JP2004137685A - Caisson submergement method and supporting method using regular foundation pile - Google Patents

Caisson submergement method and supporting method using regular foundation pile Download PDF

Info

Publication number
JP2004137685A
JP2004137685A JP2002300844A JP2002300844A JP2004137685A JP 2004137685 A JP2004137685 A JP 2004137685A JP 2002300844 A JP2002300844 A JP 2002300844A JP 2002300844 A JP2002300844 A JP 2002300844A JP 2004137685 A JP2004137685 A JP 2004137685A
Authority
JP
Japan
Prior art keywords
caisson
pile
foundation pile
permanent foundation
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300844A
Other languages
Japanese (ja)
Other versions
JP3850785B2 (en
Inventor
Keiichi Saito
齋藤 啓一
Yoshihiro Suzuki
鈴木 義廣
Shigeru Sugano
菅野 茂
Katsutoshi Tanaka
田中 勝俊
Kouichi Fujino
藤野 ▲こう▼一
Akinao Fujimoto
藤本 明尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR East Consultants Co
East Japan Railway Co
Shiraishi Co Ltd
Original Assignee
JR East Consultants Co
East Japan Railway Co
Shiraishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR East Consultants Co, East Japan Railway Co, Shiraishi Co Ltd filed Critical JR East Consultants Co
Priority to JP2002300844A priority Critical patent/JP3850785B2/en
Publication of JP2004137685A publication Critical patent/JP2004137685A/en
Application granted granted Critical
Publication of JP3850785B2 publication Critical patent/JP3850785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a caisson suspending apparatus for dispensing with an earth anchor, submerging a caisson frame body with high accuracy, improving the stability of jacking work, and overcoming an disadvantage such as the imbalance of a support force in bedding work for bottom-seating the ground at the final stage of the submergement of the caisson frame body. <P>SOLUTION: In a process of applying pressure to an open caisson by a hydraulic jack 7 submerged to a designated depth in a predetermined position, an intermediate connection pile (a reaction force pile) 2 is erected as a rigid support member from a regular foundation pile 1 driven in an area for submerging the caisson, and the intermediate connection pile 2 is connected to the hydraulic jack 7, whereby the regular foundation pile 1 can be used for a jacking reaction force material for the submergement of the caisson 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、土木工事分野におけるオープンケーソンの施工方法において、特に、本設基礎杭を利用したケーソン沈設方法および支持方法に関するものである。
【0002】
【従来の技術】
従来、杭基礎工法による下部工躯体(フーチング)の構築方法は、はじめに本設となる所要の基礎杭を設置し、次に仮設土留め工を行って本設基礎杭の天端まで開削工法により掘削した後、下部工躯体を構築するという手順が一般的である。
【0003】
また、従来のオープンケーソンの沈設技術は、グランドアンカーに代表される地盤定着材料をケーソン躯体からわずかに離れた外周に所要数量設置し、該アンカーを地盤反力とすることでケーソンを沈設施工する方法が一般的に用いられている。
【0004】
さらに、ケーソンの側方移動を抑止する方法としては、該ケーソンの近傍に別途に側方移動用に専用の杭などを設置し、これを不動部材としてケーソン沈設時のガイドとする技術がある。
【0005】
従来技術における杭基礎工法によれば、下部工躯体を構築するための仮設土留め工に一定期間の工期を必要とし、さらに、下部工躯体の構築後も仮設土留め工に用いられた仮設材料を撤去するための工期を必要とするばかりか、該仮設材料の完全な撤去も難しいという問題があった。
【0006】
また、オープンケーソン施工に関する従来技術は、グランドアンカーなどの定着材料を予め設置することを前提としたものであり、工事箇所の土質条件やケーソン躯体の重量などによって左右されるものの、オープンケーソン施工の場合は、補助工法としての圧入の併用または、ケーソン躯体上部に重錘などを設置して見掛けのケーソン躯体重量を増加させることなどが、ケーソン躯体の沈下力の増大および施工精度の向上を得やすいとして必要条件となっている。
【0007】
前述のことから、グランドアンカーなどの定着材料の設置に要する工期や相応の占用する施工範囲ばかりでなく、定着材料や重錘に要する費用などが負担になるほか、建設事業の環境問題が取りざたされている中で、グランドアンカーは定着部分を完全に撤去することが難しく、完全撤去にはさらに所要の工期と費用を必要とすることが問題となっている。
【0008】
前記の諸問題を解決する改良技術として、特開平6−341154号に開示の地下躯体構築工法が知られている。この先行技術は、それ以前に行われていた、アースアンカー(グランドアンカー)を、基礎杭とは別に設置したアンカー体に連設する工法に代えて、前記アースアンカーをケーソンを沈設する領域に打ち込まれた基礎杭に一体連結するもので、これにより基礎杭で得られる緊張力をケーソン躯体の沈設の際にも得ることができるようにすると共に、工期短縮を可能とするというものである。
【0009】
【特許文献1】
特開平6−341154号公報
【0010】
【発明が解決しようとする課題】
しかし、特開平6−341154号に開示の従来技術では、基礎杭に一体連結したアースアンカーによりジャッキ反力を採ってケーソン躯体を沈設することはできるが、このアースアンカーは、通常、PC鋼線または細径棒体等からなるものであって、それ自体剛性を有していないことから、ケーソン躯体の沈設作業の際の水平方向移動を抑制する反力部材として機能させたり、さらに、ケーソン沈設後、着底地盤の支持力の不均衡などによるケーソン躯体の傾斜等の抑止のため、ケーソン底盤構築の際のケーソンの仮支持反力材として機能させることはできず、これらのためケーソン躯体の高精度の沈設が難しく、また圧入作業の不安定さなどの問題が依然として残されていた。
【0011】
さらに、従来のオープンケーソン工法では、ケーソン躯体沈設終了段階において、着底地盤の支持力の不均衡などから、ケーソン着底後も多少のケーソン躯体の傾斜や沈下が発生する場合があり、この対応策としてケーソン躯体を支持するため、アースアンカーとは別途に支持杭を必要とするようなケーソン支持装置を設置したり、ケーソン仕切り壁の下部に支台(サンドル)を設置するなどの面倒な手間のかかる方法が採られている。
【0012】
本発明は、前記の問題点を解決したもので、本設基礎杭を利用したケーソン沈設方法および、支持方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記の目的を達成するため、本発明は、次のように構成する。
【0014】
第1の発明は、ジャッキにより圧力を加えてオープンケーソンを所定位置にて所定深度まで沈設する過程において、ケーソンを沈設する領域に打込まれた本設基礎杭に立設する剛性支持部材を前記ジャッキに連結することで、前記剛性支持部材および本設基礎杭を前記ケーソン沈設のための圧入反力材として利用することを特徴とする。
【0015】
第2の発明は、第1の発明における本設基礎杭は、杭コンクリート中に前記剛性支持部材を埋設して構築されていて、本設基礎杭を所定深さ打設するのに対応して、該本設基礎杭の上部から杭コンクリートを順次ハツルことにより前記剛性支持部材を露出させることを特徴とする。
【0016】
第3の発明は、第1または第2の発明における剛性支持部材がH形鋼製等の中間接続杭からなり、当該中間接続杭をケーソン水平方向支持反力材として利用することで、ケーソンの側方移動を抑止することを特徴とする。
【0017】
第4の発明は、第1〜第3の何れかの発明における前記剛性支持部材にストラッドを固着し、ストラッドに設けたガイドローラをケーソンの内側壁と仕切り壁に接触させることで、前記ケーソンの移動を鉛直方向のみに拘束させることを特徴とする。
【0018】
第5の発明は、第1〜第3の何れかに記載の沈設方法におけるジャッキにより圧力を加えてオープンケーソンを所定位置および所定深度まで沈設完了した後、前記剛性支持部材と本設基礎杭をケーソンの吊り持ち反力材として利用し、配置変えをした前記ジャッキにより前記ケーソンに吊上げ力を加えてケーソンの過沈下(自沈)防止を図り、ケーソン底盤を構築することを特徴とする。
【0019】
第6の発明は、第5発明のケーソン底盤を構築するに際し、ケーソンの刃口と略同じ厚さに下地コンクリートを打設し、下地コンクリートの上面と切断面が略揃うように本設基礎杭を切断し、その後、前記ケーソン底盤を打設することで本設基礎杭とケーソン躯体を一体化することを特徴とする。
【0020】
【作用】
第1、第2の発明では、基礎杭などが下部工躯体を支持するような構造物である場合において、下部工躯体をケーソンとして地上にて予め構築しておき、オープンケーソン工法により沈設する際、ケーソンを沈設する領域に打設された基礎杭および、当該基礎杭に立設する剛性支持部材に圧入反力を取ってケーソンを沈設するものであるから、従来のグランドアンカーや本設基礎杭と別途の圧入専用の基礎杭などが不要であるのは勿論、基礎杭と剛性支持部材は何れも剛体であるから水平方向反力材として機能させることができ、したがって、ケーソンの圧入作業をより高精度で、かつ円滑に行うことが出来る。
【0021】
第3の発明では、第1の発明における剛性支持部材をH形鋼製など中間接続杭で構成し、この中間接続杭を下部工躯体の設置に先立って、予め設置される本設基礎杭から例えば、地表以上の高さまで立設しておくことで、当該ケーソン沈設時の側方移動を抑止する水平方向反力を得る材料とすることができ、この点でも、ケーソンの圧入作業をより高精度で、かつ円滑に行うことが出来る。
【0022】
第4の発明では、第1〜第3の発明における剛性支持部材に固着したガイドローラ付きストラッドの前記ガイドローラをケーソンの内側壁と仕切り壁に接触させることで、ケーソンの移動を鉛直成分に確実に拘束でき、したがって、ケーソンを高精度でかつ円滑に沈設することができる。
【0023】
第5および第6の発明では、所定位置および所定深度までケーソンの沈設を完了(着底)した後に、ケーソン底盤を構築することでその過沈下(自沈)を抑制するので、従来のように別途にケーソン躯体吊り支持杭を必要とせず、また、支台(サンドル)手間のかかる方法なども不要となり、さらに、ケーソン底盤を構築するに際して、予め設置された本設基礎杭から立設する中間接続杭を利用してケーソンを確実に吊り持ち支持させることができ、その作業が容易となる。
【0024】
【発明の実施の形態】
以下、本発明の実施形態を図を参照して説明する。図1〜図4は、本発明のケーソン沈設過程の工程図、図5〜図8は圧入装置の図、図9〜図11は吊り下げ装置の図であり、図1〜図11は相互に対応する図として示している。図12〜図16は他の実施形態に係るケーソン圧入装置の図である。
【0025】
まず、図1〜図4を参照して、本発明のケーソン沈設の施工順を次の(1)〜(9)工程に分けて概要的に説明する。
【0026】
(1)第1工程では、本設基礎杭・中間接続杭を設置する。
(2)第2工程では、ケーソン刃口部を設置する。
(3)第3工程では、第nリフトのケーソン躯体を構築する。
(4)第4工程では、ケーソン圧入設備を設置する。
(5)第5工程では、ケーソン沈下のため地盤掘削する。
(6)第6工程では、ケーソン沈下を完了する。
(7)第7工程では、ケーソン支持部材を設置する。
(8)第8工程では、最終掘削(床付け)を行う。
(9)第9工程では、ケーソン工を完了する。
【0027】
以下、(1)〜(9)の各施工段階(ステップ)の詳細を説明する。
【0028】
(1)本設基礎杭・中間接続杭設置段階(ステップ)
削孔工法やオールケーシング工法などの既存の技術により、ケーソンを沈設する所定の領域に本設基礎杭1として所要の場所打ち杭を必要本数施工すると共に、多数の本設基礎杭1のうち、必要な本設基礎杭1に、剛性支持部材の1例としてH形鋼材などの中間接続杭(反力杭)2を、施工基面(地表面)3にその杭頭2aが突出するように立設状態に施工する。(図1A参照)
【0029】
中間接続杭2は、本設基礎杭1の杭コンクリート1aに点線で示すようにコンクリート1aに埋設しておき、接続杭頭2aを施工基面(地表面)3において、本設基礎杭1の上端から突出させておき、本設基礎杭1を所定深さ打設するのに対応して、本設基礎杭1の上部から杭コンクリート1aを順次ハツルことによりH形鋼製の中間接続杭2を露出させることで構成してもよい。
【0030】
(2)ケーソン刃口部設置段階(ステップ)
ケーソン(躯体)4の刃口4aを施工基面3に設置する。(図1A参照)
【0031】
(3)ケーソン躯体第nリフト構築段階(ステップ)
第nリフトのケーソン躯体4の構築を行う。(n=1、2、3、4…)
【0032】
(4)ケーソン圧入設備設置段階(ステップ)
構築したケーソン躯体4上に支圧盤5を設置し、該支圧盤5上に反力桁6を仮設し、該反力桁6の上部にセンターホールジャッキからなる液圧(油圧)ジャッキ7を設置し、該液圧ジャッキ7にはテンションロッド(グリッパーロッド)8を挿設させて本設基礎杭1に立設する中間接続杭2の杭頭2aと連結し、液圧ジャッキ7を緊張することで圧入効果を得る圧入設備10の設置工を行う。(図1B参照)
【0033】
(5)ケーソン沈下掘削段階(ステップ)
ケーソン4の圧入を行うと共にケーソンの内側の地盤3aを掘削し、該ケーソン4を沈下させる。(図1C参照)
【0034】
なお、このとき、同時に、中間接続杭2と中間接続杭2の間隙ならびに、中間接続杭2とケーソン躯体内壁(またはケーソン躯体仕切り壁)との間隙にストラッドを横設し、さらに、ケーソン躯体内壁(またはケーソン躯体仕切り壁)に位置する該ストラッドには隔壁ローラを設置する一連の作業を、ケーソンの掘削深度に伴い順次設備し、これら手段によってケーソン躯体の可動範囲を鉛直方向のみに拘束し、つまり、側方移動を防止する措置を講じることで、ケーソン沈設精度の向上を図る。(中間接続杭2にストラッドを横設する構成については、図12〜図16に示す他の実施形態で説明する)
【0035】
(6)ケーソン沈下完了段階(ステップ)
ケーソン4の沈下と、内側地盤3aの掘削を停止し、圧入設備10を一旦撤去する。(図2A参照)
【0036】
(3)〜(5)の各段階(ステップ)を所定深度まで繰返し実施することで、ケーソン4の圧入沈下を完了させる。(図2B、図2C参照)
