0014】
また、本発明は、対物レンズ筒を駆動する駆動系のスライダー部に直接接続して測長器を設けた請求項1乃至6のいずれかに記載の干渉式非接触測定装置を提供するものである。
本発明によれば、対物レンズ筒を駆動する駆動系のスライダー部の移動を測長器により直接測るから、測長器による測定誤差を小さくすることができる。
【0015】
また、本発明は、前記対物レンズの結像位置にCCDカメラを設けた請求項1乃至7のいずれかに記載の干渉式非接触測定装置を提供するものである。
本発明によれば、CCDカメラによってモニターを通して干渉縞の発生を確認することができるから、容易に合焦操作を行うことができる。
【0016】
【発明の実施の形態】
本発明の実施の形態を図示の実施例に基づいて説明する。
本発明に係る干渉式非接触測定装置は、対物レンズを駆動して測定対象物の表面に焦点を合わせることにより該測定対象物の段差又は厚さを測定するようにした非接触式測定装置であって、測定対象物を照射する光源1と、該光源1からの光束を測定対象物6側と参照鏡3側に分割するビームスプリッター2と、該ビームスプリッター2と測定対象物6の間に設けた第1対物レンズ4と、前記ビームスプリッター2と前記参照鏡3の間で且つ前記ビームスプリッター2からの距離が前記第1対物レンズ4と等価な位置に設けた前記第1対物レンズ4と等質な第2対物レンズ5と、該第2対物レンズ5の焦点位置に設けた参照鏡3とからなり、前記測定対象物6と前記参照鏡3からの反射光の干渉によって生じる干渉縞により焦点を合わせる合焦機構10を備えてある。
【0017】
図1又は図2に示す実施例において、合焦機構10を備えた第1対物レンズ4は、測定対象物6を載せるXYステージ7の上側及び下側に設けてあり、測定対象物6の上面及び下面に合焦操作を行って第1対物レンズ4,4の位置から測定対象物6の厚さを測定することができるように構成してある。
【0018】
合焦機構10は、マイケルソン干渉計の原理により測定対象物6を焦点位置に置いたときに干渉縞を発生するようにしてあり、干渉縞の発生により第1対物レンズ4の合焦位置を確認して焦点合わせを行うものである。
図示の実施例では、第1対物レンズ4には、顕微鏡用超長作動距離の40倍対物レンズを使用し、作動距離(15mm)を確保すると共に、干渉縞の分解能を高め焦点深度を浅くすることによって測定精度を向上(±0.2μm)させている。
【0019】
図1又は図2に示す実施例において、光源1は、ハロゲンランプ(図示せず)からの光束を導くライトガイド11と、光を増強するコンデンサレンズ12とからなり、第1対物レンズ4の光軸に垂直な方向からビームスプリッター2に向けて光を照射するように構成してある。
また、計測パネル40には、光源1の光源スイッチ41と調光ボリューム42を設けて、干渉縞を見易い照度に調光することができるようにしてある。
【0020】
図3に示すように、ビームスプリッター2は、2個の等質なプリズムを合わせた構成にしてあり、合わせ面を半透鏡面にしてある。このビームスプリッター2は、ビームスプリッターケース46内の支持部47に支持されており、ビームスプリッターケース46には上下の第1対物レンズ4側及び第2対物レンズ5側並びに光源1側に透孔48,48を形成してある。また、ビームスプリッター2は、第1対物レンズ4の光軸と光源1からの光束の軸の交点を中心に設けてあり、光源1からの光束がビームスプリッター2を通過することによって、直角方向に曲げられて測定対象物6へ向かう光束と、真直ぐ通過して参照鏡3へ向かう光束とに分けることができるようにしてある。
【0021】
図3に示すように、第2対物レンズ5には、第1対物レンズと等質な顕微鏡用超長作動距離の40倍対物レンズを使用し、ビームスプリッター2からの距離が光学的に等しい位置に設けてある。
【0022】
図3に示すように、参照鏡3は、平面鏡からなり、第2対物レンズ5の焦点位置に設けてある。また、参照鏡3は、角度調整機構19により光軸に対して上下方向及び左右方向、並びに焦点方向に調整可能に設けてあり、第1対物レンズ4の焦点位置と同じ距離になるように微調整してあり、且つ、反射する位置により光路差が生じて干渉縞を発生させることができるようにしてある。
【0023】
角度調整機構19は、図5乃至図7に示すように、上下に対に設けた割り溝20と左右に対に設けた割り溝21と参照鏡3を保持する参照鏡保持具53とからなり、2対の押ねじ22,23により第2対物レンズ5の光軸に対して上下方向及び左右方向に参照鏡3の向きを調整することができるようにしてある。
図5又は図7に示すように、参照鏡保持具53は、円柱状をなし先端に参照鏡3を保持してあり、側面にはV溝54を設けてガイドピン55により角度調整機構19内を焦点方向に摺動可能に設けてある。参照鏡保持具53は、調整ビス52を緩めて調整ねじ24を廻すことにより、バネ51を介して参照鏡3を第2対物レンズ5の光軸上に直進又は後退することができるように構成してある。
【0024】
図1又は図2に示す実施例において、8はCCDカメラであり、対物レンズ筒26を介して対物レンズ4,5の結像位置に設けてある。CCDカメラ8により撮像された画像は、モニター9に映し出され、モニター9を見ながら合焦操作を行うことができる。
【0025】
また、ビームスプリッターケース46内には、第2対物レンズ5側の透孔48を開閉する遮蔽部13を設けてある。遮蔽部13は、図4に示すように、回転軸14に設けた回転基板49と、この回転基板49に突設した遮蔽板15と、位置決め用のプランジャー16とからなり、ビームスプリッター2の周りを回転可能に設けてある。回転軸14には、開閉用ハンドル17を設けてあり、開閉用ハンドル17によって遮蔽部13を回転させると、遮蔽位置と開放位置に設けた凹部18にプランジャー16の先端部が係合して、遮蔽位置又は開放位置に遮蔽板15を固定することができるようにしてある。
遮蔽板15は、図3では開放位置にあり、破線で示す位置(遮蔽位置)まで回転させることにより第2対物レンズ5への光束を遮断して、測定対象物6側の第1対物レンズ4からの像のみが結象されて明視野顕微鏡として使用することができるように構成してある。
【0026】