【0037】
なお、ケーソン躯体4の最終リフト構築においては、ケーソン吊り支持部材11(図2Cでは、ケーソン吊り支持部材を図示省略し、図3B、Cに示す)をケーソン躯体4から上方に突設させる。その際の掘削工は、ケーソン躯体4の過沈下(自沈)を防止できる以上の必要根入れ長の地山を掘り残して、ケーソン内側の地盤3aの掘削を終了する。その後、圧入設備10を一旦撤去する。(図3A参照)
【0038】
(7)ケーソン支持部材設置段階(ステップ)
中間接続杭2の杭頭部2aに支圧桁12を設置し、該支圧桁12の上部に反力桁6を架設し、液圧ジャッキ(センターホールジャッキ)7を該反力桁6の上部に設置し、吊り筋(ケーソン吊り支持部材)21を該液圧ジャッキ7に挿設することで、吊り下げ設備13の設置工を行う。そして、液圧ジャッキ7を緊張させることで本設基礎杭1および、該本設基礎杭1に立設する中間接続杭2を支持反力材とするケーソン躯体4の沈下防止措置を行う。(図3B参照)
【0039】
(8)最終掘削(床付け)段階(ステップ)
ケーソン躯体4の沈下防止措置が完了した後、ケーソン内側の地盤3aを掘削し、必要根入れ長を掘り残した地山を掘削し(図3C参照)、刃口4aと略同じ厚みコンクリート15を打設して床付けする。(図4A参照)
【0040】
(9)ケーソン工完了段階(ステップ)
本設基礎杭1の杭頭処理を行い、床付けコンクリート15の上に配筋を行い、その後コンクリートを打設し、床付けコンクリート15の上にケーソン底盤14を構築する。ケーソン底盤14とケーソン躯体4とは機械継手(図示省略)で一体化され、したがって、ケーソン底盤14を介して、本設基礎杭1とケーソン躯体4とを一体化でき、その後、液圧ジャッキ7をジャッキダウンする。さらに、その後、ケーソン吊り下げ設備13を撤去し、ケーソン底盤14から突出状態にある中間接続杭2を該ケーソン底盤14面にて切断撤去し、ケーソン工の完了となる。(図4B参照)
【0041】
次に、図5〜図8を参照して、圧入設備の詳細を説明する。
【0042】
図5は、第2リフトのケーソン躯体4を構築した上、これに圧入設備10を設置した平面図、図6、図7は、図5のa−a、b−b断面図、図8は、図6のc部の詳細図である。
【0043】
各図に示すように、ケーソン4は平面から見て例えば、田の字状に仕切り壁が構築されていて、ケーソン4の上面でかつ両側付近に離れて左右それぞれ複数のブロック状の支圧盤5が設置されていて、各支圧盤5の上に間隙をあけて設けられる2本1組の反力桁6が、平行にかつ左右2組設けられていて、各反力桁6の両端部にセンターホールジャッキからなる液圧ジャッキ7が支持されていて、液圧ジャッキ7の中心を挿通するグリッパーロッド8が、2本1組の反力桁6の間隙16を挿通して立上がっている。
【0044】
液圧ジャッキ7を構成するセンターホールジャッキとグリッパーロッド8とは公知であり、液圧ジャッキ7を作動させることで、センターホールジャッキに内蔵の上下のストッパー部材が交互に拡縮しながら、グリッパーロッド8のテーパ部をスライドすると共に、係合段部に係合することで、段階的にグリッパーロッド8を引上げることができ、グリッパーロッド8の下端が連結される中間接続杭2に相対的に引張反力を伝達できる。
【0045】
グリッパーロッド8と中間接続杭2との連結は図8のようになされている。グリッパーロッド8の下端にはアジャストロッド17が連結され、アジャストロッド17にアンカーカプラー18が取り付けられ、中間接続杭2の上端に設けられた取り付けブラケット19とアンカーカプラー18の間がPC鋼棒20やPC鋼線などで連結されている。グリッパーロッド8と中間接続杭2の連結構造はその他公知の構造であってよい。
【0046】
前述のようにして、ケーソン4上面の略四隅部に配置される4台の液圧ジャッキ7を同期して作動させることで、剛性体である中間接続杭2を介して数センチ(2cm)以下の誤差でケーソン4を圧入できる。なお、液圧ジャッキ7の圧入力を取り出すため、中間接続杭2の上端にグリッパーロッド8が連結されるが、このグリッパーロッド8はある程度の硬直性を有すると共に、液圧ジャッキ7の圧入力を取り出すのに必要な最短長であるので、剛性体である中間接続杭2にケーソン4を高精度で沈下させるための反力材として機能を発揮でさせる上で不具合はない。
【0047】
なお、中間接続杭2は、ケーソン圧入時の反力材としてより大きな剛性を付与するのが望ましく、既述のように、本設基礎杭1の杭コンクリート1aを施工基面(地表面)3まで伸ばし、中間接続杭2を杭コンクリート1aに埋設しておき、本設基礎杭1を所定深さ打設するのに対応して、杭コンクリートaを順次ハツって中間接続杭2を露出させるのがよい。
【0048】
次に、図9は、第2リフトのケーソン躯体4の沈設が完了した後、これに吊り下げ設備13を設置した平面図、図10(A)、(B)は、図9のd−d、e−e断面図、図11は、図10(B)のf部の詳細図である。
【0049】
本発明では、ケーソン躯体4内の地盤3aの掘削を一部残して第nリフトのケーソン躯体4の沈設が完了した後、該ケーソン躯体4を吊り下げ設備13にて吊り下げ支持した状態で前記の掘り残した一部を最終掘削し、床付けを行うと共に、ケーソン底盤14を構築することについては既述した。ケーソン吊り下げ設備13はこの作業に必要となる。
【0050】
本発明に係る吊り下げ設備13の詳細は次のように構成されている。
【0051】
ケーソン4の内側に立設される複数の中間接続杭2のうち、所定位置の中間接続杭2の杭頭2aを利用して支圧桁23が所定間隔離れて平行に設けられており、各支圧桁23のうえに支圧盤5が間隔をあけて複数設けられており、各支圧盤5の上に間隙をあけて設けられる2本1組の反力桁6が平行にかつ左右2組設けられていている。そして、各反力桁6の両端部には、ケーソン沈設時とは配置変えを行ったセンターホールジャッキからなる液圧ジャッキ7が支持されていて、液圧ジャッキ7の中心を挿通するグリッパーロッド8が、2本1組の反力桁6の間隙16を挿通して立上がっている
【0052】
また、図に示すように、平面から見て田の字状に仕切壁が構築された複数段のケーソン4のうち、最上段のケーソン4の4隅部の近傍に吊り筋21を埋設し、吊り筋21の上部を該ケーソン4の上面から所定長突出させており、吊り筋21とグリッパーロッド8が連結されている。
【0053】
グリッパーロッド8と吊り筋21との連結は次のようになされている。すなわち、グリッパーロッド8の下端にはアジャストロッド17が連結され、アジャストロッド17にアンカーカプラー18が取り付けられ、吊り筋21の上端に設けられた取り付けブラケット19とアンカーカプラー18の間がPC鋼棒20やPC鋼線などで連結されている。グリッパーロッド8と吊り筋21の連結構造は、前記のほか公知の構造であってよい。
【0054】
液圧ジャッキ(センターホールジャッキ)7とグリッパーロッド8は、既述のとおり公知である。簡単に説明すると、グリッパーロッド8は係合段部とテーパー部が交互に連続した軸体であり、センターホールジャッキは、拡縮自在、かつ上下動自在の上下一対をなすストッパー部材を内蔵している。そして、センターホールジャッキを作動させるとき、上下のストッパー部材が交互に拡縮しながら上下動し、各ストッパー部材が拡径しながらグリッパーロッド8のテーパー部をスライドして下動すると共に、縮径し係合段部に係合して上動することとを繰返すことで、段階的にグリッパーロッド8を引上げることができ、グリッパーロッド8の下端が連結される吊り筋21を介して、かつ剛体である中間接続杭2に支持反力をとってケーソン4を吊り下げ支持できる。
【0055】
この吊り下げ設備13でケーソン4を吊り下げ支持した状態(沈下防止措置が完了した状態)で、ケーソン内側の地盤3aを掘削し、必要根入れ長を掘り残した地山を掘削し床付けコンクリートを打設するものである。(これについては既述した)
【0056】
次に、図12〜図16は、他の実施形態を示し、図12は、第2リフトのケーソン躯体4の上部に圧入設備10を設置すると共に、圧入設備10と中間接続杭2の間隙に先端にガイドローラ23を有するストラッド22を設置した平面図、図13は、図12のg−g断面図、図14(A)は、図12のh−h断面図、図14(B)は、図13のi部の詳細図である。
【0057】
この実施形態では、H形鋼製の中間接続杭(反力杭)2の両フランジに、長さが長短異なるH形鋼製の複数のストラッド22がボルトナット24により着脱自在に設けられ、端部に位置するストラッド22の先端にガイドローラ23が取り付けられ、このガイドローラ23がケーソン躯体4の側壁に回転自在に圧接している。図12〜図16におけるその他の構成は、図5〜図8の圧入設備10と同じであるので、同一要素には同一符号を付して説明を省略する。
【0058】
この実施形態においては、中間接続杭2と中間接続杭2の間隙ならびに、中間接続杭2とケーソン躯体内壁4bまたは、ケーソン躯体仕切り壁4cとの間隙にストラッド22を横設する一連の作業は、ケーソン4の掘削深度に伴い順次設備する。具体的には、本設基礎杭1の杭コンクリート1aを剥離することで剥き出しになった中間接続杭2に順次ストラッド22をボルト接合で横設していく。さらに、ストラッド22の先端に設けたガイドローラ23は、ケーソン躯体内壁4bおよび仕切り壁4cと圧接して回転しながら上下動する。
【0059】
前記のガイドローラ付きストラッド22によってケーソン躯体4は、その可動範囲を鉛直方向のみに拘束されて円滑に下動する。こうして、ストラッド22が取り付けられた剛性体である中間接続杭(反力杭)2を反力材として、ケーソン躯体4の側方移動を防止する措置を講じることで、ケーソン沈設精度の向上を図ることができる。
【0060】
以上、実施形態について説明したが、本発明はこの図示例に限定されず、適宜、設計変更の範囲で変更実施してよく、これらは本発明の範囲に属する。
【0061】
【発明の効果】
本発明に係る本設基礎杭を利用したケーソン沈設方法および支持方法によると、開削工法における仮設土留めの作業を省略することができる。また、圧入工法併用時のオープンケーソン工法におけるケーソン圧入用グランドアンカーなどの使用および、設置作業を省略できることから、撤去が不可能または難しい該グランドアンカーの設置・撤去作業、および仮設工である土留めに要する工期の短縮や、工費の低減が可能となる。さらに、従来技術と同等の沈設精度を確保してオープンケーソンの圧入沈設施工が可能となり、ケーソン躯体を杭基礎工法における下部工躯体とすることが可能となるため、省力的施工に繋がる効果を有する。
【0062】
さらに本発明によると、所定位置および所定深度までケーソンの沈設を完了(着底)した後に、過沈下(自沈)を抑制しケーソン底盤を構築するので、従来のように別途にケーソン躯体吊り支持杭を必要とせず、また、支台(サンドル)などの手間のかかる方法なども不要となり、さらに、ケーソン底盤を構築するに際して、予め設置された本設基礎杭から立設する中間接続杭を利用してケーソンを確実に吊り持ち支持させることができ、施工の省力化に寄与できる。
【0063】
また、河川工事に代表されるような高水位下において、従来技術では、例えば橋台を築造する際、仮締切としてコルゲート管などを使用してドライ環境とした後、築造作業を行っていたが、本発明によればケーソンにより仮締切などを必要としないため、前述同様に工期短縮や工費低減に対して有効である。
【0064】
さらにまた、グランドアンカーなどを用いるケーソンの圧入工法に比し、予め設置される本設基礎杭から例えば、H形鋼などを反力部材として介在させ圧入装置を作用させることにより、グランドアンカー使用時に発現するアンカー部の伸びを抑制することが可能となるため、ケーソン躯体構築時にジャッキダウンして圧入設備を一時撤去する際などには確実に施工性が向上する。
【図面の簡単な説明】
【図1】本発明のケーソン沈設過程の第1工程図である。
【図2】本発明のケーソン沈設過程の第2工程図である。
【図3】本発明のケーソン沈設過程の第3工程図である。
【図4】本発明のケーソン沈設過程の第4工程図である。
【図5】第2リフトのケーソン躯体を構築した上、これに圧入設備を設置した平面図である。
【図6】図5のa−a断面図である。
【図7】図5のb−b断面図である。
【図8】図6のc部の詳細図である。
【図9】第2リフトのケーソン躯体の沈設が完了した後、これに吊り下げ設備を設置した平面図である。
【図10】(A)、(B)は、図9のd−d、e−e断面図である。
【図11】図11は、図10(B)のf部の詳細図である。
【図12】他の実施形態を示し、第2リフトのケーソン躯体の上部に圧入設備を設置すると共に、圧入設備と中間接続杭の間隙にガイドローラ付きストラッドを設置した平面図である。
【図13】図12のg−g断面図で、かつ中央部から左右のケーソンの沈設深さを変えて表示する図である。
【図14】(A)は、図12のh−h断面図、(B)は、図13のi部の詳細図である。
【図15】ローラ付きストラッドと反力杭とケーソン側壁の関係を示す平面拡大図である。
【図16】ローラ付きストラッドと反力杭とケーソン側壁の関係を示す側面拡大図である。
【符号の説明】
1 本設基礎杭
1a杭コンクリート
2 中間接続杭
2a 杭頭
3 施工基礎面(地表面)
4 ケーソン躯体
4a 刃口
4b ケーソン躯体内壁
4c ケーソン躯体仕切り壁
5 支圧盤
6 反力桁
7 液圧ジャッキ
8 グリッパーロッド(テンションロッド)
10 圧入設備
12 支圧桁
13 吊り下げ設備
14 ケーソン底盤
15 床付けコンクリート
16 間隙
17 アジャストロッド
18 アンカーカプラー
19 取り付けブラケット
20 PC鋼材
21 吊り筋(ケーソン吊り支持部材)
22 ストラッド
23 ガイドローラ
24 ボルトナット
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method of constructing an open caisson in the field of civil engineering, and more particularly to a caisson laying method and a supporting method using a permanent foundation pile.
[0002]
[Prior art]
Conventionally, the method of constructing the substructure (footing) by the pile foundation method is to first install the required foundation pile that is to be permanently installed, then perform temporary earth retaining work, and then excavate to the top of the permanent foundation pile. After excavation, the general procedure is to build a substructure.
[0003]
In addition, the conventional open caisson submersion technology installs a required amount of ground anchoring material, such as a ground anchor, on the outer periphery slightly away from the caisson body, and sets up the caisson by using the anchor as ground reaction force. The method is commonly used.
[0004]
Further, as a method for suppressing the lateral movement of the caisson, there is a technique in which a dedicated stake or the like is separately installed near the caisson for lateral movement, and this is used as an immovable member to serve as a guide when the caisson is laid down.
[0005]
According to the pile foundation method in the prior art, the temporary soil retaining work for constructing the substructure requires a certain period of construction time, and the temporary material used for the temporary soil retaining work after the construction of the substructure is completed. Not only requires a period of time to remove the temporary material, but also it is difficult to completely remove the temporary material.