図1又は図2に示す実施例において、対物レンズ筒26には、対物レンズ筒26を滑らかに上下方向にスライドすることができるようにスライダー部33を設けてある。スライダー部33は、図8又は図9に示すように、スライダー34と直動ラック32と摺動部35からなる。摺動部35には、V溝形状の2平面を軌道面とした2本の軌道台の間に保持器付円筒ころを組み込んだ直動案内器を設けてある。
【0027】
図1又は図2に示す実施例において、25は、対物レンズ筒26の駆動機構である。駆動機構25は、図8又は図9に示すように、粗動ハンドル27と微動ハンドル28を同一の駆動軸56に設け、歯車29,30,31を介して直動ラック32に歯車50を直結してあり、粗動ハンドル27又は微動ハンドル28を操作することにより対物レンズ筒26を上下方向に駆動するように構成してある。また、駆動軸56には、粗動ハンドル27の内側に軸メタル57とロックハンドル45とからなるロック機構を設けてある。軸メタル57には、スリ割部58を設けてあり、ロックハンドル45を廻すことにより軸メタル57が駆動軸56を締め付けて駆動系をロックすることができるようにしてある。
【0028】
図8において、36は、測長器(ドイツ国ハイデンハイン社製:MT2501)であり、対物レンズ筒26を駆動する駆動系のスライダー部33に直接接続して設けてある。測長器36は、測長器36内の弾性体により測長ロッド38にラック32方向に拡圧弾力を付与して、ラック32の端部に設けた当て金具37に測長ロッド38の先端を当接してある。従って、測長器36は、ラック32の移動によって測長ロッド38が出入して、スライダー部33の上下方向の移動距離を直接測ることにより対物レンズ筒26の移動距離を測定でき、駆動系のクリアランスによるガタツキによる誤差を小さくしてある。
【0029】
また、図1において、43は、スケールカウンターであり、測長器36の測定値をデジタル表示することができるようにしてある。スケールカウンター43には、上側及び下側の対物レンズ筒26,26に設けた測長器36,36の測定値から測定対象物の厚さを演算する演算処理機能を備えてあり、測定対象物の厚さをデジタル表示することができるように構成してある。また、上下方向の変位量のデジタル信号をRS−232Cインターフェースを介してパソコンに接続することができ、パソコン管理することができるようにしてある。
【0030】
図1又は図2に示す実施例において、XYステージ7には、X軸方向の駆動部とY軸方向の駆動部に測長器39,39((株)ミツトヨ製:MT112)を設けてあり、測定対象物6をXY方向に動かして、測定対象物6における段差又は厚さの測定箇所をXY軸カウンター44にデジタル表示することができるように構成してある。また、XY方向の変位量のデジタル信号をRS−232Cインターフェースを介してパソコンに接続することができ、測定対象物のXY方向の位置をパソコン管理することができるようにしてある。
【0031】
次に、本発明に係る干渉式非接触測定装置の作用について説明する。
XYステージ7に基準ゲージブロックを載せ、この基準ゲージブロックの上面に対して上側の対物レンズの合焦操作を行い、下面に対して下側の対物レンズの合焦操作を行う。このとき、対物レンズ筒26を上下方向に移動させると合焦位置付近で、基準ゲージブロックの表面からの反射光と参照鏡3からの反射光の干渉により干渉縞が発生する。この干渉縞の中で0次の干渉縞(最も濃度の濃い干渉縞)をCCDカメラ8で撮影したモニター9画面の中央に来るように合わせると基準ゲージブロックの上面又は下面に焦点が合う。
例えば、厚さが2.003mmの基準ゲージブロックを使用した場合は、合焦操作後に、スケールカウンター43に2.003と入力する。
【0032】
そして、基準ゲージブロックを取外し、XYステージ7に測定対象物6を載せ、基準ゲージブロックのときと同様に測定対象物6の上面及び下面に対して合焦操作を行う。測定対象物6の上面及び下面に焦点が合ったときのスケールカウンター43の表示値が測定対象物6の測定箇所における厚さを示している。
測定対象物6の他の箇所の厚さを測定する場合には、XYステージ7により測定対象物6をXY方向に移動させて、測定対象物6の上面及び下面に対して合焦操作を行うことにより、その測定箇所の厚さを測定することができる。
【0033】
なお、測定対象物6の段差を測定する場合には、上側の対物レンズのみを使用して測定することができるから、基準ゲージブロックを使用した基準合せ操作は不要である。このときは、測定対象物6の段差の一方の測定箇所に対して合焦操作をし、スケールカウンター43に0を入力する。そして、他方の測定箇所に対して合焦操作をしたときのスケールカウンター43の表示値が測定箇所における段差を示している。
本明細書において、段差とは2点間の高低差をいい、凹凸の高低差、凹部又は溝等の深さ、凸部又は峰等の高さも含まれる。
【0034】
【発明の効果】
以上の通り、本発明に係る干渉式非接触測定装置によれば、対物レンズを駆動して測定対象物の表面に焦点を合わせることにより該測定対象物の段差又は厚さを測定するようにした非接触式測定装置であって、測定対象物を照射する光源と、該光源からの光束を測定対象物側と参照鏡側に分割するビームスプリッターと、該ビームスプリッターと測定対象物の間に設けた第1対物レンズと、前記ビームスプリッターと前記参照鏡の間で且つ前記ビームスプリッターからの距離が前記第1対物レンズと等価な位置に設けた前記第1対物レンズと等質な第2対物レンズと、該第2対物レンズの焦点位置に設けた参照鏡とからなり、前記測定対象物と前記参照鏡からの反射光の干渉によって生じる干渉縞により焦点を合わせる合焦機構を備えた構成を有することにより、ビームスプリッターと測定対象物の間に第1対物レンズを設けると共に、ビームスプリッターと参照鏡の間に第2対物レンズを設けたことによって、第1対物レンズ自体の作動距離がそのまま生かされ、測定対象物の表面の微細部分に干渉法を適用して干渉縞を発生させることができ、微細形状の段差又は厚さを測定することができる。また、測定対象物の表面が光を反射すれば干渉縞が発生するから、紙、布、ゴム等のように表面が微細形状をしている測定対象物や反射率の低い測定対象物の段差又は厚さを測定することもできる効果がある。
【0035】