[0006]
In addition, the conventional technology for open caisson construction is based on the premise that anchoring materials such as ground anchors are installed in advance, and although it depends on the soil conditions at the construction site and the weight of the caisson frame, etc. In such cases, it is easier to increase the apparent caisson body weight by increasing the apparent caisson body weight by using press-fitting as an auxiliary construction method or installing a weight etc. on the upper part of the caisson body, and improving the construction accuracy It is a necessary condition.
[0007]
From the above, not only the construction period required for the installation of anchoring materials such as ground anchors and the appropriate occupied construction area, but also the expenses required for anchoring materials and weights are burdened, and environmental problems in the construction business were addressed. In the meantime, it is difficult for the ground anchor to completely remove the anchorage part, and it is a problem that complete removal requires additional construction time and cost.
[0008]
As an improved technique for solving the above problems, an underground skeleton construction method disclosed in JP-A-6-341154 is known. In this prior art, the earth anchor (grand anchor) is driven into an area where a caisson is to be laid, instead of a method in which an earth anchor (grand anchor) is connected to an anchor body installed separately from a foundation pile. In this way, the tension that can be obtained from the foundation pile can be obtained even when the caisson frame is laid down, and the construction period can be shortened.
[0009]
[Patent Document 1]
JP-A-6-341154
[0010]
[Problems to be solved by the invention]
However, in the prior art disclosed in Japanese Patent Application Laid-Open No. 6-341154, a caisson body can be laid by taking jack reaction force by an earth anchor integrally connected to a foundation pile. Or, because it is made of a small-diameter rod or the like and does not have rigidity itself, it can function as a reaction force member that suppresses horizontal movement during the work of submerging the caisson body, Later, it was not possible to function as a caisson's temporary support reaction material when constructing the caisson base, in order to suppress the inclination of the caisson body due to imbalance in the bearing capacity of the bottom ground, etc. It was difficult to settle down with high precision, and problems such as instability of press-fitting work still remained.
[0011]
Furthermore, with the conventional open caisson method, the caisson structure may be slightly tilted or settled after the caisson is settled due to imbalance in the bearing capacity of the ground at the end of caisson structure subsidence. In order to support the caisson body as a countermeasure, it is troublesome to install a caisson support device that requires a support pile separately from the earth anchor, and to install an abutment (sanddle) under the caisson partition wall. Such a method is adopted.
[0012]
An object of the present invention is to solve the above-mentioned problems and to provide a caisson laying method and a supporting method using a permanent foundation pile.
[0013]
[Means for Solving the Problems]
To achieve the above object, the present invention is configured as follows.
[0014]
In the first invention, in the process of applying pressure by a jack to sink an open caisson at a predetermined position to a predetermined depth, the rigid support member standing upright on a permanent foundation pile driven into an area where the caisson is to be settled is provided. By being connected to a jack, the rigid support member and the permanent foundation pile are used as a press-fitting reaction force material for caisson subsidence.
[0015]
According to a second invention, the permanent foundation pile according to the first invention is constructed by embedding the rigid support member in pile concrete, and corresponds to driving the permanent foundation pile at a predetermined depth. The rigid support member is exposed by sequentially shaking pile concrete from above the permanent foundation pile.
[0016]
According to a third aspect of the present invention, the rigid support member in the first or second aspect is formed of an intermediate connection pile made of H-section steel or the like, and the intermediate connection pile is used as a caisson horizontal support reaction force member. It is characterized in that lateral movement is suppressed.
[0017]
According to a fourth aspect of the present invention, the caisson is configured such that a stud is fixed to the rigid support member according to any one of the first to third aspects, and a guide roller provided on the strad is brought into contact with an inner side wall and a partition wall of the caisson. It is characterized in that the movement is restricted only in the vertical direction.
[0018]
According to a fifth aspect of the present invention, in the squatting method according to any one of the first to third aspects, after applying pressure with a jack to complete the laying of the open caisson to a predetermined position and a predetermined depth, the rigid support member and the permanent foundation pile are removed. The caisson is constructed as a caisson bottom plate, which is used as a caisson hanging holding reaction material, and the jack is rearranged to apply a lifting force to the caisson to prevent the caisson from subsidence (self-sinking).
[0019]
According to a sixth aspect of the present invention, in constructing the caisson bottom of the fifth aspect, the foundation concrete is poured into the caisson blade at substantially the same thickness as that of the caisson blade, so that the upper surface of the foundation concrete and the cut surface are substantially aligned. Then, the main foundation pile and the caisson skeleton are integrated by driving the caisson bottom plate.
[0020]
[Action]
According to the first and second aspects of the present invention, when the foundation pile or the like is a structure that supports the lower body, the lower body is previously constructed as a caisson on the ground, and the lower body is laid by the open caisson method. Since the caisson is laid by taking the reaction force of press-fitting into the foundation pile laid in the area where the caisson is to be laid and the rigid support member erected on the foundation pile, the conventional ground anchor or permanent foundation pile is used. Needless to say, a separate foundation pile dedicated to press-fitting is not required, and both the foundation pile and the rigid support member can be made to function as horizontal reaction members because both are rigid bodies. It can be performed with high precision and smoothly.
[0021]
In the third invention, the rigid support member in the first invention is constituted by an intermediate connection pile made of H-shaped steel, and this intermediate connection pile is removed from a permanent foundation pile which is previously installed prior to installation of a lower body. For example, by standing up to a height above the surface of the ground, it is possible to use a material that obtains a horizontal reaction force that suppresses lateral movement when the caisson is laid down. It can be performed accurately and smoothly.
[0022]