また、本発明は、測定対象物の上側及び下側に前記合焦機構を設けた請求項1に記載の構成を有することにより、測定対象物の上側及び下側に設けた合焦機構によって、測定対象物の上側の表面及び下側の表面に焦点を合わせて、測定対象物の厚さを測定することができる効果がある。
【0036】
また、本発明は、測定対象物の少なくとも上側の合焦機構の第2対物レンズ側に開閉可能な遮蔽板を設けた請求項1又は2に記載の構成を有することにより、第2対物レンズ側を遮蔽板によって遮蔽することによって、参照鏡への光束が遮断されて干渉縞が発生しないから、測定対象物側の第1対物レンズからの像のみが結象されて明視野顕微鏡として使用することができる効果がある。特に、測定対象物のXY測定時には干渉縞が発生しないので測定し易い。
【0037】
また、本発明は、前記参照鏡を焦点方向に調整可能に設けると共に、2対の押ねじにより光軸に対して上下方向及び左右方向に調整可能に設けた請求項1乃至3のいずれかに記載の構成を有することにより、2対の押ねじを操作することにより参照鏡の方向を容易に微調整することができ、参照鏡の方向を調整して干渉縞を発生させるための向き及び間隔を微調整することができる効果がある。
【0038】
また、本発明は、測定対象物の上側及び下側の前記合焦機構に測長器を設け、これらの測長器の値から測定対象物の厚さを演算する演算処理機能を備えた請求項2乃至4のいずれかに記載の構成を有することにより、測長器により対物レンズの位置を測ることができ、合焦時の上側の対物レンズの位置と下側の対物レンズの位置から演算処理機能によって測定対象物の厚さを求めることができる効果がある。
【0039】
また、本発明は、測定対象物をXY方向に動かすXYステージを設けると共に、該XYステージに測長器を設けた請求項1乃至5のいずれかに記載の構成を有することにより、XYステージに測長器を設けたから、測定対象物のXY方向の位置を測ることができ、測定対象物の測定箇所をXY方向の数値により把握することができる効果がある。また、パソコンと接続して、測定対象物のXY方向の位置をパソコン管理することができる効果もある。
【0040】
また、本発明は、対物レンズ筒を駆動する駆動系のスライダー部に直接接続して測長器を設けた請求項1乃至6のいずれかに記載の構成を有することにより、対物レンズ筒を駆動する駆動系のスライダー部の移動を測長器により直接測るから、測長器による測定誤差を小さくすることができる効果がある。
【0041】
また、本発明は、前記対物レンズの結像位置にCCDカメラを設けた請求項1乃至7のいずれかに記載の構成を有することにより、CCDカメラによってモニターを通して干渉縞の発生を確認することができるから、容易に合焦操作を行うことができる効果がある。
【図面の簡単な説明】
【図1】本発明非接触測定装置の一実施例を示す正面図
【図2】その一実施例を示す側面図
【図3】その一実施例の要部を示す一部縦断正面図
【図4】その要部を示す一部横断正面図
【図5】その要部の詳細を示す一部縦断正面図
【図6】その詳細を示す一部横断平面図
【図7】その詳細を示す側面図
【図8】その一実施例の駆動系を示す一部縦断側面図
【図9】その駆動系を示すA−A線断面図
【符号の説明】
1 光源
2 ビームスプリッター
3 参照鏡
4 第1対物レンズ
5 第2対物レンズ
6 測定対象物
7 XYステージ
8 CCDカメラ
9 モニター
10 合焦機構
11 ライトガイド
12 コンデンサレンズ
13 遮蔽部
14 回転軸
15 遮蔽板
16 プランジャー
17 開閉用ハンドル
18 凹部
19 角度調整機構
20,21 割り溝
22,23 押ねじ
24 調整ねじ
25 駆動機構
26 対物レンズ筒
27 粗動ハンドル
28 微動ハンドル
29,30,31 歯車
32 直動ラック
33 スライダー部
34 スライダー
35 摺動部
36 測長器
37 当て金具
38 測長ロッド
39 測長器
40 計測パネル
41 光源スイッチ
42 調光ボリューム
43 スケールカウンター
44 XY軸カウンター
45 ロックハンドル
46 ビームスプリッターケース
47 支持部
48 透孔
49 回転基板
50 歯車
51 バネ
52 調整ビス
53 参照鏡保持具
54 V溝
55 ガイドピン
56 駆動軸
57 軸メタル
58 スリ割部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an interference type non-contact measurement device that measures a step or a thickness of a measurement target in a non-contact manner.
[0002]
[Prior art]
Conventionally, as a measuring device for measuring a step or a thickness of a measurement object in a non-contact manner, a step or a thickness of the measurement object is measured by driving an objective lens to focus on a surface of the measurement object. There was a non-contact type measuring device. In the present apparatus, in order to facilitate a focus determination when performing a focusing operation, a target mark is set in an illumination system of the present apparatus, the target mark is introduced into an objective lens by a projection lens, and a surface of the measurement object is measured. It is known to project a target mark on a target (for example, see Patent Document 1).