In the fourth invention, the guide roller of the guide roller-attached stradder fixed to the rigid support member according to the first to third inventions is brought into contact with the inner wall and the partition wall of the caisson, so that the movement of the caisson can be made to be a vertical component. Therefore, the caisson can be laid down with high precision and smoothly.
[0023]
In the fifth and sixth inventions, after the caisson has been laid down to the predetermined position and the predetermined depth (landing), the caisson bottom is constructed to suppress the excessive subsidence (self-sinking). It does not require a caisson skeletal suspension support pile, and does not require a complicated method of abutment (sandals). In addition, when constructing a caisson base, an intermediate connection that stands upright from a pre-installed permanent foundation pile The caisson can be reliably suspended and supported by using the stake, and the work is facilitated.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 are process diagrams of a caisson setting process of the present invention, FIGS. 5 to 8 are diagrams of a press-fitting device, FIGS. 9 to 11 are diagrams of a hanging device, and FIGS. It is shown as the corresponding figure. 12 to 16 are views of a caisson press-fitting device according to another embodiment.
[0025]
First, with reference to FIGS. 1 to 4, the construction order of caisson laying according to the present invention will be schematically described in the following steps (1) to (9).
[0026]
(1) In the first step, permanent foundation piles and intermediate connection piles are installed.
(2) In the second step, a caisson blade is installed.
(3) In the third step, a caisson body of the n-th lift is constructed.
(4) In the fourth step, a caisson press-fitting facility is installed.
(5) In the fifth step, the ground is excavated for caisson settlement.
(6) In the sixth step, caisson settlement is completed.
(7) In the seventh step, a caisson support member is installed.
(8) In the eighth step, final excavation (flooring) is performed.
(9) In the ninth step, the caisson work is completed.
[0027]
Hereinafter, the details of each of the construction steps (steps) (1) to (9) will be described.
[0028]
(1) Permanent foundation pile and intermediate connection pile installation stage (step)
With the existing technology such as the drilling method and the all casing method, the required number of cast-in-place piles are required as the permanent foundation piles 1 in the predetermined area where the caisson is to be submerged. An intermediate connection pile (reaction force pile) 2 such as an H-shaped steel material as an example of a rigid support member is erected on a basic foundation pile 1 such that the pile head 2a protrudes from a construction base surface (ground surface) 3. Install in the installed state. (See FIG. 1A)
[0029]
The intermediate connection pile 2 is embedded in the concrete 1a of the pile foundation 1a of the permanent foundation pile 1 as shown by a dotted line, and the connection pile head 2a is mounted on the construction base surface (ground surface) 3 of the permanent foundation pile 1 An intermediate connection pile 2 made of H-shaped steel is formed by projecting from the upper end, and in response to driving the permanent foundation pile 1 to a predetermined depth, pile concrete 1a is sequentially dropped from the upper part of the permanent foundation pile 1. May be configured to be exposed.
[0030]
(2) Caisson blade installation stage (step)
The cutting edge 4 a of the caisson (body) 4 is installed on the construction base surface 3. (See FIG. 1A)
[0031]
(3) Caisson body n-th lift construction stage (step)
The caisson frame 4 of the n-th lift is constructed. (N = 1, 2, 3, 4 ...)
[0032]
(4) Caisson press-fitting equipment installation stage (step)
A support plate 5 is installed on the constructed caisson frame 4, a reaction force girder 6 is temporarily installed on the support plate 5, and a hydraulic (hydraulic) jack 7 composed of a center hole jack is installed above the reaction girder 6. Then, a tension rod (gripper rod) 8 is inserted into the hydraulic jack 7 and connected to the pile head 2a of the intermediate connection pile 2 erected on the permanent foundation pile 1 to tension the hydraulic jack 7. The installation work of the press-in equipment 10 which obtains a press-in effect is performed. (See FIG. 1B)
[0033]
(5) Caisson subsidence excavation stage (step)
The caisson 4 is pressed and the ground 3a inside the caisson is excavated, and the caisson 4 is settled. (See Fig. 1C)
[0034]
At this time, at the same time, the straddles are laid laterally in the gap between the intermediate connection pile 2 and the intermediate connection pile 2 and in the gap between the intermediate connection pile 2 and the caisson body wall (or caisson body partition wall). A series of operations for installing bulkhead rollers on the strad located on the (or caisson body partition wall) are sequentially installed according to the excavation depth of the caisson, and by these means the movable range of the caisson body is restricted only in the vertical direction, In other words, by taking measures to prevent lateral movement, the caisson placement accuracy is improved. (The configuration in which the struts are provided horizontally on the intermediate connection pile 2 will be described in another embodiment shown in FIGS.
[0035]
(6) Caisson settlement completion stage (step)
The settlement of the caisson 4 and the excavation of the inner ground 3a are stopped, and the press-fitting equipment 10 is temporarily removed. (See FIG. 2A)
[0036]
The steps (3) to (5) are repeatedly performed up to a predetermined depth to complete the sinking of the caisson 4. (See FIGS. 2B and 2C)
[0037]
In the construction of the final lift of the caisson body 4, the caisson hanging support member 11 (the caisson hanging support member is not shown in FIG. 2C and is shown in FIGS. 3B and 3C) is projected upward from the caisson body 4. The excavator at that time ends the excavation of the ground 3a inside the caisson, leaving a ground with a necessary embedding length that can prevent excessive sinking (self-sinking) of the caisson frame 4 and leaving it. Thereafter, the press-fitting facility 10 is once removed. (See FIG. 3A)
[0038]
(7) Caisson support member installation stage (step)
A bearing girder 12 is installed on the pile head 2a of the intermediate connection pile 2, a reaction girder 6 is erected above the bearing girder 12, and a hydraulic jack (center hole jack) 7 is attached to the reaction girder 6. The suspension equipment 13 is installed on the upper part, and the suspension equipment 13 is installed by inserting a suspension bar (caisson suspension support member) 21 into the hydraulic jack 7. Then, the hydraulic jack 7 is tensioned to prevent the permanent foundation pile 1 and the caisson skeleton 4 using the intermediate connection pile 2 erected on the permanent foundation pile 1 as a supporting reaction material. (See FIG. 3B)
[0039]
(8) Final excavation (laying floor) stage (step)
After the measures to prevent the settlement of the caisson body 4 are completed, the ground 3a inside the caisson is excavated, and the ground with the remaining necessary depth is excavated (see FIG. 3C). Cast and floor. (See FIG. 4A)
[0040]
(9) Caisson work completion stage (step)