[0003]
In addition, a beam splitter is provided between the objective lens and the measuring object to split the light beam from the light source into the measuring object side and the reference mirror side, and interference fringes are generated by interference of the reflected light beams from the measuring object and the reference mirror. An interference objective lens device that measures the surface shape of a measurement object using the interference fringes is known (for example, see Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-221013 [Patent Document 2]
Japanese Utility Model Publication No. 5-84803
[Problems to be solved by the invention]
However, a measuring device that performs a focusing operation by projecting a target mark on the surface of a measurement target as in Patent Literature 1 requires a projection lens or the like for projecting the target mark on the surface of the measurement target and requires an optical system. The system becomes complicated, and adjustment of an optical system for accurately projecting a target mark on a measurement location is complicated. Further, when the reflectance of the surface of the measurement object is low or the shape is complicated, there is a problem that the visibility of the target mark is poor and it is difficult to perform a focusing operation visually.
[0006]
Further, as in Patent Document 2, an interference objective lens device having a beam splitter provided between an objective lens and an object to be measured has a flatness of an object to be measured due to interference fringes by applying an interference method to a relatively wide area. It is not only difficult to measure the step or thickness of the measurement object by focusing on the fine shape portion on the surface of the measurement object, but also to measure the surface shape of the measurement object. In addition, there has been a problem that an adjustment mechanism for adjusting the direction and the position of the reference mirror so as to generate interference fringes by interfering a reflected light beam from the reference mirror becomes complicated.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a non-contact type measurement in which an objective lens is driven to focus on a surface of a measurement target to measure a step or a thickness of the measurement target. An apparatus, comprising: a light source that irradiates an object to be measured; a beam splitter that divides a light beam from the light source into a side of the object to be measured and a side of a reference mirror; and a first objective provided between the beam splitter and the object to be measured. A second objective lens having the same quality as the first objective lens, provided at a position between the beam splitter and the reference mirror and at a distance from the beam splitter equivalent to the first objective lens; (2) An interference type non-contact measurement comprising a reference mirror provided at a focal position of an objective lens, and provided with a focusing mechanism for focusing by interference fringes generated by interference between the object to be measured and light reflected from the reference mirror. There is provided an apparatus.
[0008]
According to the present invention, the first objective lens is provided between the beam splitter and the object to be measured, and the second objective lens is provided between the beam splitter and the reference mirror, so that the working distance of the first objective lens itself is reduced. The interference fringe can be generated by applying the interference method to a minute portion on the surface of the measurement object, and the step or thickness of the minute shape can be measured. In addition, interference fringes are generated when the surface of the measurement object reflects light, and therefore, steps of a measurement object having a fine surface such as paper, cloth, rubber, and the like and a measurement object having a low reflectance are obtained. Alternatively, the thickness can be measured.
[0009]
The present invention also provides an interference-type non-contact measurement device according to claim 1, wherein the focusing mechanism is provided above and below a measurement object.
According to the present invention, the thickness of the measurement target is measured by focusing on the upper surface and the lower surface of the measurement target by the focusing mechanisms provided on the upper and lower sides of the measurement target. Can be.
[0010]
The present invention also provides an interference-type non-contact measurement device according to claim 1 or 2, wherein an openable / closable shield plate is provided on at least the second objective lens side of the focusing mechanism above the object to be measured. is there.
According to the present invention, since the second objective lens side is shielded by the shield plate, the light flux to the reference mirror is blocked and no interference fringe is generated, so that only the image from the first objective lens on the measurement object side is generated. The image can be used as a bright-field microscope, and particularly when XY measurement is performed on an object to be measured, interference fringes do not occur, so that measurement is easy.
[0011]
Further, in the present invention, the reference mirror is provided so as to be adjustable in a focal direction and is provided so as to be adjustable vertically and horizontally with respect to an optical axis by two pairs of setscrews. It is intended to provide an interference type non-contact measurement device as described above.
According to the present invention, the direction of the reference mirror can be easily finely adjusted by operating the two pairs of set screws, and the direction and interval for generating interference fringes by adjusting the direction of the reference mirror can be finely adjusted. Can be adjusted.
[0012]
Further, the present invention is characterized in that a length measuring device is provided in the focusing mechanism on the upper side and the lower side of the measuring object, and an arithmetic processing function for calculating the thickness of the measuring object from the values of these measuring devices is provided. Item 5 provides an interference type non-contact measurement device according to any one of Items 2 to 4.
According to the present invention, the position of the objective lens can be measured by the length measuring device, and the thickness of the object to be measured can be determined by an arithmetic processing function from the position of the upper objective lens and the position of the lower objective lens during focusing. You can ask.
[0013]
Further, the present invention provides an interference type non-contact measurement device according to any one of claims 1 to 5, wherein an XY stage for moving a measurement target in the XY directions is provided, and a length measuring device is provided on the XY stage. Things.
According to the present invention, since the length measuring device is provided on the XY stage, the position of the measurement target in the XY directions can be measured, and the measurement location of the measurement target can be grasped by the numerical values in the XY directions. Also, by connecting to a personal computer, the position of the object to be measured in the XY directions can be managed by the personal computer.
[0014]
Further, the present invention provides an interference type non-contact measurement device according to any one of claims 1 to 6, wherein a length measuring device is provided directly connected to a slider portion of a drive system for driving the objective lens barrel. is there.
According to the present invention, since the movement of the slider section of the drive system for driving the objective lens barrel is directly measured by the length measuring device, the measurement error by the length measuring device can be reduced.
[0015]
Further, the present invention provides an interference type non-contact measurement device according to any one of claims 1 to 7, wherein a CCD camera is provided at an image forming position of the objective lens.
According to the present invention, since the occurrence of interference fringes can be confirmed through the monitor by the CCD camera, the focusing operation can be easily performed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described based on an illustrated example.