Pile head treatment of the permanent foundation pile 1 is performed, reinforcing bars are arranged on the concrete 15 on the floor, and then concrete is cast, and the caisson bottom 14 is constructed on the concrete 15 on the floor. The caisson bottom 14 and the caisson skeleton 4 are integrated by a mechanical joint (not shown), so that the permanent foundation pile 1 and the caisson skeleton 4 can be integrated via the caisson bottom 14, and then the hydraulic jack 7 Jack down. Further, thereafter, the caisson hanging equipment 13 is removed, and the intermediate connecting pile 2 projecting from the caisson bottom 14 is cut and removed at the surface of the caisson bottom 14, thereby completing the caisson work. (See FIG. 4B)
[0041]
Next, details of the press-fitting equipment will be described with reference to FIGS.
[0042]
FIG. 5 is a plan view in which the caisson body 4 of the second lift is constructed, and the press-fitting equipment 10 is installed therein, FIGS. 6 and 7 are cross-sectional views taken along aa and bb in FIG. 5, and FIG. 7 is a detailed view of a part c of FIG.
[0043]
As shown in each figure, the caisson 4 has, for example, a partition wall formed in a cross-sectional shape when viewed from a plane. Are installed, and two sets of reaction force girders 6 provided in parallel with each other and provided on each supporting plate 5 with a gap therebetween are provided at both ends of each reaction girder 6. A hydraulic jack 7 composed of a center hole jack is supported, and a gripper rod 8 inserted through the center of the hydraulic jack 7 is inserted into a gap 16 between a pair of reaction force girders 6 and rises.
[0044]
The center hole jack and the gripper rod 8 constituting the hydraulic jack 7 are known, and when the hydraulic jack 7 is operated, the upper and lower stopper members incorporated in the center hole jack are alternately expanded and contracted, and the gripper rod 8 is formed. The gripper rod 8 can be pulled up in a stepwise manner by sliding the tapered portion and engaging the engaging step portion, and the gripper rod 8 is pulled relatively to the intermediate connection pile 2 to which the lower end is connected. It can transmit reaction force.
[0045]
The connection between the gripper rod 8 and the intermediate connection pile 2 is made as shown in FIG. An adjusting rod 17 is connected to the lower end of the gripper rod 8, an anchor coupler 18 is attached to the adjusting rod 17, and a PC steel rod 20 is provided between the mounting bracket 19 provided at the upper end of the intermediate connection pile 2 and the anchor coupler 18. They are connected by PC steel wire. The connection structure between the gripper rod 8 and the intermediate connection pile 2 may be another known structure.
[0046]
As described above, the four hydraulic jacks 7 arranged at approximately four corners of the upper surface of the caisson 4 are operated in synchronization with each other, so that a few centimeters (2 cm) or less are provided through the intermediate connection pile 2 which is a rigid body. Caisson 4 can be press-fitted with an error of Note that a gripper rod 8 is connected to the upper end of the intermediate connection pile 2 in order to take out the pressure input of the hydraulic jack 7. The gripper rod 8 has a certain degree of rigidity. Since it is the shortest length necessary to take it out, there is no problem in that it can function as a reaction force material for lowering the caisson 4 with high accuracy in the intermediate connection pile 2 which is a rigid body.
[0047]
It is desirable that the intermediate connection pile 2 be given greater rigidity as a reaction force material at the time of caisson press-fitting. As described above, the pile concrete 1a of the permanent foundation pile 1 is constructed on the construction base surface (ground surface) 3 The intermediate connection pile 2 is buried in the pile concrete 1a, and the pile concrete a is sequentially cut to expose the intermediate connection pile 2 in response to the installation of the permanent foundation pile 1 at a predetermined depth. Is good.
[0048]
Next, FIG. 9 is a plan view in which the suspension equipment 13 is installed on the caisson frame 4 of the second lift after the subsidence is completed, and FIGS. 10A and 10B are d-d in FIG. , Ee cross-sectional view, and FIG. 11 is a detailed view of a portion f in FIG.
[0049]
In the present invention, after the subsidence of the caisson skeleton 4 of the n-th lift is completed while partially excavating the ground 3 a in the caisson skeleton 4, the caisson skeleton 4 is suspended and supported by the suspending equipment 13. As described above, the remaining excavated part is finally excavated, flooring is performed, and the caisson base 14 is constructed. A caisson suspension facility 13 is required for this operation.
[0050]
The details of the suspension equipment 13 according to the present invention are configured as follows.
[0051]
Of the plurality of intermediate connection piles 2 erected inside the caisson 4, the bearing girder 23 is provided in parallel at a predetermined interval using the pile head 2 a of the intermediate connection pile 2 at a predetermined position. A plurality of supporting plates 5 are provided on the supporting girder 23 at intervals, and two pairs of reaction force girders 6 provided in parallel with each other and provided on each supporting plate 5 are spaced apart from each other. It is provided. At both ends of each reaction girder 6, a hydraulic jack 7 composed of a center hole jack whose arrangement has been changed from that at the time of caisson sinking is supported, and a gripper rod 8 that passes through the center of the hydraulic jack 7. But stands up through the gap 16 of the pair of reaction girders 6
[0052]
Further, as shown in the figure, of the plurality of caisson 4 in which the partition wall is constructed in a cross-shaped shape when viewed from a plane, the suspension bars 21 are embedded near the four corners of the uppermost caisson 4, The upper part of the suspension 21 is projected from the upper surface of the caisson 4 by a predetermined length, and the suspension 21 and the gripper rod 8 are connected.
[0053]
The connection between the gripper rod 8 and the suspension 21 is made as follows. That is, an adjusting rod 17 is connected to a lower end of the gripper rod 8, an anchor coupler 18 is attached to the adjusting rod 17, and a PC steel rod 20 is provided between an anchoring bracket 19 provided at an upper end of the suspension bar 21 and the anchor coupler 18. And PC steel wires. The connection structure between the gripper rod 8 and the suspension 21 may be a known structure other than the above.
[0054]
The hydraulic jack (center hole jack) 7 and the gripper rod 8 are known as described above. In brief, the gripper rod 8 is a shaft body in which an engagement step portion and a tapered portion are alternately continued, and the center hole jack has a pair of upper and lower stopper members that are freely expandable and contractable and that can move up and down. . When the center hole jack is operated, the upper and lower stopper members move up and down while alternately expanding and contracting, and each stopper member slides down the tapered portion of the gripper rod 8 while expanding in diameter, and moves down while reducing the diameter. The gripper rod 8 can be pulled up in a stepwise manner by repeating the upward movement by engaging with the engagement step portion, and the rigid body can be pulled through the suspension 21 to which the lower end of the gripper rod 8 is connected. The caisson 4 can be suspended and supported by taking the supporting reaction force to the intermediate connection pile 2 which is the following.
[0055]