The interference type non-contact measurement device according to the present invention is a non-contact type measurement device configured to measure a step or a thickness of the measurement target by driving an objective lens and focusing on a surface of the measurement target. A light source 1 for irradiating the object to be measured, a beam splitter 2 for dividing a light beam from the light source 1 into the object 6 and the reference mirror 3, and a light source 1 between the beam splitter 2 and the object 6 A first objective lens 4 provided between the beam splitter 2 and the reference mirror 3 and a distance from the beam splitter 2 at a position equivalent to the first objective lens 4; It comprises a homogeneous second objective lens 5 and a reference mirror 3 provided at the focal position of the second objective lens 5. The interference fringes generated by the interference between the measurement object 6 and the reflected light from the reference mirror 3. Focus on It is equipped with a mechanism 10.
[0017]
In the embodiment shown in FIG. 1 or FIG. 2, the first objective lens 4 including the focusing mechanism 10 is provided above and below the XY stage 7 on which the measurement target 6 is mounted. In addition, the thickness of the measurement object 6 can be measured from the position of the first objective lenses 4 and 4 by performing a focusing operation on the lower surface.
[0018]
The focusing mechanism 10 generates interference fringes when the measurement target 6 is placed at the focal position according to the principle of the Michelson interferometer. The focus position of the first objective lens 4 is changed by the generation of the interference fringes. Confirmation and focusing are performed.
In the illustrated embodiment, the first objective lens 4 is a 40-times objective lens having a very long working distance for a microscope, which secures a working distance (15 mm), increases the resolution of interference fringes, and reduces the depth of focus. This improves the measurement accuracy (± 0.2 μm).
[0019]
In the embodiment shown in FIG. 1 or FIG. 2, the light source 1 includes a light guide 11 for guiding a light beam from a halogen lamp (not shown) and a condenser lens 12 for enhancing the light. Light is emitted from the direction perpendicular to the axis toward the beam splitter 2.
Further, the measurement panel 40 is provided with a light source switch 41 of the light source 1 and a dimming volume 42 so that the interference fringes can be dimmed to an illuminance that is easy to see.
[0020]
As shown in FIG. 3, the beam splitter 2 has a configuration in which two homogeneous prisms are combined, and the joining surface is a semi-transparent mirror surface. The beam splitter 2 is supported by a support portion 47 in a beam splitter case 46, and the beam splitter case 46 has through holes 48 on the upper and lower first objective lens 4 side and the second objective lens 5 side and the light source 1 side. , 48 are formed. Further, the beam splitter 2 is provided at the center of the intersection of the optical axis of the first objective lens 4 and the axis of the light beam from the light source 1, and the light beam from the light source 1 passes through the beam splitter 2 in the right angle direction. The light beam can be divided into a light beam bent toward the measurement object 6 and a light beam passing straight through toward the reference mirror 3.
[0021]
As shown in FIG. 3, a 40 × objective lens having a very long working distance for a microscope, which is equivalent to the first objective lens, is used as the second objective lens 5, and the second objective lens 5 is positioned at an optically equal distance from the beam splitter 2. It is provided in.
[0022]
As shown in FIG. 3, the reference mirror 3 is a plane mirror, and is provided at a focal position of the second objective lens 5. Further, the reference mirror 3 is provided so as to be adjustable in the vertical and horizontal directions with respect to the optical axis and in the focal direction by the angle adjusting mechanism 19, and is finely adjusted to have the same distance as the focal position of the first objective lens 4. An adjustment is made, and an optical path difference is generated depending on a reflection position, so that interference fringes can be generated.
[0023]
As shown in FIGS. 5 to 7, the angle adjusting mechanism 19 includes a pair of split grooves 20 provided vertically, a pair of split grooves 21 provided right and left, and a reference mirror holder 53 for holding the reference mirror 3. The orientation of the reference mirror 3 can be adjusted vertically and horizontally with respect to the optical axis of the second objective lens 5 by two pairs of setscrews 22 and 23.
As shown in FIG. 5 or FIG. 7, the reference mirror holder 53 has a columnar shape and holds the reference mirror 3 at its tip. Is slidably provided in the focal direction. The reference mirror holder 53 is configured so that the adjustment screw 52 is loosened and the adjustment screw 24 is turned to move the reference mirror 3 straight or backward on the optical axis of the second objective lens 5 via the spring 51. I have.
[0024]
In the embodiment shown in FIG. 1 or FIG. 2, reference numeral 8 denotes a CCD camera, which is provided at an image forming position of the objective lenses 4 and 5 via an objective lens tube 26. An image captured by the CCD camera 8 is displayed on a monitor 9, and a focusing operation can be performed while watching the monitor 9.
[0025]
In the beam splitter case 46, a shielding portion 13 for opening and closing the through hole 48 on the second objective lens 5 side is provided. As shown in FIG. 4, the shielding portion 13 includes a rotating substrate 49 provided on the rotating shaft 14, a shielding plate 15 protruding from the rotating substrate 49, and a plunger 16 for positioning. It is provided rotatable around. The rotating shaft 14 is provided with an opening / closing handle 17. When the shielding portion 13 is rotated by the opening / closing handle 17, the tip of the plunger 16 engages with the concave portion 18 provided at the shielding position and the opening position. The shielding plate 15 can be fixed to the shielding position or the open position.
The shielding plate 15 is in the open position in FIG. 3, and shuts off the light beam to the second objective lens 5 by rotating to the position indicated by the broken line (shielding position), so that the first objective lens 4 on the measurement object 6 side. Is constructed so that only an image from the target can be imaged and used as a bright-field microscope.
[0026]
In the embodiment shown in FIG. 1 or FIG. 2, the objective lens barrel 26 is provided with a slider part 33 so that the objective lens barrel 26 can be slid smoothly in the up-down direction. The slider portion 33 includes a slider 34, a linear motion rack 32, and a sliding portion 35, as shown in FIG. The sliding portion 35 is provided with a linear motion guide in which a cylindrical roller with a retainer is incorporated between two raceways having two V-groove-shaped flat surfaces as raceway surfaces.