In a state where the caisson 4 is suspended and supported by the suspending equipment 13 (the state in which the anti-subsidence measure is completed), the ground 3a inside the caisson is excavated, and the ground where the necessary embedding length has been dug out is excavated, and the concrete for flooring is excavated. Is to be cast. (This has already been described)
[0056]
Next, FIG. 12 to FIG. 16 show another embodiment, and FIG. 12 shows that the press-fitting facility 10 is installed on the upper part of the caisson frame 4 of the second lift, and the gap between the press-fitting facility 10 and the intermediate connection pile 2 is provided. FIG. 13 is a sectional view taken along the line g-g in FIG. 12, FIG. 14A is a sectional view taken along the line hh in FIG. 12, and FIG. FIG. 14 is a detailed view of an i part of FIG.
[0057]
In this embodiment, a plurality of struts 22 made of H-shaped steel having different lengths are detachably provided on both flanges of the intermediate connection pile (reaction force pile) 2 made of H-shaped steel by bolts and nuts 24, and the end is provided. A guide roller 23 is attached to the tip of the stradd 22 located at the portion, and the guide roller 23 is rotatably pressed against the side wall of the caisson frame 4. Since the other configurations in FIGS. 12 to 16 are the same as those of the press-fitting facility 10 in FIGS. 5 to 8, the same components are denoted by the same reference numerals and description thereof will be omitted.
[0058]
In this embodiment, a series of operations for laying the stradd 22 in the gap between the intermediate connection pile 2 and the intermediate connection pile 2 and the gap between the intermediate connection pile 2 and the caisson body wall 4b or the caisson body partition wall 4c are as follows. The facilities will be installed sequentially according to the excavation depth of the caisson 4. Specifically, the straddles 22 are sequentially laid by bolting on the intermediate connection pile 2 exposed by peeling off the pile concrete 1a of the permanent foundation pile 1. Further, the guide roller 23 provided at the tip of the stradd 22 moves up and down while rotating while being pressed against the caisson body inner wall 4b and the partition wall 4c.
[0059]
The caisson skeleton 4 is constrained only in the vertical direction by the above-described guide roller-attached strad 22, and moves down smoothly. Thus, by taking measures to prevent lateral movement of the caisson skeleton 4 by using the intermediate connection pile (reaction pile) 2 which is a rigid body to which the stradd 22 is attached as a reaction material, the caisson laying accuracy is improved. be able to.
[0060]
Although the embodiments have been described above, the present invention is not limited to the illustrated examples, and may be appropriately modified and implemented within a scope of design change, and these belong to the scope of the present invention.
[0061]
【The invention's effect】
According to the caisson laying method and the supporting method using the permanent foundation pile according to the present invention, the work of temporary earth retaining in the open-cutting method can be omitted. In addition, the use of caisson press-fitting ground anchors in the open caisson method when using the press-in method and the installation work can be omitted, making it impossible or difficult to remove and install the ground anchors, and a temporary retaining work. And the cost of construction can be shortened. In addition, it is possible to press-fit the open caisson while securing the same subsidence accuracy as the conventional technology, and the caisson body can be used as the lower body in the pile foundation method, which has the effect of leading to labor-saving construction. .
[0062]
Furthermore, according to the present invention, after the caisson has been laid down to a predetermined position and a predetermined depth (landing), excessive subsidence (self-sinking) is suppressed and a caisson base is constructed. And the need for labor-intensive methods such as abutments (sandals) are no longer required. In addition, when constructing the caisson bottom, an intermediate connection pile that is erected from a preinstalled permanent foundation pile is used. This allows the caisson to be securely suspended and supported, contributing to labor saving in construction.
[0063]
In addition, under the high water level represented by river construction, in the prior art, for example, when constructing an abutment, a dry environment using a corrugated pipe or the like as a temporary deadline, the construction work was performed, According to the present invention, a temporary deadline or the like is not required by a caisson.
[0064]
Furthermore, in comparison with the caisson press-fitting method using a ground anchor or the like, by using a press-fitting device by interposing a H-section steel or the like as a reaction force member from a pre-installed foundation pile, Since it is possible to suppress the elongation of the anchor portion that appears, the workability is surely improved when jacking down and temporarily removing the press-fitting equipment when constructing the caisson frame.
[Brief description of the drawings]
FIG. 1 is a first process diagram of a caisson setting process of the present invention.
FIG. 2 is a second step diagram of the caisson setting process of the present invention.
FIG. 3 is a third process diagram of the caisson setting process of the present invention.
FIG. 4 is a fourth process diagram of the caisson setting process of the present invention.
FIG. 5 is a plan view in which a caisson body of a second lift is constructed and press-fitting equipment is installed therein.
FIG. 6 is a sectional view taken along line aa of FIG. 5;
FIG. 7 is a sectional view taken along the line bb of FIG. 5;
FIG. 8 is a detailed view of a portion c in FIG. 6;
FIG. 9 is a plan view showing a state in which suspending equipment is installed on the caisson body of the second lift after the laying is completed.
FIGS. 10A and 10B are sectional views taken along lines dd and ee of FIG. 9;
FIG. 11 is a detailed view of a part f in FIG. 10 (B).
FIG. 12 is a plan view showing another embodiment, in which a press-fitting device is installed above a caisson frame of a second lift, and a stradd with guide rollers is installed in a gap between the press-fitting device and an intermediate connection pile.
13 is a cross-sectional view taken along the line gg of FIG. 12, and is a view in which the depth of the left and right caissons is set differently from the center.
14A is a cross-sectional view taken along the line hh of FIG. 12, and FIG. 14B is a detailed view of a portion i of FIG.
FIG. 15 is an enlarged plan view showing a relationship between a straddle with a roller, a reaction force pile, and a caisson side wall.
FIG. 16 is an enlarged side view showing a relationship between a straddle with a roller, a reaction force pile, and a caisson side wall.
[Explanation of symbols]
1 permanent foundation pile
1a pile concrete
2 Intermediate connection pile
2a pile head
3 Construction foundation surface (ground surface)
4 caisson skeleton
4a Blade
4b Caisson body wall
4c caisson partition wall
5 Support plate
6 Reaction girder
7 Hydraulic jack
8 Gripper rod (tension rod)
10 Press-fitting equipment
12 bearing girder
13 Hanging equipment
14 caisson bottom
15 Concrete with floor
16 gap
17 Adjust rod
18 Anchor coupler
19 Mounting bracket
20 PC steel
21 Suspension bars (Caisson suspension support members)
22 Strad
23 Guide roller
24 bolt nut

Claims (6)

ジャッキにより圧力を加えてオープンケーソンを所定位置にて所定深度まで沈設する過程において、ケーソンを沈設する領域に打込まれた本設基礎杭に立設する剛性支持部材を前記ジャッキに連結することで、前記剛性支持部材および本設基礎杭を前記ケーソン沈設のための圧入反力材として利用することを特徴とする本設基礎杭を利用したケーソン沈設方法。In the process of applying pressure with a jack and sinking an open caisson at a predetermined position to a predetermined depth, by connecting a rigid support member erected on a permanent foundation pile driven into the area where the caisson is to be installed to the jack. A method of laying a caisson using a permanent foundation pile, wherein the rigid support member and the permanent foundation pile are used as press-fitting reaction materials for laying the caisson. 前記の本設基礎杭は、杭コンクリート中に前記剛性支持部材を埋設して構築されていて、本設基礎杭を所定深さ打設するのに対応して、該本設基礎杭の上部から杭コンクリートを順次ハツルことにより前記剛性支持部材を露出させることを特徴とする本設基礎杭を利用した請求項1記載のケーソン沈設方法。The permanent foundation pile is constructed by embedding the rigid support member in pile concrete, and in response to driving the permanent foundation pile at a predetermined depth, from the top of the permanent foundation pile. 2. A caisson laying method according to claim 1, wherein said rigid supporting member is exposed by sequentially shaking pile concrete. 前記剛性支持部材がH形鋼製等の中間接続杭からなり、当該中間接続杭をケーソン水平方向支持反力材として利用することで、ケーソンの側方移動を抑止することを特徴とする本設基礎杭を利用した請求項1または2記載のケーソン沈設方法。The rigid support member comprises an intermediate connection pile made of H-section steel or the like, and the intermediate connection pile is used as a caisson horizontal support reaction force member to suppress lateral movement of the caisson. The caisson setting method according to claim 1 or 2, wherein the foundation pile is used. 前記剛性支持部材にストラッドを固着し、ストラッドに設けたガイドローラをケーソンの内側壁と仕切り壁に接触させることで、前記ケーソンの移動を鉛直方向のみに拘束させることを特徴とする請求項1〜3の何れか1項記載の本設基礎杭を利用したケーソン沈設方法。The movement of the caisson is restricted only in the vertical direction by fixing a strud to the rigid support member and bringing a guide roller provided on the strad into contact with an inner wall and a partition wall of the caisson. 3. A caisson laying method using the permanent foundation pile according to any one of the above items 3. 請求項1〜3の何れか1項記載の沈設方法におけるジャッキにより圧力を加えてオープンケーソンを所定位置および所定深度まで沈設完了した後、前記剛性支持部材と本設基礎杭をケーソンの吊り持ち反力材として利用し、配置変えをした前記ジャッキにより前記ケーソンに吊上げ力を加えてケーソンの過沈下(自沈)防止を図り、ケーソン底盤を構築することを特徴とする本設基礎杭を利用したケーソン支持方法。The caisson suspends and holds the rigid support member and the permanent foundation pile after applying pressure by a jack in the submerging method according to any one of claims 1 to 3 to complete the submerging of the open caisson to a predetermined position and a predetermined depth. A caisson using a permanent foundation pile, characterized in that the caisson is used as a power material, and the jack is rearranged to apply a lifting force to the caisson to prevent the caisson from subsidence (self-settling) and to construct a caisson base. Support method. 請求項5記載のケーソン底盤を構築するに際し、ケーソンの刃口と略同じ厚さに下地コンクリートを打設し、下地コンクリートの上面と切断面が略揃うように本設基礎杭を切断し、その後、前記ケーソン底盤を打設することで本設基礎杭とケーソン躯体を一体化することを特徴とする本設基礎杭を利用したケーソン支持方法。In constructing the caisson bottom according to claim 5, the foundation concrete is poured into a thickness substantially equal to the cutting edge of the caisson, and the permanent foundation pile is cut so that the cut surface is substantially aligned with the upper surface of the foundation concrete. A caisson supporting method using a permanent foundation pile, wherein the permanent foundation pile and the caisson body are integrated by driving the caisson bottom.
JP2002300844A 2002-10-15 2002-10-15 Caisson laying method using main foundation pile Expired - Fee Related JP3850785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300844A JP3850785B2 (en) 2002-10-15 2002-10-15 Caisson laying method using main foundation pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300844A JP3850785B2 (en) 2002-10-15 2002-10-15 Caisson laying method using main foundation pile