[0027]
In the embodiment shown in FIG. 1 or FIG. 2, reference numeral 25 denotes a drive mechanism of the objective lens barrel 26. As shown in FIG. 8 or FIG. 9, the drive mechanism 25 is provided with the coarse movement handle 27 and the fine movement handle 28 on the same drive shaft 56, and directly connects the gear 50 to the translation rack 32 via the gears 29, 30, 31. The objective lens barrel 26 is configured to be driven up and down by operating the coarse movement handle 27 or the fine movement handle 28. The drive shaft 56 is provided with a lock mechanism including a shaft metal 57 and a lock handle 45 inside the coarse movement handle 27. A slot portion 58 is provided on the shaft metal 57, and by turning the lock handle 45, the shaft metal 57 can tighten the drive shaft 56 to lock the drive system.
[0028]
In FIG. 8, reference numeral 36 denotes a length measuring device (manufactured by Heidenhain, Germany: MT2501), which is directly connected to a slider section 33 of a drive system for driving the objective lens barrel 26. The length measuring device 36 applies an expanding elastic force to the length measuring rod 38 in the direction of the rack 32 by an elastic body in the length measuring device 36, and applies a tip end of the length measuring rod 38 to a fitting 37 provided at an end of the rack 32. Is in contact. Accordingly, the length measuring device 36 can measure the moving distance of the objective lens barrel 26 by directly measuring the vertical moving distance of the slider portion 33 when the length measuring rod 38 moves in and out by the movement of the rack 32, and can measure the moving distance of the drive system. Errors due to rattling due to clearance are reduced.
[0029]
In FIG. 1, reference numeral 43 denotes a scale counter, which can digitally display the measured value of the length measuring device 36. The scale counter 43 has an arithmetic processing function of calculating the thickness of the measurement target from the measurement values of the length measuring devices 36, 36 provided in the upper and lower objective lens barrels 26, 26. It is configured to be able to digitally display the thickness of. Also, a digital signal of the amount of displacement in the vertical direction can be connected to a personal computer via an RS-232C interface, so that the personal computer can be managed.
[0030]
In the embodiment shown in FIG. 1 or FIG. 2, the XY stage 7 is provided with length measuring devices 39, 39 (manufactured by Mitutoyo Corporation: MT112) in the drive unit in the X-axis direction and the drive unit in the Y-axis direction. The measurement target 6 is moved in the X and Y directions, and the measurement point of the step or the thickness of the measurement target 6 can be digitally displayed on the XY axis counter 44. In addition, a digital signal of the displacement amount in the XY directions can be connected to a personal computer via the RS-232C interface, so that the position of the object to be measured in the XY directions can be managed by the personal computer.
[0031]
Next, the operation of the interference type non-contact measurement device according to the present invention will be described.
The reference gauge block is placed on the XY stage 7, and the upper objective lens is focused on the upper surface of the reference gauge block, and the lower objective lens is focused on the lower surface. At this time, when the objective lens barrel 26 is moved in the vertical direction, interference fringes occur near the focus position due to interference between the reflected light from the surface of the reference gauge block and the reflected light from the reference mirror 3. When the zero-order interference fringe (the interference fringe having the highest density) among the interference fringes is adjusted to be at the center of the screen of the monitor 9 photographed by the CCD camera 8, the upper or lower surface of the reference gauge block is focused.
For example, when a reference gauge block having a thickness of 2.003 mm is used, 2.003 is input to the scale counter 43 after the focusing operation.
[0032]
Then, the reference gauge block is removed, the measurement target 6 is placed on the XY stage 7, and the focusing operation is performed on the upper surface and the lower surface of the measurement target 6 as in the case of the reference gauge block. The display value of the scale counter 43 when the upper and lower surfaces of the measurement object 6 are focused indicates the thickness of the measurement object 6 at the measurement location.
When measuring the thickness of another portion of the measurement target 6, the measurement target 6 is moved in the XY directions by the XY stage 7, and the focusing operation is performed on the upper surface and the lower surface of the measurement target 6. Thus, the thickness of the measurement location can be measured.
[0033]
In the case of measuring the step of the measurement object 6, since the measurement can be performed using only the upper objective lens, the reference setting operation using the reference gauge block is unnecessary. At this time, the focusing operation is performed on one of the measurement points on the step of the measurement target 6, and 0 is input to the scale counter 43. Then, the display value of the scale counter 43 when the focusing operation is performed on the other measurement location indicates the level difference at the measurement location.
In the present specification, the step refers to a height difference between two points, and includes a height difference of unevenness, a depth of a concave portion or a groove, and a height of a convex portion or a peak.
[0034]
【The invention's effect】
As described above, according to the interference type non-contact measurement device according to the present invention, the step or the thickness of the measurement target is measured by driving the objective lens and focusing on the surface of the measurement target. A non-contact type measurement device, a light source that irradiates a measurement target, a beam splitter that divides a light beam from the light source into a measurement target side and a reference mirror side, and is provided between the beam splitter and the measurement target. A first objective lens, and a second objective lens of the same quality as the first objective lens provided at a position between the beam splitter and the reference mirror and at a distance from the beam splitter equivalent to the first objective lens. And a reference mirror provided at the focal position of the second objective lens, comprising a focusing mechanism for focusing by interference fringes generated by interference between the object to be measured and light reflected from the reference mirror. By providing the first objective lens between the beam splitter and the object to be measured, and by providing the second objective lens between the beam splitter and the reference mirror, the working distance of the first objective lens itself can be used. In addition, interference fringes can be generated by applying an interference method to a minute portion on the surface of the measurement object, and a step or thickness of a minute shape can be measured. In addition, interference fringes are generated when the surface of the measurement object reflects light, and therefore, steps of a measurement object having a fine surface such as paper, cloth, rubber, and the like and a measurement object having a low reflectance are obtained. Alternatively, there is an effect that the thickness can be measured.
[0035]
Further, according to the present invention, by having the configuration according to claim 1 in which the focusing mechanism is provided on the upper side and the lower side of the measurement target, by the focusing mechanism provided on the upper side and the lower side of the measurement target, There is an effect that the thickness of the measurement object can be measured by focusing on the upper surface and the lower surface of the measurement object.
[0036]
Further, according to the present invention, by having the configuration according to claim 1 or 2 provided with an openable / closable shield plate on at least the second objective lens side of the focusing mechanism above the measurement object, Is shielded by a shielding plate, so that the light beam to the reference mirror is blocked and no interference fringes are generated. Therefore, only the image from the first objective lens on the measurement object side is formed and used as a bright-field microscope. There is an effect that can be. In particular, the interference fringes do not occur at the time of the XY measurement of the measurement object, so that the measurement is easy.
[0037]
Further, in the present invention, the reference mirror is provided so as to be adjustable in a focal direction and is provided so as to be adjustable vertically and horizontally with respect to an optical axis by two pairs of setscrews. With the configuration described above, the direction of the reference mirror can be easily finely adjusted by operating the two pairs of set screws, and the direction and the interval for adjusting the direction of the reference mirror to generate interference fringes. There is an effect that can be fine-tuned.
[0038]
Further, the present invention is characterized in that a length measuring device is provided in the focusing mechanism on the upper side and the lower side of the measuring object, and an arithmetic processing function for calculating the thickness of the measuring object from the values of these measuring devices is provided. By having the configuration described in any one of Items 2 to 4, the position of the objective lens can be measured by the length measuring device, and calculation is performed from the position of the upper objective lens and the position of the lower objective lens during focusing. There is an effect that the thickness of the measurement object can be obtained by the processing function.
[0039]
Further, the present invention provides an XY stage for moving an object to be measured in the XY directions and a length measuring device provided on the XY stage. Since the length measuring device is provided, the position of the object to be measured in the XY directions can be measured, and the measurement location of the object to be measured can be grasped by the numerical values in the XY directions. In addition, there is an effect that the position of the object to be measured in the XY directions can be managed by the personal computer by connecting to the personal computer.
[0040]
Further, according to the present invention, the objective lens barrel is driven by having the configuration according to any one of claims 1 to 6, wherein the length measuring device is provided directly connected to the slider part of the drive system for driving the objective lens barrel. Since the movement of the slider portion of the drive system to be performed is directly measured by the length measuring device, there is an effect that the measurement error by the length measuring device can be reduced.
[0041]
Further, according to the present invention, the CCD camera is provided at the image forming position of the objective lens, whereby the occurrence of interference fringes can be confirmed through the monitor by the CCD camera. Therefore, there is an effect that the focusing operation can be easily performed.
[Brief description of the drawings]
FIG. 1 is a front view showing one embodiment of the non-contact measurement device of the present invention. FIG. 2 is a side view showing one embodiment. FIG. 3 is a partially longitudinal front view showing a main part of the one embodiment. 4 Partial cross-sectional front view showing the main part [FIG. 5] Partial longitudinal front view showing the details of the main part [FIG. 6] Partial cross-sectional plan view showing the details [FIG. 7] Side view showing the details FIG. 8 is a partially longitudinal side view showing a drive system of the embodiment. FIG. 9 is a sectional view taken along line AA of the drive system.
REFERENCE SIGNS LIST 1 light source 2 beam splitter 3 reference mirror 4 first objective lens 5 second objective lens 6 object to be measured 7 XY stage 8 CCD camera 9 monitor 10 focusing mechanism 11 light guide 12 condenser lens 13 shielding unit 14 rotation axis 15 shielding plate 16 Plunger 17 Opening / closing handle 18 Recess 19 Angle adjusting mechanism 20, 21 Split groove 22, 23 Set screw 24 Adjusting screw 25 Drive mechanism 26 Objective lens barrel 27 Coarse movement handle 28 Fine movement handle 29, 30, 31 Gear 32 Linear rack 33 Slider part 34 Slider 35 Sliding part 36 Length measuring device 37 Metal fitting 38 Length measuring rod 39 Length measuring device 40 Measurement panel 41 Light source switch 42 Light control volume 43 Scale counter 44 XY axis counter 45 Lock handle 46 Beam splitter case 47 Support portion 48 through holes 49 times Substrate 50 gear 51 spring 52 adjusting screw 53 the reference mirror holder 54 V grooves 55 guide pins 56 drive shaft 57 axis Metal 58 slitting unit

Claims (8)

対物レンズを駆動して測定対象物の表面に焦点を合わせることにより該測定対象物の段差又は厚さを測定するようにした非接触式測定装置であって、測定対象物を照射する光源と、該光源からの光束を測定対象物側と参照鏡側に分割するビームスプリッターと、該ビームスプリッターと測定対象物の間に設けた第1対物レンズと、前記ビームスプリッターと前記参照鏡の間で且つ前記ビームスプリッターからの距離が前記第1対物レンズと等価な位置に設けた前記第1対物レンズと等質な第2対物レンズと、該第2対物レンズの焦点位置に設けた参照鏡とからなり、前記測定対象物と前記参照鏡からの反射光の干渉によって生じる干渉縞により焦点を合わせる合焦機構を備えた干渉式非接触測定装置。A non-contact type measurement device configured to measure a step or a thickness of the measurement target by driving the objective lens and focusing on a surface of the measurement target, and a light source that irradiates the measurement target, A beam splitter that divides a light beam from the light source into a measurement object side and a reference mirror side, a first objective lens provided between the beam splitter and the measurement object, and between the beam splitter and the reference mirror; The first objective lens is provided at a position equivalent to the first objective lens at a distance from the beam splitter. The second objective lens has the same quality as the first objective lens, and a reference mirror is provided at a focal position of the second objective lens. And an interference type non-contact measurement device including a focusing mechanism for focusing on interference fringes generated by interference between the measurement object and light reflected from the reference mirror. 測定対象物の上側及び下側に前記合焦機構を設けた請求項1に記載の干渉式非接触測定装置。The interference type non-contact measurement device according to claim 1, wherein the focusing mechanism is provided above and below a measurement target. 測定対象物の少なくとも上側の合焦機構の第2対物レンズ側に開閉可能な遮蔽板を設けた請求項1又は2に記載の干渉式非接触測定装置。The interference type non-contact measurement device according to claim 1, further comprising an openable / closable shielding plate provided at least on a second objective lens side of the focusing mechanism on an upper side of the measurement target. 前記参照鏡を焦点方向に調整可能に設けると共に、2対の押ねじにより光軸に対して上下方向及び左右方向に調整可能に設けた請求項1乃至3のいずれかに記載の干渉式非接触測定装置。The interference type non-contact according to any one of claims 1 to 3, wherein the reference mirror is provided so as to be adjustable in a focal direction, and is provided so as to be adjustable vertically and horizontally with respect to an optical axis by two pairs of set screws. measuring device. 測定対象物の上側及び下側の前記合焦機構に測長器を設け、これらの測長器の値から測定対象物の厚さを演算する演算処理機能を備えた請求項2乃至4のいずれかに記載の干渉式非接触測定装置。5. The apparatus according to claim 2, further comprising: a length measuring device provided in the focusing mechanism on the upper side and the lower side of the measuring object, and a calculation processing function of calculating a thickness of the measuring object from values of the length measuring devices. 6. An interference-type non-contact measurement device according to any one of the above. 測定対象物をXY方向に動かすXYステージを設けると共に、該XYステージに測長器を設けた請求項1乃至5のいずれかに記載の干渉式非接触測定装置。6. The interference type non-contact measurement device according to claim 1, further comprising an XY stage for moving the object to be measured in the XY directions, and a length measuring device provided on the XY stage. 対物レンズ筒を駆動する駆動系のスライダー部に直接接続して測長器を設けた請求項1乃至6のいずれかに記載の干渉式非接触測定装置。7. An interference type non-contact measuring device according to claim 1, wherein a length measuring device is provided directly connected to a slider portion of a driving system for driving the objective lens tube. 前記対物レンズの結像位置にCCDカメラを設けた請求項1乃至7のいずれかに記載の干渉式非接触測定装置。The non-contact interferometer according to any one of claims 1 to 7, further comprising a CCD camera provided at an image forming position of the objective lens.
JP2002301880A 2002-10-16 2002-10-16 Interference type contactless measuring unit Pending JP2004138441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301880A JP2004138441A (en) 2002-10-16 2002-10-16 Interference type contactless measuring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301880A JP2004138441A (en) 2002-10-16 2002-10-16 Interference type contactless measuring unit

Publications (1)

Publication Number Publication Date
JP2004138441A true JP2004138441A (en) 2004-05-13

Family

ID=32450114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301880A Pending JP2004138441A (en) 2002-10-16 2002-10-16 Interference type contactless measuring unit

Country Status (1)

Country Link
JP (1) JP2004138441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025864A (en) * 2008-07-23 2010-02-04 Hamamatsu Photonics Kk Interference measuring apparatus
KR101569814B1 (en) * 2014-04-24 2015-11-18 (주)엔아이텍 Thickness measuring apparatus for substrate and measuring method therefor
CN106969725A (en) * 2017-05-12 2017-07-21 西南交通大学 The angle regulating equipment of railway ballast particle and its measurement apparatus of multi-angle two dimensional image
CN107036548A (en) * 2015-11-17 2017-08-11 株式会社三丰 Interference objective and reference surface unit group

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025864A (en) * 2008-07-23 2010-02-04 Hamamatsu Photonics Kk Interference measuring apparatus
KR101569814B1 (en) * 2014-04-24 2015-11-18 (주)엔아이텍 Thickness measuring apparatus for substrate and measuring method therefor
CN107036548A (en) * 2015-11-17 2017-08-11 株式会社三丰 Interference objective and reference surface unit group
CN106969725A (en) * 2017-05-12 2017-07-21 西南交通大学 The angle regulating equipment of railway ballast particle and its measurement apparatus of multi-angle two dimensional image
CN106969725B (en) * 2017-05-12 2023-11-10 西南交通大学 Angle adjusting equipment for railway ballast particles and measuring device for multi-angle two-dimensional images of angle adjusting equipment

Similar Documents

Publication Publication Date Title
CN105758294B (en) Interference objective and optical interference measuring device
US8593624B2 (en) Refractive index measuring apparatus
CN105486247B (en) It is a kind of can continuous zoom surface figure measuring device
JP6516453B2 (en) Image measuring device and measuring device
WO2007091087A2 (en) Surface measurement instrument
JP2007078635A (en) Calibration fixture, and offset calculation method of image measuring machine
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP6417645B2 (en) Alignment method for surface profile measuring device
TW201423033A (en) Shape measuring apparatus, structure manufacturing system, stage apparatus, shape measuring method, structure manufacturing method, program, and recording medium
JP2010019671A (en) Calibrating jig, profile measuring device, and method of offset calculation
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2004138441A (en) Interference type contactless measuring unit
KR101920349B1 (en) Apparatus for monitoring three-dimensional shape of target object
JP5649926B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP3715377B2 (en) Object shape measuring device
CN110307805A (en) A kind of white light interference system for three-dimensional surface shape measurement
JP3744166B2 (en) Infrared microscope
JP2012242085A (en) Measured object holding position correction method of curvature radius measuring instrument and curvature radius measuring instrument
JP3048895B2 (en) Position detection method applied to proximity exposure
WO2018123398A1 (en) Measuring device, application device, and film thickness measuring method
JP2006110661A (en) Image pickup device for loaded work in grinder
JP2015105931A (en) Measuring instrument
JP2009068942A (en) Roof mirror measuring apparatus
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
JP2013253915A (en) Lens surface interval measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115