Publications (2)

Publication Number Publication Date
JP2004137685A true JP2004137685A (en) 2004-05-13
JP3850785B2 JP3850785B2 (en) 2006-11-29

Family

ID=32449416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300844A Expired - Fee Related JP3850785B2 (en) 2002-10-15 2002-10-15 Caisson laying method using main foundation pile

Country Status (1)

Country Link
JP (1) JP3850785B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063950A (en) * 2005-09-02 2007-03-15 Ps Mitsubishi Construction Co Ltd Method for suspending and constructing connected body of concrete building frame
KR100999880B1 (en) 2010-05-25 2010-12-09 정관균 Apparatus for pressing steel pipe and method for well foundation construction using thereof
CN102322069A (en) * 2011-07-04 2012-01-18 浙江省交通规划设计研究院 Underwater combination base of open caisson and steel pipe piles and construction method
CN102561406A (en) * 2011-12-15 2012-07-11 上海市城市建设设计研究总院 Construction method for controlling back soil body deformation of open caisson
CN104141316A (en) * 2014-07-24 2014-11-12 中交公路长大桥建设国家工程研究中心有限公司 Caisson composite foundation provided with suction type apron shells and semi-rigid connection piles
KR101719246B1 (en) * 2016-04-19 2017-03-23 한준수 Apparatus for pressing open caisson
JP2018197463A (en) * 2017-05-24 2018-12-13 清水建設株式会社 Co-settlement preventing structure and settling method of caisson
CN110761325A (en) * 2019-10-25 2020-02-07 中铁第四勘察设计院集团有限公司 Automatic control system and method for mud-water balance open caisson vehicle station in soft soil area
CN111809623A (en) * 2020-06-30 2020-10-23 中国二十冶集团有限公司 A anchor case and earth anchor for earth anchor press-in type open caisson engineering
CN115492144A (en) * 2022-09-15 2022-12-20 中国一冶集团有限公司 Construction method of pipe jacking and open caisson in sandbank area

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498951B (en) * 2016-11-30 2019-02-05 上海市机械施工集团有限公司 A kind of shaft excavation construction method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063950A (en) * 2005-09-02 2007-03-15 Ps Mitsubishi Construction Co Ltd Method for suspending and constructing connected body of concrete building frame
KR100999880B1 (en) 2010-05-25 2010-12-09 정관균 Apparatus for pressing steel pipe and method for well foundation construction using thereof
CN102322069A (en) * 2011-07-04 2012-01-18 浙江省交通规划设计研究院 Underwater combination base of open caisson and steel pipe piles and construction method
CN102322069B (en) * 2011-07-04 2013-09-04 浙江省交通规划设计研究院 Underwater combination base of open caisson and steel pipe piles and construction method
CN102561406A (en) * 2011-12-15 2012-07-11 上海市城市建设设计研究总院 Construction method for controlling back soil body deformation of open caisson
CN104141316A (en) * 2014-07-24 2014-11-12 中交公路长大桥建设国家工程研究中心有限公司 Caisson composite foundation provided with suction type apron shells and semi-rigid connection piles
KR101719246B1 (en) * 2016-04-19 2017-03-23 한준수 Apparatus for pressing open caisson
JP2018197463A (en) * 2017-05-24 2018-12-13 清水建設株式会社 Co-settlement preventing structure and settling method of caisson
CN110761325A (en) * 2019-10-25 2020-02-07 中铁第四勘察设计院集团有限公司 Automatic control system and method for mud-water balance open caisson vehicle station in soft soil area
CN110761325B (en) * 2019-10-25 2024-04-30 中铁第四勘察设计院集团有限公司 Automatic control system and method for mud-water balance open caisson station in soft soil area
CN111809623A (en) * 2020-06-30 2020-10-23 中国二十冶集团有限公司 A anchor case and earth anchor for earth anchor press-in type open caisson engineering
CN115492144A (en) * 2022-09-15 2022-12-20 中国一冶集团有限公司 Construction method of pipe jacking and open caisson in sandbank area
CN115492144B (en) * 2022-09-15 2023-08-29 中国一冶集团有限公司 Construction method of pipe-jacking open caisson in sand area

Also Published As

Publication number Publication date
JP3850785B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
KR101070426B1 (en) Improved Underpinning Method Using the micro pile
JP5278828B2 (en) How to install the jacket
KR101341679B1 (en) Device for constructing an underground structure and method thereof
KR100967497B1 (en) Method for constructing an underground structure
JP2004137685A (en) Caisson submergement method and supporting method using regular foundation pile
JP3054635B2 (en) Construction method of attached structure
KR20090090742A (en) Bottom-up construction method of underground structure using permanent strut
JP2012112121A (en) Excavation method of ground under spread foundation and base-isolating method of existing building
CN110847047B (en) Open sea bare rock trestle construction method
JP4624867B2 (en) Seismic isolation repair method for existing buildings
KR100673475B1 (en) A pc girder member for frame of underground layer and assembling structure of frame of underground by using of it and the method therof
JP2004285735A (en) Method of constructing temporary landing bridge by using truss frame
JP4115095B2 (en) Reverse strike method
KR100912574B1 (en) Retaining wall system using strut assembly and excavating method using the same
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
AU2020100004A4 (en) A Method Of Constructing A Column, A Subterranean Structure, And A Structure Made From The Method
JP4612422B2 (en) Construction method of structure and foundation structure used for it
KR100663109B1 (en) Method for Constructing an Underground Structure Using Up-down Method
JP7182485B2 (en) building construction method
JP6938198B2 (en) Construction method
JP4475116B2 (en) Vertical shaft structure and its construction method
JP2996113B2 (en) How to build a shaft
KR20100117300A (en) Construction method of basement structure using retaining wall and steel column
JP2009174135A (en) Column construction method and column structure
JP6441029B2 (en) How to add underground facilities

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060306

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060830

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090908

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090908

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090908

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees