JP2004137144A - Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder - Google Patents

Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder Download PDF

Info

Publication number
JP2004137144A
JP2004137144A JP2003320344A JP2003320344A JP2004137144A JP 2004137144 A JP2004137144 A JP 2004137144A JP 2003320344 A JP2003320344 A JP 2003320344A JP 2003320344 A JP2003320344 A JP 2003320344A JP 2004137144 A JP2004137144 A JP 2004137144A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
rice bran
temperature
bran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003320344A
Other languages
Japanese (ja)
Other versions
JP4328591B2 (en
Inventor
Kanji Matsuda
松  田   莞  爾
Hideyori Kano
鹿  野   秀  順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Yushi Co Ltd
Original Assignee
Sanwa Yushi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Yushi Co Ltd filed Critical Sanwa Yushi Co Ltd
Priority to JP2003320344A priority Critical patent/JP4328591B2/en
Publication of JP2004137144A publication Critical patent/JP2004137144A/en
Application granted granted Critical
Publication of JP4328591B2 publication Critical patent/JP4328591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous carbon material and porous carbon material powder prepared to turn various kinds of bran conventionally treated like an useless material to a highly functional product and having a novel structure, a manufacturing method of the porous carbon material powder by which the porous carbon material powder is efficiently and stably fired to be carbonized and which is composed of a novel constitution and a manufacturing method of a porous carbon mbaterial product which uses the porous carbon material powder and is compposed of a novel constitution using the porous carbon material power in the effective utilization of the bran. <P>SOLUTION: The porous carbon material is prepared by adding a thermosetting resin and the proper quantity of a glue-containing aqueous solution or water into the particle size adjusted bran of rice, wheat or the like, drying the kneaded mixed bran, granulating to form a bran granular base material and firing the bran granular base material under an inert gas atmosphere or vacuum to carbonize. <P>COPYRIGHT: (C)2004,JPO

Description

  この発明は、それまで利用価値が低いとされてきていた麩糠類を、有望な工業用資源である多孔性炭素材とすることにより、高機能製品用の素材として広範に応用しようとするものであり、特にその技術分野については特定されるものではなく、あらゆる分野をその技術分野とするものであって、したがって、麩糠類を生産する農業や麩糠類を消費する人々に係わる技術分野をはじめとし、麩糠類から油性分等を精製する技術分野、その分野に必要な製造機械や試験機械、施設設備等各種機械を製造、販売する分野、それらに必要な資材、部品を提供する分野、それら資材、部品の加工に必要な機械、工具類を提供する分野、またそれら資材や機械装置、部品類に必要な素材、例えば木材、合板、プラスチック、各種金属材料を提供する分野、それらに組み込まれる電子分品やそれらを集積した制御機器の分野、各種計測器の分野、当該設備、器具を動かす動力機械の分野、そのエネルギーとなる電力やエネルギー源である電気、オイルの分野といった一般的に産業機械として総称されるような分野、更には、それら設備、器具類を試験、研究したり、それらの修理、展示、販売、輸出入、ならびに使用する分野、将又、麩糠類を原材料として得られるこの発明の新素材やそれを使った粉末を応用する全ての分野、この発明に包含されている製造方法を実施するために必要となる農業、機械、電気、化学その他あらゆる技術分野、この発明の製造方法を実施する過程で発生するゴミ屑を回収、運搬する回収、輸送の分野、ゴミ屑を効率的に再生利用するリサイクル分野、そして現時点で想定できないが、新たに加わってくる未知の分野の果てまでと、関係しない技術分野はない程である。                                     The present invention aims to widely apply as a material for high-performance products, by converting fu-bran, which had been regarded as having a low utility value, into a porous carbon material which is a promising industrial resource. In particular, the technical field is not specified, and any field is the technical field, and therefore, the technical field related to agriculture producing fu bran or people consuming fu bran In addition to the technical field of refining oily content from rice bran, etc., the field of manufacturing and selling various machines such as manufacturing machines, testing machines, facility equipment necessary for the field, and providing the necessary materials and parts for them The field, providing machinery and tools necessary for the processing of these materials and parts, and providing the materials, machinery, equipment and components necessary for such materials, such as wood, plywood, plastic, and various metal materials Field of electronic components incorporated in them, the field of control equipment that integrates them, the field of various measuring instruments, the field of power machinery that moves the equipment and instruments, the power that is the energy and the electricity and oil that is the energy source. Fields generally referred to as industrial machines, such as fields, furthermore, those facilities and instruments are tested and researched, and repair, display, sale, import / export, and use of them, and fields in which they are used, All fields of application of the new material of the present invention obtained from bran as a raw material and powders using the same, agriculture, machinery, electricity, chemistry, etc. necessary to implement the manufacturing method included in the present invention All technical fields, collecting and transporting garbage generated in the process of carrying out the manufacturing method of the present invention, collecting and transporting, recycling, recycling garbage efficiently, and It can not be assumed at the time but, and to the ends of the unknown in the art to which the coming new addition, it is enough not the technical field that is not related.

 (視 点)
  我が国の主要穀物である米からは、副産物として大量の籾殻や糠が発生する。また、同様に、麦や蕎麦、大豆等の穀類からも大量の殻や麩(フスマ)を生じさせ、それら殻や麩糠類等、穀類からの副産物の多くは、邪魔者として焼却処分に回されてしまうか、あるいは、米糠は搾油して米糠油を製造したり、殻(特に籾殻)の極一部が暗渠用資材や燻炭等として利用される外、その製炭過程で留出された乾留気化物が、凝縮されて防虫剤や動物忌避剤、土壌改良剤、水虫治療薬等として利用されることもある。
(point of view)
Rice, a major grain in Japan, produces large amounts of rice husks and bran as by-products. Similarly, cereals such as wheat, buckwheat, and soybeans also produce a large amount of husks and fus (husma), and many of the by-products from cereals, such as husks and fusi, are incinerated as obstructions. Either the rice bran is crushed to produce rice bran oil, or a very small part of the husk (particularly rice husk) is used as culvert material or smoked charcoal, and is distilled during the coal making process. Dry distillate vapors are sometimes condensed and used as insect repellents, animal repellents, soil conditioners, athlete's foot remedies, and the like.

  しかし、脱脂糠を含む麩糠類は、大部分が飼料化あるいは茸培地化されたり、肥料化される等して農業用資材に活用される程度の利用に止まっていることから、これら麩糠類の工業用資材としての有効利用が模索され続けてきている。  その一つが、麩糠類を炭素化する技術である。この麩糠類の炭素化は、小規模には、バッチ式で蒸し焼きする方法で、また、大規模には、ロータリーキルンや多段流動床炉等で連続的に焼成する方法等で実施されることとなるが、麩糠類が非常に微細な粉末体であって、通気性や熱伝導性が悪い上、僅かとはいえ油脂分を含有していることにも災いされ、燃え尽きて灰化してしまう割合も多く、効率的且つ完全な炭素化が難しいという経済効率上の大きな難点と、加えて、製造された炭化物は、細かくて飛散し易い性状のものとなってしまい、取り扱い上の不便さが伴うといった問題等から、あまり積極的な事業化が成されてきた実績もなく、したがって、麩糠類から形成した炭化物、所謂「炭(すみ)」は、その質、量からして、農業用土壌改良材として利用されることはあっても、工業用材料として有効活用されることはなかったのが実情である。 However, most of the bran containing defatted bran has been used only for agricultural purposes, such as being converted into feed or mushroom culture medium, or converted into fertilizer. There is a continuing search for the effective use of such materials as industrial materials. One of them is a technology to carbonize fusi bran. The carbonization of this bran is, on a small scale, carried out by a method of steaming in a batch system, and on a large scale, is carried out by a method of continuously burning in a rotary kiln or a multi-stage fluidized bed furnace or the like. However, the rice bran is a very fine powder, has poor air permeability and thermal conductivity, and even contains a small amount of fats and oils. The ratio is large, and it is difficult to efficiently and completely carbonize it, which is a great disadvantage in terms of economic efficiency.In addition, the produced carbide becomes fine and easily scattered, resulting in inconvenient handling. Due to such problems, there has been no record of aggressive commercialization. Therefore, charcoal (so-called “charcoal”) formed from wheat bran cannot be used for agricultural purposes in terms of quality and quantity. Although it is used as a soil conditioner, Is the reality of never be effectively used as a use material.

 (従来の技術)
  そこで、米糠油製造業に係わるものとして、脱脂糠の有効利用に関して極めて強い関心を抱いていたことから、逸早くその技術開発、研究に取り組み、山形大学工学部および山形県工業技術センター双方の指導も得て、既に特開平10−101453号公報に掲載されているとおり、「多孔性炭素材製品の製造方法」として、遂に脱脂糠を始めとし、粉砕した籾殻や、小麦をひいて粉にしたときに皮屑として出る麩(フスマ)や、場合によっては、蕎麦殻、大豆殻等も加えた麩糠類を原材料として、例えば、外壁材等の建材や家具、梱包用素材といった極めて身近な素材をはじめ、軸受け部品その他の機械部品等に、更には、電解精製して導電材料、発熱体、電子部品等といった高機能製品を成形するようにした麩糠類の有効利用に関する技術を完成するに至った。
(Conventional technology)
As he was involved in the rice bran oil manufacturing industry, he was very interested in the effective use of defatted bran, so he quickly worked on the technology development and research and obtained guidance from both the Faculty of Engineering and the Yamagata Prefecture Industrial Technology Center. As already described in Japanese Patent Application Laid-Open No. 10-101453, as a "production method of a porous carbon material product", when defatted bran and the like, finally crushed rice hulls and wheat are ground to powder. The raw material is fu (bran) that comes out as shavings and, in some cases, fu brans, including buckwheat husks, soy husks, etc., for example, very familiar materials such as building materials such as outer wall materials, furniture, and packing materials. Technology related to the effective use of rice bran, which is used to form high-performance products such as conductive materials, heating elements, and electronic components by electrolytic refining into bearing parts and other mechanical parts. The has been completed.

  そうして、この完成した「多孔性炭素材製品の製造方法」に従って各種高機能製品の製造を開始し、資源の有効活用という観点からは勿論のこと、品質上、機能上からも十分過ぎる有用性を再確認している中、この製造方法による場合、その製造工程上の特徴から、高機能製品が特定されて初めてその高機能製品に合わせた金型作りに取り掛かり、その完成を待って目的とする所定の高機能製品の製造をこの発明の工程に従って準じ開始し、製品を提供するという手順とならざるを得ないことになる。                             
(1) 特開平10−101453号公報
Then, according to the completed “Production method of porous carbon material product”, the production of various high-performance products was started, and from the viewpoint of effective use of resources, as well as quality and function, it was too useful. While reconfirming the characteristics, in the case of using this manufacturing method, it is only after a high-performance product has been identified because of the characteristics of the manufacturing process that it begins to make a mold that matches the high-performance product. The production of a predetermined high-performance product must be started according to the process of the present invention, and the procedure of providing the product must be followed.
(1) JP-A-10-101453

 (問題意識)
  上述のような事情から、製品が決定されない限り、換言すれば形状・構造の特定された高機能製品についての受注をしない限り、当然のことながらこの発明の実施ができず、その間、製造ラインは停止したままとなってしまい、採算効率上において不都合を来してしまうことになる上、受注してからその都度全ての工程を最初から順次実施していくことになるため、受注後、製品供給までに要する時間の短縮は殆ど不可能となって迅速な対応をすることができなくなり、需要者からの要望に応え切れなくしてしまう虞れもあり得るといった問題があることを初めて認識するに至った。
(Awareness of problems)
Under the circumstances described above, unless the product is determined, in other words, unless an order is received for a high-performance product having a specified shape and structure, the present invention cannot be naturally carried out. The product will remain stopped, causing inconvenience in terms of profitability.In addition, after receiving an order, all processes will be performed sequentially from the beginning. For the first time, it was recognized that there was a problem that it was almost impossible to shorten the time required until the response could be promptly made, and there was a possibility that it might not be possible to meet the demands of customers. Was.

 (発明の目的)
  この発明は、それら新たな課題へ対処するために引き続き開発、研究を進めてきたところ、ようやくそれら高機能製品を迅速且つ確実に得られるようにするための有効な手段となり得る新規な多孔性炭素材粉末およびその製造方法、ならびにそれら多孔性炭素材粉末を使った多孔性炭素材製品の製造方法を完成することに成功したものであり、以下では、その構成の詳細を、幾つかの実施例と共に説示していくこととする。                
(Object of the invention)
The present invention has been continuously developed and researched to address these new problems, and finally, a novel porous carbon that can be an effective means for quickly and reliably obtaining such high-performance products. A material powder and a method for producing the same, and a method for producing a porous carbon material product using the porous carbon material powder, have been successfully completed. I will explain along with it.

 (発明の構成)
  先ず、この発明の基をなす多孔性炭素材は、基本的に次のとおりの構成から成り立っている。                                      即ち、粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒して麩糠類粒状素材にした上、それら麩糠類粒状素材を不活性ガス雰囲気中または真空中で焼成、炭化してなるものとした構成を要旨とする多孔性炭素材である。
(Structure of the invention)
First, the porous carbon material forming the basis of the present invention basically has the following configuration. That is, kneaded rice bran obtained by adding a thermosetting resin, and an appropriate amount of aqueous solution or water containing a paste to rice bran such as rice bran or wheat glue whose particle size has been adjusted, dried, granulated, and granulated into rice bran It is a porous carbon material that has a constitution in which, after being made into a raw material, the granular material of the rice bran is baked and carbonized in an inert gas atmosphere or in a vacuum.

  この基本的な構成を、より具体的なものとして示せば、20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒し、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にした上、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化してなる多孔性炭素材となる。 If this basic configuration is shown as a more specific example, a kneaded state obtained by adding a thermosetting resin and an appropriate amount of aqueous solution or water containing a paste to a bran such as rice bran or fu having a mesh under 20 mesh. After drying and granulating the bran, sieving it to 4 mesh under, sorting to form a granulated bran material, and baking and carbonizing the granulated bran material in an inert gas atmosphere or vacuum. It becomes a porous carbon material.

 (関連する発明1)
  上記したこの発明の多孔性炭素材に関連し、この発明には、先の多孔性炭素材を原材料とするところの次のとおりの構成からなる多孔性炭素材粉末が包含されている。     即ち、粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒して麩糠類粒状素材にした上、それら麩糠類粒状素材を不活性ガス雰囲気中または真空中で焼成、炭化して多孔性炭素材となし、それら多孔性炭素材を粉砕、粉末化して所望粒度のものとした、請求項1または2何れか記載の多孔性炭素材を原材料とする多孔性炭素材粉末がそれである。
(Related invention 1)
In relation to the above-described porous carbon material of the present invention, the present invention includes a porous carbon material powder having the following constitution using the porous carbon material as a raw material. That is, kneaded rice bran obtained by adding a thermosetting resin, and an appropriate amount of aqueous solution or water containing a paste to rice bran such as rice bran or wheat glue whose particle size has been adjusted, dried, granulated, and granulated into rice bran After making the raw material, the granular material of the rice bran is baked and carbonized in an inert gas atmosphere or vacuum to form a porous carbon material, and the porous carbon material is pulverized and powdered to have a desired particle size. A porous carbon material powder using the porous carbon material according to any one of claims 1 and 2 as a raw material.

 (関連する発明2)
  一方、この発明の基本をなす多孔性炭素材に関連し、この発明は、その多孔性炭素材を確実に製造することができるようにする多孔性炭素材の製造方法を包含していて、それは基本的に次に示すような構成から成り立っている。                  即ち、粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を乾燥して造粒した上、所定粒度以下に篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却して多孔性炭素材とする工程、以上の各工程を順次経過させていくようにした構成を要旨とする、この発明の多孔性炭素材の製造方法である。
(Related invention 2)
On the other hand, the present invention relates to a porous carbon material that forms the basis of the present invention, and the present invention includes a method for producing a porous carbon material that can surely produce the porous carbon material. It basically consists of the following configuration. That is, a step of adding and kneading a thermosetting resin and an appropriate amount of an aqueous solution or water containing a paste to kneaded rice bran such as rice bran or grated rice whose particle size is adjusted, and drying and granulating the kneaded kneaded rice bran. Above, a step of sieving to a predetermined particle size or less, sorting and forming into a granular rice bran material, firing and carbonizing the granular rice bran material in an inert gas atmosphere or in a vacuum, carbonizing the granular rice bran material A step of cooling the final firing temperature from the final firing temperature to a normal temperature at a predetermined temperature lowering rate to form a porous carbon material, and the above-described steps are sequentially performed to manufacture the porous carbon material of the present invention. Is the way.

  それはまた、より具体的には、20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を、60ないし80℃程度まで加温して揮発性物質を除去しながら乾燥して造粒した上、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却して多孔性炭素材とする工程、以上の各工程を順次経過させていくようにした多孔性炭素材の製造方法ということができる。 More specifically, more specifically, a step of adding a thermosetting resin and an appropriate amount of an aqueous solution or water containing a paste to kneading rice bran such as rice bran or gluten having a mesh size of 20 mesh, and kneading the mixture; Is dried to remove volatile substances by heating to about 60 to 80 ° C., granulated, sieved to 4 mesh under, and sorted to obtain a granular material of fusi bran. The step of firing and carbonizing the granular material in an inert gas atmosphere or in a vacuum, the step of cooling the carbonized granular rice bran from the final firing temperature to a normal temperature at a predetermined cooling rate to obtain a porous carbon material, It can be said that this is a method for producing a porous carbon material in which the steps are sequentially performed.

  更に具体的には、20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を、60ないし80℃程度まで加温して揮発性物質を除去しながら乾燥して造粒した上、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で所定の昇温速度に従って昇温させていき、最終焼成温度で略700℃以上の温度で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却する工程、以上の各工程を順次経過させていくようにした構成からなる多孔性炭素材の製造方法ということになる。 More specifically, a step of adding a thermosetting resin and an appropriate amount of aqueous solution or water containing a paste to kneaded bran such as rice bran or grated bran with a mesh size of 20 mesh, and kneading the mixture. Or drying and granulating while heating to about 80 ° C. to remove volatile substances, sieving into 4 mesh under, sorting to obtain fusiform granular materials, A step of raising the temperature in an inert gas atmosphere or vacuum in accordance with a predetermined temperature raising rate, firing at a final firing temperature of about 700 ° C. or more, and carbonizing, and removing the carbonized granular rice bran from the final firing temperature. This is a method of manufacturing a porous carbon material having a configuration in which the steps of cooling to a normal temperature at a predetermined cooling rate and the above steps are sequentially performed.

 (関連する発明3)
  また、前述したこの発明に包含される多孔性炭素材粉末に関連し、その多孔性炭素材粉末を確実に製造可能とするようにした、以下のとおりの構成を基本とする多孔性炭素材粉末の製造方法も、この発明に包含される。
  即ち、上述した多孔性炭素材の製造方法における最終工程に引き続き、それら最終工程で得られた冷却済みの多孔性炭素材を粉砕して所望粒度に粉末化する工程、以上の各工程を順次経過させていくようにした多孔性炭素材粉末の製造方法である。
(Related invention 3)
In addition, the present invention relates to the porous carbon material powder included in the present invention described above, and the porous carbon material powder based on the following configuration, which is capable of reliably manufacturing the porous carbon material powder. Is included in the present invention.
That is, following the final step in the above-described method for producing a porous carbon material, a step of pulverizing the cooled porous carbon material obtained in the final step and pulverizing the cooled porous carbon material to a desired particle size, and sequentially performing the above steps This is a method for producing a porous carbon material powder.

 (関連する発明4)
  一方、この発明には、この発明の多孔性炭素材粉末を使って製造する多孔性炭素材製品の製造方法も包含しており、次のとおりの構成から成り立っている。          即ち、上記関連する発明3の製造方法における各工程に引き続き、それら工程を経過して得られた多孔性炭素材粉末に、適量の熱硬化性樹脂を加えて混練して混練物とした上、所望する金型内に充填、加圧して成形する工程、金型から脱型した成形品を不活性ガス雰囲気中または真空中で所定の昇温速度に従って所望する最終焼成温度にまで達しさせて焼成、炭化する工程、および最終焼成温度から所定降温速度で常温まで冷却する工程、以上の各工程を順次経過させていくようにした構成から成る多孔性炭素材製品の製造方法である。                                              
(Related invention 4)
On the other hand, the present invention also includes a method of manufacturing a porous carbon material product manufactured using the porous carbon material powder of the present invention, and has the following configuration. That is, following the respective steps in the production method of the related invention 3, the appropriate amount of thermosetting resin is added to the porous carbon material powder obtained through the steps, and the mixture is kneaded to obtain a kneaded product. Filling into a desired mold, molding by pressurizing, firing the molded product released from the mold to a desired final firing temperature according to a predetermined heating rate in an inert gas atmosphere or vacuum. And a step of carbonizing, and a step of cooling from a final firing temperature to a normal temperature at a predetermined temperature lowering rate. The method for manufacturing a porous carbon material product has a configuration in which the above steps are sequentially performed.

  以上のとおりの構成を要旨として実現されるこの発明の多孔性炭素材と多孔性炭素材粉末、およびその製造方法、ならびにそれら多孔性炭素材粉末を使った多孔性炭素材製品の製造方法によれば、需要者から求められることになるであろうと予測される高機能製品の性状に適したサイズの多孔性炭素材粉末を、多孔性炭素材から効率的にその都度作り出すか、予め十分な量を用意しておき、需要者からの高機能製品の特定後は、単に特定された高機能製品の性状に適合した最適な粒度のこの発明の多孔性炭素材粉末を選択し、それら多孔性炭素材粉末に、これまた対象とする高機能製品の性状を勘案した最適割合となるよう熱硬化性樹脂を混合して混練物とする工程から直ちに多孔性炭素材製品の製造を開始することができることになり、従前までの場合のように、高機能製品が特定されない限り所定の高機能製品の製造をすることができず、その間、製造ラインは停止したままとして採算効率を落したり、製品供給までに時間を要することになるといった不都合は完全に払拭され、需要者からの要望に迅速に対応可能にして需要者への利便性改善されるようにすると共に、廃棄物扱いされてきた麩糠類を、付加価値の高い多種多様な機能(構造強度や摩擦係数・膨脹係数等の物理的機能の外、吸着性や断熱性、耐熱性、耐薬品性、耐候性、通電性、電磁シールド性等といった作用的機能)を有する高機能製品へと効率的且つ確実に製品化するようにするという秀れた特徴が得られるものとなる。                             According to the porous carbon material and the porous carbon material powder of the present invention and the method for producing the same, and the method for producing a porous carbon material product using the porous carbon material powder, which is realized as the gist of the configuration as described above. For example, a porous carbon material powder of a size suitable for the properties of a high-performance product expected to be required by consumers can be efficiently produced from the porous carbon material in each case, or a sufficient amount can be prepared in advance. After the high-performance products are specified by the customer, simply select the porous carbon material powder of the present invention having the optimal particle size suitable for the properties of the specified high-performance products, and then select those porous carbon materials. The production of a porous carbon material product can be started immediately from the process of mixing a thermosetting resin into a kneaded product so that the optimum ratio takes into account the properties of the target high-performance product and the material powder. become As in previous cases, unless a high-performance product is specified, it is not possible to manufacture a specific high-performance product.In the meantime, the production line remains stopped, reducing profitability, and increasing the time it takes to supply the product. The inconvenience of necessity is completely eliminated, and it is possible to promptly respond to the demands of the customers to improve the convenience for the users, and to add the rice bran that has been treated as waste. A wide variety of high valued functions (in addition to physical functions such as structural strength, friction coefficient, expansion coefficient, etc., as well as functions such as adsorptivity, heat insulation, heat resistance, chemical resistance, weather resistance, electrical conductivity, electromagnetic shielding, etc.) ) That can be efficiently and reliably commercialized into a highly functional product having the above-mentioned function.

  上記したとおりの構成からなるこの発明の実施に際し、その最良もしくは望ましい形態について説明を加えることにする。                         先ず、麩糠類としては、米糠油を搾油した後に大量に残る脱脂糠を始めとし、小麦をひいて粉にしたときに皮屑として出る麩、更には、籾殻や蕎麦殻、大豆殻、グルテンフィード(トウモロコシの皮や実の滓、即ちコーンスターチを製造したときの残滓)等、穀類を加工処理する過程で発生する粉末状の、あるいは粉砕処理した皮殻を包含しており、それらは、望ましくは、その粒度が一定以下(例えば、脱脂後の糠の場合、脱脂過程で焦げたり、固形化した大粒なものを除くために、12メッシュアンダー、最適には20メッシュアンダー)に揃うよう、篩に掛けたものが採用されるようにし、その後の成形性や素材構造の均質化等に有利なものとすべきである。 最 良 In implementing the present invention having the above-described configuration, the best mode or desirable mode will be described. First of all, as the bran, such as defatted bran that remains in large quantities after pressing the rice bran oil, and the wheat flour that comes out as shavings when the wheat is ground into flour, as well as chaff, buckwheat hull, soybean hull, gluten Such as feed (corn husks and slag, ie residues from the production of corn starch), such as powdered or pulverized crusts generated during the processing of cereals; Is sieved so that the grain size is equal to or less than a certain value (for example, in the case of bran after defatting, it is 12 mesh-under, optimally 20 mesh-under in order to remove large particles solidified or solidified in the degreasing process). Should be adopted, which is advantageous for the subsequent homogeneity of formability and material structure.

  熱硬化性樹脂としては、代表的なフェノール樹脂を、例えば、約10〜60重量パーセント程度に希釈したものを採用することによって、麩糠類への混合、攪拌作業を円滑にすることができて望ましく、また、その混合割合は、麩糠類の種類によっても異なるが、例えば脱脂後の糠の場合であれば約5〜80重量パーセント程度、麩(ふすま)であれば約5〜70重量パーセント程度、また、グルテンフィードであれば約5〜60重量パーセント程度、(但し、何れの場合にも、麩糠類の粒度や含水率、素材温度等の条件によって変更される。)といった具合に、麩糠類に対応した最適な割合で採用され、それら麩糠類への浸透率を調整する必要のある場合には、混合、撹拌作業環境や混合、撹拌後の放置時間の設定等の各種条件が検討されるようにする。                    なお、上記熱硬化性樹脂、糊料入り水溶液、又は水は、麩糠類と混合させた場合、麩糠類に対し糊剤として機能するものであり、糊料入り水溶液の糊料としては、海草糊料やコラーゲン、澱粉、リグニン等を用いることができる。 As the thermosetting resin, a typical phenolic resin, for example, by adopting one diluted to about 10 to 60% by weight, the mixing with the bran can be performed smoothly. Desirably, the mixing ratio varies depending on the type of fusi bran. For example, in the case of defatted bran, about 5 to 80% by weight, and for fu (bran) about 5 to 70% by weight About 5 to 60% by weight in the case of gluten feed (however, in any case, it is changed depending on conditions such as the particle size, moisture content, material temperature, etc.). It is adopted at the optimal ratio corresponding to the rice bran, and if it is necessary to adjust the penetration rate into the rice bran, various conditions such as mixing, stirring work environment and setting of the mixing and the standing time after stirring etc. Is considered It is so. In addition, the thermosetting resin, aqueous solution containing paste, or water, when mixed with rice bran, functions as a paste for rice bran, as paste for the aqueous solution containing paste, Seaweed paste, collagen, starch, lignin and the like can be used.

  麩糠類粒状素材は、焼成、炭化後の品質にばらつきをなくすようにする必要から、乾燥、造粒した後の混練状麩糠類を、4メッシュアンダーに予め篩分け、選別した麩糠類粒状素材が採用されるようにすべきであり、こうして粒度を調整した麩糠類粒状素材は、品質にばらつきを生じさせないものとして焼成、炭化された後、最終的に、需要者から求められることになるであろうと予測される各種高機能製品の性状、即ち、製品形状の複雑さ、それに起因した型詰めの難易度、構造強度、外観の緻密さ加減等の差異に対し、自在に対応可能とするような粒度、例えば250ないし100μm、150ないし100μm、150μm以下、100μm以下、50ないし10μm、10μm以下等といった段階別のものとして用意ができるよう、適宜粉砕機(アトマイザー)によって一旦粉砕した後、振盪篩によって選別してこの発明の多孔性炭素材粉末とするものである。 It is necessary to reduce the variation in quality after baking and carbonizing, so that the kneaded bran after drying and granulation is sieved in advance to 4 mesh under, and the bran selected Granular material should be adopted, and the grain size-adjusted wheat bran granular material should be fired and carbonized so as not to cause variation in quality, and ultimately required by consumers. It is possible to respond freely to the properties of various high-performance products that are expected to be different, that is, the differences in the complexity of the product shape, the difficulty in filling the mold, the structural strength, the fineness of the appearance, etc. Particle sizes such as 250 to 100 μm, 150 to 100 μm, 150 μm or less, 100 μm or less, 50 to 10 μm, 10 μm or less, etc. After once crushed Yichun by grinder (atomizer), and screened by shaking sieve is to a porous carbon material powder of the present invention.

  関連する発明2および3における熱硬化性樹脂は、既述した如く、麩糠類への混合、攪拌作業を円滑にする上で、例えば、代表的なフェノール樹脂を約10〜60重量パーセント程度に希釈したものを採用するようにする等、その混合割合は、麩糠類の種類によっても異なり、例えば脱脂後の糠の場合であれば約5〜80重量パーセント程度、麩(ふすま)であれば約5〜70重量パーセント程度、また、グルテンフィードであれば約5〜60重量パーセント程度、(但し、何れの場合にも、麩糠類の粒度や含水率、素材温度等の条件によって変更される。)といった具合に、麩糠類に対応した最適な割合で採用され、それら麩糠類への浸透率を調整する必要のある場合には、混合、撹拌作業環境や混合、撹拌後の放置時間の設定等の各種条件が検討されるようにする。 As described above, the thermosetting resin in the related inventions 2 and 3 is, for example, a typical phenolic resin is reduced to about 10 to 60% by weight in order to smoothly mix and stir the rice bran. The mixing ratio, such as using a diluted one, differs depending on the type of fu bran. For example, in the case of bran after defatting, about 5 to 80% by weight, and in the case of fu (bran) About 5 to 70% by weight, and about 5 to 60% by weight in the case of gluten feed (however, it is changed depending on conditions such as the particle size, moisture content, material temperature, etc. of the bran). )), It is adopted at the optimal ratio corresponding to the rice bran, and when it is necessary to adjust the permeability to the rice bran, the mixing and stirring work environment and the mixing and stirring time Each setting Conditions are to be considered.

  この熱硬化性樹脂の混合、含浸工程では、熱硬化性樹脂の麩糠類への浸透率の吟味し、所定濃度の熱硬化性樹脂の混入に並行して、適量の水を加えたり、あるいは、各種動植物糊料(例えば海草糊料やコラーゲン、澱粉、リグニン等)や澱粉、各種糖液等の繋ぎ剤を適量(例えば、脱脂後の糠の場合であれば約5〜30重量パーセント程度)混合した水溶液を加えて実施されるようにしたり、あるいは、予め、成形性を良くするための水や繋ぎ剤混合液を、所定濃度の熱硬化性樹脂に混入したものとした上で麩糠類への混合、撹拌作業を実施して混練状麩糠類となるようにすべきである。 In the mixing and impregnation step of the thermosetting resin, the penetration rate of the thermosetting resin into the bran is examined, and in parallel with the mixing of the thermosetting resin of a predetermined concentration, an appropriate amount of water is added, or An appropriate amount of a binder for various animal and plant pastes (eg, seaweed paste, collagen, starch, lignin, etc.), starch, and various sugar solutions (eg, about 5 to 30% by weight in the case of bran after defatting) To be carried out by adding a mixed aqueous solution, or beforehand, water and a binder mixed solution for improving the moldability are mixed with a predetermined concentration of thermosetting resin, Should be mixed and stirred to obtain kneaded rice bran.

  所定の割合まで熱硬化性樹脂を混合させた混練状麩糠類は、例えば、平面型造粒機や筒型造粒機等の公知の造粒機を使って造粒しながら、60〜80℃程度まで加温して揮発分を抜いて乾燥させた上、焼成段階でのガス抜けを円滑なものとして極力均質な炭化が実現されるようにする配慮から、それら造粒物を篩に掛けて所定サイズ、望ましくは4メッシュアンダー程度、より好ましくは5メッシュアンダー程度のものに揃えてしまう、麩糠類粒状素材にする工程を必要としている。 The kneaded rice bran obtained by mixing the thermosetting resin to a predetermined ratio is, for example, granulated using a known granulator such as a flat granulator or a cylindrical granulator, and is subjected to 60 to 80 granulation. After heating to about ℃ to remove volatile matter and drying, the granulated material is sieved in order to smooth out gas in the sintering step and to realize as uniform carbonization as possible. In this case, a step of preparing a granular material of rice bran, which is adjusted to a predetermined size, preferably about 4 mesh under, more preferably about 5 mesh under, is required.

  こうして用意された麩糠類粒状素材、特に4メッシュアンダーの麩糠類粒状素材は、次に、不活性ガス雰囲気中または真空中で焼成、炭化する工程に移されるが、上記した熱硬化性樹脂を含む麩糠類粒状素材が燃焼してしまわないよう、窒素ガス等の不活性ガス雰囲気中、または真空下等といった無酸素状態を維持して実施されることを要し、また、それら麩糠類粒状素材が崩壊してしまわないよう急激な温度上昇を避けるよう注意すべきである。特に、200〜400℃付近では、分解に伴う大量のガスが発生するため、この間の昇温速度には十分な配慮がなされるべきであり、例えば、麩糠類が脱脂糠の場合を例にすれば、500℃辺りまでは、毎分1.0〜5.0℃程度(樹脂の割合や粒度等の条件に応じて決定される。)の昇温速度とすべきである。 The thus prepared granular rice bran material, especially the granular rice bran material of 4 mesh under, is then transferred to a step of firing and carbonizing in an inert gas atmosphere or vacuum. Must be carried out in an atmosphere of an inert gas such as nitrogen gas or in an oxygen-free state such as under a vacuum so that the granular material containing cereal bran does not burn. Care should be taken to avoid a sudden rise in temperature so that the granular material does not collapse. In particular, at around 200 to 400 ° C., a large amount of gas is generated due to decomposition. Therefore, sufficient consideration should be given to the heating rate during this period. Then, up to around 500 ° C., the temperature should be raised at a rate of about 1.0 to 5.0 ° C. per minute (determined according to conditions such as the proportion of resin and particle size).

  なお、焼成温度としては、この発明の多孔性炭素材粉末に必要とされる特性、例えば硬度や純度、多孔性や絶縁性、加工性や構造強度等々に応じ、略200℃程度の温度から千数百度の範囲内の最適な温度が選択されることとなり、多孔性炭素材粉末の強度や密度等を左右する焼成具合に繋がる各種要素を勘案した上、最適な時間に渡って焼成が実施されるようにしなければならない。 The firing temperature may vary from about 200 ° C. to 1000 ° C. depending on the characteristics required for the porous carbon material powder of the present invention, such as hardness, purity, porosity and insulation, workability and structural strength. The optimum temperature within the range of several hundred degrees will be selected, and firing will be carried out for the optimum time, taking into account various factors that affect the firing condition that affects the strength and density of the porous carbon material powder. You have to make sure.

  引き続き実施される炭化粒状麩糠類の冷却工程は、最終焼成温度から所定降温速度、例えば1.5℃/分程度の割合で常温まで冷却するものとし、それら常温に戻した炭化粒状麩糠類は、適宜粉砕機(アトマイザー)を使って粉砕する工程を経てから、振盪篩によって各段階毎の粒度のもの、例えば250ないし100μm、150ないし100μm、150μm以下、100μm以下、50ないし10μm、10μm以下等といった段階別のものに選別するようにし、需要者から求められることになるであろうと予測される各種高機能製品の性状、即ち、製品形状の複雑さ、それに起因した型詰めの難易度、構造強度、外観の緻密さ加減等の差異に対し、自在に対応可能とするこの発明の多孔性炭素材粉末が得られるようにするものである。 In the subsequent cooling step of the carbonized granular rice bran, the carbonized granular rice bran is cooled from the final baking temperature to a predetermined temperature reduction rate, for example, at a rate of about 1.5 ° C./min. Is appropriately crushed using a crusher (atomizer) and then subjected to a particle size of each stage by a shaking sieve, for example, 250 to 100 μm, 150 to 100 μm, 150 μm or less, 100 μm or less, 50 to 10 μm, 10 μm or less And so on, so that it can be sorted out by stage, and the properties of various high-performance products that are expected to be demanded by consumers, that is, the complexity of the product shape, the difficulty of mold packing due to it, A porous carbon material powder according to the present invention which can freely respond to differences in structural strength, fineness of appearance, etc.

  また、関連する発明4の場合の製造方法における熱硬化性樹脂は、先の多孔性炭素材粉末を製造する際のものと変らないが、その混合割合は、先のものと異なり、主に所望の高機能製品とするために選択された所定粒度の多孔性炭素材粉末に、金型による成形性を付与する繋ぎ材として機能させ、合わせて焼成工程においてそれらを炭化してこの発明の多孔性炭素材の組成の一部に組み入れてしまうものであり、多孔性炭素材粉末90ないし40w%に対し、熱硬化性樹脂が10ないし40w%の割合の中から、多孔性炭素材粉末の粒度や含水率、素材温度等の条件に対応した最適な混合割合のものとして選択され、多孔性炭素材粉末と熱硬化性樹脂とによる混練物とするものである。 Further, the thermosetting resin in the production method in the case of the related invention 4 is the same as that used in producing the porous carbon material powder, but the mixing ratio is different from the previous one, and mainly the The porous carbon material powder having a predetermined particle size selected to be a high-performance product is made to function as a binding material that imparts moldability with a mold, and is carbonized in the firing step to form the porous carbon material of the present invention. It is incorporated into a part of the composition of the carbon material, and the ratio of the thermosetting resin is 10 to 40 w% to the porous carbon material powder 90 to 40 w%. It is selected as one having an optimum mixing ratio corresponding to conditions such as water content and material temperature, and is a kneaded product of a porous carbon material powder and a thermosetting resin.

  なお、この熱硬化性樹脂の混合工程において混練物とする際には、多孔性炭素材粉末への浸透率を吟味し、所定濃度の熱硬化性樹脂の混入に並行して適量の水を加えたり、あるいは、各種動植物糊料や澱粉、各種糖液等の繋ぎ剤を適量混合した水溶液を加えて実施されるようにしたり、あるいは、予め、成形性を良くするための水や繋ぎ剤混合液を、所定濃度の熱硬化性樹脂に混入したものとした上で混合、撹拌作業を実施して混練物となるようにする、先の混練状麩糠類とする際の熱硬化性樹脂の場合と同様の手段が排除されている訳ではなく、必要に応じて適宜採用することができるは言うまでもない。 When the kneaded product is obtained in the mixing step of the thermosetting resin, the permeability into the porous carbon material powder is examined, and an appropriate amount of water is added in parallel with the mixing of the thermosetting resin at a predetermined concentration. Or by adding an aqueous solution obtained by mixing an appropriate amount of a binder such as various animal and plant pastes, starch, and various sugar solutions, or in advance, a water and binder mixture liquid for improving the formability. Is mixed with a predetermined concentration of the thermosetting resin, and then mixed and stirred to carry out a kneaded product. It is needless to say that the same means as described above is not excluded, and can be appropriately adopted as needed.

  金型内に充填した混練物は、成形品単位面積当り40ないし450kg/cm2の圧力で加圧、成形するようにすべきであり、そして、それら成形品の焼成、炭化工程は、先の麩糠類粒状素材の場合の焼成、炭化工程のように、麩糠類の燃焼を配慮する必要がないことから、不活性ガス雰囲気中または真空中に限定されている訳ではなく、空気中であっても可能になる。 The kneaded material filled in the mold should be pressurized and molded at a pressure of 40 to 450 kg / cm2 per unit area of the molded product. Unlike the baking and carbonizing processes for the bran granular material, there is no need to consider the burning of the bran, so it is not limited to an inert gas atmosphere or vacuum, but to air. It will be possible.

  この工程における昇温速度は、最終焼成温度が500℃以下の場合、室温から250℃までは1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分の実施されるものとし、その最終焼成温度で3時間保持した後、冷却工程では、1.5℃/分の降温速度で常温まで冷却されるようにし、最終焼成温度が500℃を越える場合には、室温から250℃までは1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分、500℃で1時間保持した上、500℃から目的とする最終焼成温度まで2℃/分の昇温速度で昇温され、最終焼成温度で2時間保持した後、冷却工程では、1.5℃/分の降温速度で常温まで冷却されるようにしたものとするのが望ましい。                               以下、上記したこの発明の多孔性炭素材粉末、およびその製造方法、ならびにそれら多孔性炭素材粉末を使った多孔性炭素材製品の製造方法が、更に具体的に把握できるようにするため、幾つかの実施例を説示してみることにする。                                  When the final baking temperature is 500 ° C. or lower, the rate of temperature rise in this step is 1.2 ° C./min from room temperature to 250 ° C., 1 ° C./min from 250 ° C. to 350 ° C., and 1.degree. C. from 350 ° C. to 500 ° C. After the holding at the final baking temperature for 3 hours, the cooling step is carried out at a cooling rate of 1.5 ° C./min to room temperature, and the final baking temperature is 500 ° C. When the temperature exceeds 250 ° C., the temperature is maintained at 1.2 ° C./min from room temperature to 250 ° C., 1 ° C./min from 250 ° C. to 350 ° C., 1.2 ° C./min from 350 ° C. to 500 ° C., and held at 500 ° C. for 1 hour. The temperature is raised at a rate of 2 ° C./min from the temperature of 500 ° C. to the final final baking temperature. The temperature is maintained at the final baking temperature for 2 hours. It is desirable to be cooled down to the temperature. Hereinafter, the porous carbon material powder of the present invention described above, a method for producing the same, and a method for producing a porous carbon material product using the porous carbon material powder will be described in more detail. This embodiment will be described.

  この事例は、麩糠類中で最も代表的な素材の一つである脱脂糠を採用し、特に硬質の多孔性炭素材粉末を製造する方法の代表的な実施例である。
 「混合工程」
   油を抽出した脱脂糠を50メッシュの篩に掛け通過したものを用い、この脱脂糠75w%に、フェノ−ル樹脂[(株)ホ−ネンコ−ポレ−ション製 豊年レジングル−px−1600(商品名)]を熱硬化性樹脂として25w%になるように添加し、充分混合する。
 「造粒工程」
  揮発分を除去するため、80℃に加熱しながら造粒し、4メッシュのフルイを通過したものを麩糠類粒状素材とする。
This example is a typical example of a method for producing defatted porous carbon material powder by using defatted bran, which is one of the most typical raw materials among rice bran.
"Mixing process"
The defatted bran from which the oil was extracted was passed through a 50-mesh sieve, and 75% by weight of the defatted bran was added to a phenol resin [Honenko-Poration, Ltd. Name)] as a thermosetting resin so as to be 25% by weight, and sufficiently mixed.
`` Granulation process ''
In order to remove volatile components, the mixture is granulated while being heated to 80 ° C., and passed through a 4-mesh sieve is used as a granulated rice bran material.

 「焼成工程」
  焼成炉内で窒素ガスを流しながら焼成する。その際の昇温速度は、室温から250℃まで1.2℃/分、250℃から350℃までを1℃/分、350℃から500℃まで1.2℃/分、500℃で1時間保持、500℃から目的とする温度まで2℃/分、目的温度で2時間保持する。冷却は、1.5℃/分の割合で行う。
 「粉砕工程」
  常温にまで戻した炭化済みの麩糠類粒状素材は、粉砕機(アトマイザー)によって一旦粉砕した後、振盪篩によって選別して100μm以下のこの発明の多孔性炭素材粉末を得る。                                             
"Baking process"
Firing is performed in a firing furnace while flowing nitrogen gas. The rate of temperature rise at that time is 1.2 ° C / min from room temperature to 250 ° C, 1 ° C / min from 250 ° C to 350 ° C, 1.2 ° C / min from 350 ° C to 500 ° C, and 1 hour at 500 ° C. Hold, 2 ° C./min from 500 ° C. to target temperature, hold at target temperature for 2 hours. Cooling is performed at a rate of 1.5 ° C./min.
`` Pulverization process ''
The carbonized granular rice bran material returned to room temperature is once crushed by a crusher (atomizer) and then sorted by a shaking sieve to obtain a porous carbon material powder of 100 μm or less according to the present invention.

  次は、上記実施例1の製造方法によって得られた多孔性炭素材粉末を使って平板状の多孔性炭素材製品を製造する代表的な製造方法である。
 「混合工程」
  多孔性炭素材粉末75w%に、フェノ−ル樹脂[(株)ホ−ネンコ−ポレ−ション製豊年レジングル−px−1600(商品名)]を熱硬化性樹脂として25w%になるように添加し、充分混合して混練物とする。
The following is a typical production method for producing a plate-like porous carbon material product using the porous carbon material powder obtained by the production method of Example 1 described above.
"Mixing process"
To a porous carbon material powder 75 w%, a phenol resin [Honenko-Polyation Co., Ltd., Hosunen Resingle-px-1600 (trade name)] is added as a thermosetting resin to 25 w%. And kneaded well.

 「金型成形工程」
  140〜170℃の温度範囲に設定した平板製品用の金型(75×150×6mm)内に、混練物100gを充填した上、ゲージ圧力50kg/cm2で2分間加圧した後、解圧してガス抜きをする。ガス抜き後、再びゲージ圧力50kg/cm2で3分間加圧して平板状成形品を得た。                               なお、当該成形品の物性強化のため、さらに150〜250℃の温度範囲で加熱器による空中加熱処理を実施した。
"Mold forming process"
After filling 100 g of the kneaded material in a mold (75 × 150 × 6 mm) for a flat product set at a temperature range of 140 to 170 ° C., the mixture was pressed at a gauge pressure of 50 kg / cm 2 for 2 minutes, and then decompressed. Degas. After degassing, pressure was applied again at a gauge pressure of 50 kg / cm2 for 3 minutes to obtain a flat molded product. In addition, in order to strengthen the physical properties of the molded article, air heating treatment was further performed with a heater in a temperature range of 150 to 250 ° C.

 「焼成工程」
  焼成炉で窒素ガスを流し、無酸素状態にした上、室温から250℃まで1.2℃/分、250℃から350℃までを1℃/分、350℃から500℃まで1.2℃/分の割合で昇温させる昇温速度で焼成した上、500℃状態を1時間保持し続けた後、再び500℃から900℃までを2℃/分で昇温させ、900℃に達したところでその温度を2時間保持し続け、その後、1.5℃/分の割合で常温まで冷却する。
  以上の工程を順次実施して、この発明の多孔性炭素材製品を製造することができる。                                  
"Baking process"
Nitrogen gas was flown in the firing furnace to make it oxygen-free, and 1.2 ° C / min from room temperature to 250 ° C, 1 ° C / min from 250 ° C to 350 ° C, 1.2 ° C / min from 350 ° C to 500 ° C. After sintering at a rate of temperature increase at a rate of 1 minute, the temperature was kept at 500 ° C. for 1 hour, then the temperature was raised again from 500 ° C. to 900 ° C. at 2 ° C./minute, and when the temperature reached 900 ° C. The temperature is maintained for 2 hours and then cooled to room temperature at a rate of 1.5 ° C./min.
By sequentially performing the above steps, the porous carbon material product of the present invention can be manufactured.

  上記実施例1の製造方法によって得た多孔性炭素材粉末を使って平板状の多孔性炭素材製品を製造する代表的な製造方法である。
 「混合工程」
  実施例1で得た多孔性炭素材粉末75重量部と、ノボラック型粉体フェノ−ル樹脂[DIK社製、フェノライト5510(商品名)]25重量部とを充分混合して混練物とする。
This is a typical production method for producing a plate-shaped porous carbon material product using the porous carbon material powder obtained by the production method of Example 1 above.
"Mixing process"
A kneaded product is obtained by sufficiently mixing 75 parts by weight of the porous carbon material powder obtained in Example 1 and 25 parts by weight of a novolak type powder phenol resin [Phenolite 5510 (trade name) manufactured by DIK]. .

 「金型圧縮成型工程」
  140〜170℃の温度範囲に設定した平板製品用の金型(厚さは材料の量、圧力によって変動することができる;75×150×tmm)内に、混練物100gを充填した上、ゲージ圧50kg/cm2で2分間加圧してから解圧してガス抜きをし、その後、再びゲージ圧50kg/cm2で3分間加圧して平板状成形品とする。
"Mold compression molding process"
100 g of the kneaded material is filled in a mold for a flat plate product (thickness can be varied depending on the amount of material and pressure; 75 × 150 × tmm) set to a temperature range of 140 to 170 ° C. A pressure of 50 kg / cm2 is applied for 2 minutes, then the pressure is released to release the gas, and then a pressure is applied again at a gauge pressure of 50 kg / cm2 for 3 minutes to obtain a flat molded product.

 「焼成工程」
  焼成炉(外熱式、東海高熱社製)内で窒素ガスを流し、無酸素状態にした上、室温から250℃まで1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分の昇温速度で焼成した上、500℃の状態を1時間保持し続けた後、再び500℃から900℃までを2℃/分の昇温速度で焼成し、900℃に達したところでその温度を2時間保持し続け、その後、600℃までは1.2℃/分の速度で、600℃から室温までは1.5℃/分の降温速度で降温し、常温まで冷却する。         以上の工程を順次実施して、この発明の多孔性炭素材製品を製造することができる。            
"Baking process"
Nitrogen gas is flown in a firing furnace (external heat type, manufactured by Tokai High Heat Co., Ltd.) to make it oxygen-free, and 1.2 ° C./min. From room temperature to 250 ° C., 1 ° C./min. After firing at a rate of 1.2 ° C./minute from 500 ° C. to 500 ° C. and maintaining the state of 500 ° C. for 1 hour, the temperature is again increased from 500 ° C. to 900 ° C. at a rate of 2 ° C./minute. After calcination, when the temperature reaches 900 ° C., the temperature is maintained for 2 hours, and thereafter, at a rate of 1.2 ° C./min up to 600 ° C., and at a rate of 1.5 ° C./min. Cool down to room temperature. By sequentially performing the above steps, the porous carbon material product of the present invention can be manufactured.

  上記実施例1の製造方法によって得た多孔性炭素材粉末を使って平板状(60×15×2mm)の多孔性炭素材製品を製造ようにした、この発明の他の例による製造方法である。
 「混合工程」
  実施例1で得た多孔性炭素材粉末75重量部と、ノボラック型粉体フェノ−ル樹脂[DIK社製、フェノライト5510(商品名)]25重量部とをミキシング熱ロールで加熱混練し、得られた混練物をパワーミルで粉砕して、4mm×4mm×4mm以下の顆粒状成形材料を製造する。
This is a manufacturing method according to another example of the present invention in which a porous (60 × 15 × 2 mm) porous carbon material product is manufactured using the porous carbon material powder obtained by the manufacturing method of Example 1 described above. .
"Mixing process"
75 parts by weight of the porous carbon material powder obtained in Example 1 and 25 parts by weight of a novolak type powder phenol resin [Phenolite 5510 (trade name) manufactured by DIK] were heated and kneaded with a mixing hot roll, The obtained kneaded material is pulverized with a power mill to produce a granular molding material of 4 mm × 4 mm × 4 mm or less.

 「射出成型工程」
  スクリュウ式射出成形機(松田製作所、75F−36K型)を用い、射出温度は入口80℃、中間100℃、出口ノズル120℃に設定し、また、金型温度は180℃に設定し、110kg/cm2の圧力を掛けて射出成形を実施する。
  そして、射出成形品の製造サイクルは90秒/1回として平板状成形品(13×64×3t)とする。
"Injection molding process"
Using a screw-type injection molding machine (Matsuda Seisakusho, 75F-36K type), the injection temperature was set at 80 ° C at the inlet, 100 ° C in the middle, and 120 ° C at the outlet nozzle. The mold temperature was set at 180 ° C and 110kg / Injection molding is performed with a pressure of cm2.
The production cycle of the injection molded product is 90 seconds / one time, and a flat molded product (13 × 64 × 3t) is obtained.

 「焼成工程」
  上記で得られた成形品をバッチ式焼成炉を用い、窒素ガス雰囲気中で、室温から250℃まで1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分の昇温速度で焼成した上、500℃の状態を1時間保持し続けた後、再び500℃から900℃までを2℃/分の昇温速度で焼成し、900℃に達したところでその温度を2時間保持した。その後、600℃までは1.2℃/分の速度で、600℃から室温までは1.5℃/分の降温速度で降温し、常温まで冷却する。             以上の工程を順次実施して、この発明の多孔性炭素材製品を製造することができる。                 
"Baking process"
The molded product obtained above was used in a batch-type firing furnace in a nitrogen gas atmosphere at room temperature to 250 ° C at 1.2 ° C / min, at 250 ° C to 350 ° C at 1 ° C / min, and at 350 ° C to 500 ° C. After baking at a temperature rising rate of 1.2 ° C./min and maintaining the state of 500 ° C. for 1 hour, baking again from 500 ° C. to 900 ° C. at a heating rate of 2 ° C./min. Was reached and the temperature was maintained for 2 hours. Thereafter, the temperature is lowered at a rate of 1.2 ° C./min up to 600 ° C. and at a rate of 1.5 ° C./min from 600 ° C. to room temperature, and cooled to room temperature. By sequentially performing the above steps, the porous carbon material product of the present invention can be manufactured.

  この実施例は、上記実施例1の製造方法によって得た多孔性炭素材粉末を使った更に他の例による製造方法である。
 「混合工程」
  実施例1で得た多孔性炭素材粉末55重量部と、ノボラック型粉体フェノ−ル樹脂[DIK社製、フェノライト5510(商品名)]25重量部と、炭素繊維(ドナカーボ S−242、ドナック(株)製)20重量部とをミキサーで混練して成形材料とする。
This embodiment is a manufacturing method according to still another example using the porous carbon material powder obtained by the manufacturing method of the first embodiment.
"Mixing process"
55 parts by weight of the porous carbon material powder obtained in Example 1, 25 parts by weight of a novolak-type powder phenol resin [manufactured by DIK, Phenolite 5510 (trade name)], and carbon fibers (Donacarbo S-242; And 20 parts by weight (manufactured by Donac Co., Ltd.) with a mixer to obtain a molding material.

 「加圧成型工程」
  金型温度150℃に設定した金型(75×150×tmm)に、100gの上記成形材料を充填し、ゲージ圧40kg/cm2で2分間加圧してから解圧してガス抜きをする。その後、ゲージ圧40kg/cm2で2分間加圧し、更にその後1分解圧、再度ゲージ圧60kg/cm2で2分間加圧することによって成形品となし、該成形品を200℃の加熱器に5時間放置し熱処理(アフターキュア)を行い、この発明の多孔性炭素材製品を製造するものである。                                
"Press molding process"
A mold (75 × 150 × tmm) set at a mold temperature of 150 ° C. is filled with 100 g of the above molding material, pressurized at a gauge pressure of 40 kg / cm 2 for 2 minutes, depressurized, and degassed. Thereafter, pressurization is performed at a gauge pressure of 40 kg / cm2 for 2 minutes, and thereafter, the molded product is formed by pressurizing at 1 decomposition pressure and again at a gauge pressure of 60 kg / cm2 for 2 minutes, and the molded product is left in a 200 ° C. heater for 5 hours. The heat treatment (after-cure) is performed to produce the porous carbon material product of the present invention.

  実施例1において、フェノール樹脂を以下のようにコラーゲン入り水溶液に変えて麩糠類粒状素材を作製するようにした外は、実施例1と同様の工程を経て多孔性炭素材粉末を得るようにした上、麩糠類95重量部に対し、1重量%の濃度のコラーゲン入り水溶液5重量部を散布して攪拌した後、デスクペレッター(ダルトン社製F−20/12−330型)でペレット直径φ5×L10のペレットを製造する。 In Example 1, except that the phenolic resin was changed to an aqueous solution containing collagen as described below to produce a granular material of rice bran, a porous carbon material powder was obtained through the same steps as in Example 1. Then, 5 parts by weight of a 1% by weight collagen-containing aqueous solution was sprayed and stirred against 95 parts by weight of the bran, and then pelletized with a desk pelletizer (Dalton F-20 / 12-330 type). A pellet having a diameter of φ5 × L10 is manufactured.

 (実施例の作用)
  以上のとおりの工程によって構成されるこの発明の多孔性炭素材は、多孔性炭素材粉末の原材料として機能するもので、この発明の多孔性炭素材を製造する者がその製造をする傍ら、所望の多孔性炭素材粉末とするために予め所定量をストックして、需要者から求められることになるであろうと予測される高機能製品の性状に拘わらず、予め炭化粒状麩糠類を適宜粉砕機(アトマイザー)で粉砕し、振盪篩によって各段階毎の粒度のもの、例えば250ないし100μm、150ないし100μm、150μm以下、100μm以下、50ないし10μm、10μm以下等といった段階別のものに選別、用意しておき、高機能製品が特定された後、直ちにその性状、即ち、製品形状の複雑さ、それに起因した型詰めの難易度、構造強度、外観の緻密さ加減等に適合した最適な粒度のこの発明の多孔性炭素材粉末を選択した上、それら多孔性炭素材粉末に対する熱硬化性樹脂の混合割合(90〜40w%):(10〜60w%)の範囲から、これまた対象とする高機能製品の性状を勘案した最適割合となるよう熱硬化性樹脂を混合して混練物とし、金型成形工程を経て成形物を得て焼成、炭化工程を実施し、この発明による多孔性炭素材製品を製造するようにするか、あるいはそれ自体が商取引きの対象とされ、この発明の多孔性炭素材を購入した者が、それを原材料として自らの高機能製品に最適な粒度の多孔性炭素材粉末にするような用い方をすることもできる。
(Operation of the embodiment)
The porous carbon material of the present invention constituted by the steps as described above functions as a raw material of the porous carbon material powder. In order to obtain a porous carbon material powder, a predetermined amount is stocked in advance, and regardless of the properties of high-performance products that are expected to be required by consumers, the granulated rice bran is appropriately ground in advance in advance. It is crushed by a machine (atomizer), and is classified and prepared by a shaking sieve into particles having a particle size of each stage, for example, 250 to 100 μm, 150 to 100 μm, 150 μm or less, 100 μm or less, 50 to 10 μm, 10 μm or less. As soon as a high-performance product is identified, its properties, that is, the complexity of the product shape, the difficulty of mold packing, the structural strength, and the appearance In addition to selecting the porous carbon material powder of the present invention having an optimum particle size suitable for adjustment, etc., the mixing ratio of the thermosetting resin to the porous carbon material powder (90 to 40 w%): (10 to 60 w%) From the range, the thermosetting resin is mixed into a kneaded product so as to have an optimal ratio in consideration of the properties of the target high-performance product, and a molded product is obtained through a mold forming process, followed by firing and carbonizing processes. To manufacture the porous carbon material product according to the present invention, or to purchase the porous carbon material of the present invention as a raw material, It can also be used to make a porous carbon material powder having the optimal particle size for a functional product.

  多孔性炭素材の製造方法では、主原料となる麩糠類に熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練した混練状麩糠類は、焼成工程における円滑なガス抜きを実現し得るよう、予め5メッシュアンダーに粒度調整、造粒する工程を不可欠とし、焼成工程における焼失防止等のため、不活性ガス雰囲気中または真空中で、所定の昇温速度に従って所望する最終焼成温度にまで達しさせて焼成、炭化する焼成工程と、最終焼成温度から所定降温速度で常温まで冷却する工程とを必須の構成要件と、また、多孔性炭素材粉末の製造方法では、どのような性状の高機能製品の製造も可能にする粉末化工程とを必須の構成要件としており、こうして各種サイズの多孔性炭素材粉末を予め十分に製造、ストックすることになる結果、この発明が包含する多孔性炭素材製品製造への移行が円滑になし得るものとなる。 In the method for producing a porous carbon material, kneaded glutinous bran obtained by adding a thermosetting resin and an appropriate amount of an aqueous solution or a water containing a paste to the bran as a main raw material and kneading the mixture is used for smooth degassing in the firing step. In order to realize the above, a process of adjusting the particle size to 5 mesh under and granulating in advance is indispensable, and in order to prevent burning during the baking process, etc., in an inert gas atmosphere or in a vacuum, according to a predetermined heating rate, A firing step of reaching the firing temperature and firing, carbonizing, and a step of cooling from the final firing temperature to a normal temperature at a predetermined temperature lowering rate are indispensable constituent requirements, and how to produce a porous carbon material powder, And a powdering process that enables the production of high-performance products with various properties are indispensable components, and as a result, porous carbon material powders of various sizes are sufficiently manufactured and stocked in advance The invention proceeds to encompass the porous carbon material product manufacturing is assumed to be made smoothly.

  なお、以下には、この発明の技術的思想に基づく上記した実施例によって得られた多孔性炭素材製品の物性を、次の参考例のもののそれと比較して示すことにより、後述するこの発明の効果がより明確なものとなるようにする。
 《参考例1》
  50メッシュの篩に掛け通過した脱脂糠75重量部と、フェノ−ル樹脂[(株)ホ−ネンコ−ポレ−ション製 豊年レジングル−px−1600(商品名)]25重量部とを充分混合して混練物を得た上、揮発分を除去するため、80℃に加熱しながら造粒し、12メッシュの篩を通過したものを原材料となし、該原材料15gをヒーター付金型(内径42mm、長さ60mm)に充填した上、ハイプレッシャージャッキー(シリンダー内径21mm)によってゲージ圧300kg/cm2、温度180℃まで加熱しながら成形、製造する。途中、数回ガス抜きのため、ゲージ圧70kg/cm2程度まで圧力を下げて水分や分解ガスを抜いている。
  焼成炉に窒素ガスを流しながら、室温から250℃まで1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分の昇温速度で焼成した上、500℃の状態を1時間保持し続けた後、再び500℃から900℃までを2℃/分の昇温速度で焼成し、900℃に達したところでその温度を2時間保持し続けた後、1.5℃/分の降温速度で600℃まで冷却し、その後常温までは自然冷却して多孔性炭素材製品としたものである。
In the following, the physical properties of the porous carbon material product obtained by the above-described embodiment based on the technical idea of the present invention will be shown by comparing with those of the following reference example, and thereby, the present invention described below. Make the effect clearer.
<< Reference Example 1 >>
75 parts by weight of the defatted bran passed through a 50-mesh sieve and 25 parts by weight of a phenolic resin [Honenko-Polyration Co., Ltd., Hojunen Resingle-px-1600 (trade name)] were sufficiently mixed. In order to remove the volatile matter, the mixture was granulated while heating to 80 ° C., and the mixture passed through a 12-mesh sieve was used as a raw material. 15 g of the raw material was used as a mold with a heater (inner diameter: 42 mm, (Length: 60 mm) and then molded and manufactured while heating to a pressure of 300 kg / cm 2 and a temperature of 180 ° C. with a high pressure jackie (cylinder inner diameter: 21 mm). In order to degas several times during the process, the pressure is reduced to a gauge pressure of about 70 kg / cm2 to remove moisture and decomposed gas.
Firing at 1.2 ° C / min from room temperature to 250 ° C, 1 ° C / min from 250 ° C to 350 ° C, and 1.2 ° C / min from 350 ° C to 500 ° C while flowing nitrogen gas into the firing furnace After maintaining the state at 500 ° C. for 1 hour, the mixture was fired again from 500 ° C. to 900 ° C. at a rate of 2 ° C./min, and when the temperature reached 900 ° C., the temperature was maintained for 2 hours. After that, the porous carbon material was cooled to 600 ° C. at a temperature lowering rate of 1.5 ° C./min and then naturally cooled to room temperature.

 《試験例1》
  上記で得た実施例3、4、および参考例1の多孔性炭素材製品について物性を評価した結果が表1に示され、また、実施例5の成形品についてもその物性を評価した結果が表2に示されている。なお、表中、各項目は以下のようにして評価している。                   
 嵩 比 重 : 一定重量(100g)の試料をメスシリンダーに採り、その容量を読        んで重量/容量を計算。
 真 比 重 : JIS R1620(ピクノメーター法)に従った測定。
 曲げ応力  : JIS R1601(3点法)に従い、インストロン型材料試験機を          用い、20℃、65%RHの環境下で測定。
 圧縮応力  : JIS R1608に従った測定。
 熱膨張係数 : JIS P1618に従った測定。
 焼成収縮率 : 焼成前後の成形品をスケールで計測した上、焼成後/焼成前の比率を        計算。
 摩擦係数  : 往復摩擦試験装置(新東洋科学(株)製、ピンオンデスクHEIDO        N−22型)を用いた測定。
 耐摩耗性  : 往復摩擦試験装置(新東洋科学(株)製、ピンオンデスクHEIDO        N−22型)を用い、触針式表面粗さ計を使って摩擦方向に垂直に摩耗        痕の断面曲線を5ケ所測定し、これを基に摩耗体積を求めた上で、以下        の式(1)に従って比摩耗量を算出。ここで、Wsは比摩耗量、Vは摩        耗体積、Wは垂直荷重、Lはすべり距離を示す。
<< Test Example 1 >>
The results of evaluating the physical properties of the porous carbon material products of Examples 3 and 4 and Reference Example 1 obtained above are shown in Table 1, and the results of evaluating the physical properties of the molded article of Example 5 are also shown in Table 1. It is shown in Table 2. In the table, each item is evaluated as follows.
Bulk specific gravity: A sample of a constant weight (100 g) is taken in a measuring cylinder, and the volume is read to calculate the weight / volume.
True specific gravity: Measured according to JIS R1620 (pycnometer method).
Bending stress: Measured in an environment of 20 ° C. and 65% RH using an Instron type material testing machine in accordance with JIS R1601 (three-point method).
Compressive stress: Measured according to JIS R1608.
Thermal expansion coefficient: Measured according to JIS P1618.
Firing shrinkage ratio: Measure the molded product before and after firing on a scale and calculate the ratio after firing / before firing.
Friction coefficient: Measurement using a reciprocating friction tester (Shin Toyo Kagaku Co., Ltd., Pin-on-Desk HEIDO N-22 type).
Abrasion resistance: Using a reciprocating friction tester (Shin Toyo Kagaku Co., Ltd., pin-on-desk HEIDO N-22 type), use a stylus type surface roughness meter to measure the cross-sectional curve of the wear mark perpendicular to the friction direction. After measuring at five locations and calculating the wear volume based on these, the specific wear amount was calculated according to the following equation (1). Here, Ws is the specific wear amount, V is the wear volume, W is the vertical load, and L is the slip distance.

Figure 2004137144
Figure 2004137144

  気孔面積率は、試料表面を走査型レーザー顕微鏡(レーザーテック製)1LM21を用いて観察し、プリンターに出力された写真をもとに、以下の式(2)に従って算出している。ここで、Apは気孔面積、Aaは全面積を示す。 The pore area ratio is calculated according to the following formula (2) based on a photograph output to a printer by observing the sample surface with a scanning laser microscope (manufactured by Lasertec) 1LM21. Here, Ap indicates the pore area, and Aa indicates the total area.

Figure 2004137144
Figure 2004137144

  次に、加工性は、ドリリング加工、フライス加工、旋削加工、及び研削加工の各加工面における試料の加工のし易さを、専門家が判断した結果で評価し、次の表1にそれを示してある。                                                                

Figure 2004137144
Next, the workability was evaluated based on the results of expert judgment on the ease of processing the sample on each processing surface of drilling, milling, turning, and grinding, and the results are shown in Table 1 below. Is shown.
Figure 2004137144

  そして、電気抵抗値と体積固有抵抗値とについて比較したデータは、以下の表2に示すとおりである。
  なお、電気抵抗値は、1×1×1tの試験片を作製し、デジタルマルチメーターカスタム(CDM−27D)で測定し、体積固有抵抗値についは、東亜電波工業製(SM−8001)で、100×100×2tの試験片を作製することによって測定した。         

Figure 2004137144
The data obtained by comparing the electric resistance value and the volume specific resistance value are as shown in Table 2 below.
The electric resistance value was measured by a digital multimeter custom (CDM-27D) by preparing a 1 × 1 × 1t test piece, and the volume specific resistance was determined by Toa Denpa Kogyo (SM-8001). It was measured by preparing a test piece of 100 × 100 × 2t.
Figure 2004137144

 (実施例の効果)
  以上、各実験結果から明らかにされているとおり、実施例2等で得られる本願発明の多孔性炭素材製品は、焼成収縮率、曲げ応力、圧縮応力、耐摩耗性等が向上する外、加工性能に秀れたものとなり、また、実施例1で得られる多孔性炭素材は、多孔性炭素材製品製造の基をなす多孔性炭素材粉末の原材料として有効に使用し得ることが確認されたことから、この発明の効果として既述してあるとおり、需要者から要求された最終製品(高機能製品)の性状、例えば、製品形状の複雑さ、それに起因した型詰めの難易度、構造強度、外観の緻密さに応じ、その最終製品の製造に最適な粒径を有する多孔性炭素材粉末を適格に選択、採用可能にすることが裏付けられ、そして、この原材料を予め用意しておきさえすれば、どのような性状の高機能製品の製造も適格に対応可能にする多孔性炭素材粉末が得られ、また、最適な多孔性炭素材粉末を用い、次の工程である多孔性炭素材粉末と樹脂とを混合し、成形、焼成するという工程を経ることによって最終製品の製造を開始することができ、多孔性炭素材製品を迅速に製造することができるという効果を奏するものとなる。
(Effects of the embodiment)
As described above, as is clear from the results of each experiment, the porous carbon material product of the present invention obtained in Example 2 and the like has improved firing shrinkage, bending stress, compressive stress, wear resistance, etc. It was confirmed that the porous carbon material obtained in Example 1 could be effectively used as a raw material of a porous carbon material powder that forms a basis for manufacturing a porous carbon material product. Therefore, as already described as the effect of the present invention, the properties of the final product (high-performance product) requested by the customer, for example, the complexity of the product shape, the difficulty of the mold packing due to the property, and the structural strength It is supported that the porous carbon material powder having the optimal particle size for the production of the final product can be appropriately selected and adopted according to the fineness of the appearance, and even this raw material is prepared in advance. What kind of high machine A porous carbon material powder is obtained, which enables the production of products to be appropriately supported.In addition, using the optimal porous carbon material powder, the next step is to mix the porous carbon material powder with the resin, mold, By going through the firing step, the production of the final product can be started, and the porous carbon material product can be produced promptly.

 (結 び)
  叙上の如く、この発明は、既に開発、実用化済みとなっている多孔性炭素材粉末の製造方法の弱点を完全に補填し、脱脂糠を始めとし、小麦をひいて粉にしたときに皮屑として出る麩、更には、籾殻や蕎麦殻、大豆殻、グルテンフィード等、穀類を加工処理する過程で発生する微細な粉末状あるいは粉砕処理した皮殻等といった、これまでは主として農業用資材としてしか利用方法のなかった麩糠類を、極めて応用範囲の広い工業用資材、特に高機能製品として効率的且つ経済的に有効活用可能にするものであって、先の発明共々、セラミックス素材を必要とする広い範囲の分野への進出を確実なものとして、その普及、拡大が図られるものと予想されることから、麩糠類処理加工業者にとっては職域の拡大の引き金として期待が高まるだけではなく、各種工業製品製造業者や一般ユーザー、ひいては麩糠類の取り扱いに苦慮してきた農業生産業者からもその有用性が高く評価されるものになると予想される。
(Conclusion)
As described above, the present invention completely compensates for the weaknesses of the method for producing a porous carbon material powder that has already been developed and put into practical use, including defatted bran, and when wheat is ground into powder. Until now, mainly agricultural materials such as fu, which is produced as shavings, and finely powdered or crushed husks generated during the processing of grains, such as rice hulls, buckwheat husks, soybean husks, gluten feed, etc. It is a method of using rice bran, which had been used only as an industrial material, in an extremely wide range of applications, especially as a high-performance product, efficiently and economically. It is expected that the spread and expansion will be achieved, assuring advancement into a wide range of fields that are needed. Rather, various industrial products manufacturers and general users, is expected to be in but also its usefulness is highly appreciated from agricultural producers, which has been struggling in the handling of the thus Fusumanukarui.

Claims (13)

粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒して麩糠類粒状素材にした上、それら麩糠類粒状素材を不活性ガス雰囲気中または真空中で焼成、炭化してなるものとしたことを特徴とする多孔性炭素材。 Dried kneaded rice bran obtained by adding a thermosetting resin and an aqueous solution or water containing an appropriate amount of paste to rice bran such as rice bran or glue whose grain size has been adjusted, dried and granulated to give a granular material for rice bran In addition, a porous carbon material characterized by being obtained by firing and carbonizing the granular material of rice bran in an inert gas atmosphere or vacuum. 20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒し、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にした上、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化してなるものとしたことを特徴とする多孔性炭素材。 Dried kneaded rice bran obtained by adding a thermosetting resin and an aqueous solution or water containing an appropriate amount of paste to rice bran such as rice bran and gluten, etc. of 20 mesh under, dried, granulated, and sieved to 4 mesh under A porous carbon material characterized in that it is selected and made into granular rice bran material, and the granular rice bran material is baked and carbonized in an inert gas atmosphere or vacuum. 粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えてなる混練状麩糠類を乾燥、造粒して麩糠類粒状素材にした上、それら麩糠類粒状素材を不活性ガス雰囲気中または真空中で焼成、炭化して多孔性炭素材となし、それら多孔性炭素材を粉砕、粉末化して所望粒度のものとした、請求項1または2何れか記載の多孔性炭素材を原材料とする多孔性炭素材粉末。 Dried kneaded rice bran obtained by adding a thermosetting resin and an aqueous solution or water containing an appropriate amount of paste to rice bran such as rice bran or glue whose grain size has been adjusted, dried and granulated to give a granular material for rice bran After that, the granulated rice bran material was fired and carbonized in an inert gas atmosphere or vacuum to form a porous carbon material, and the porous carbon material was pulverized and powdered to obtain a desired particle size. Item 4. A porous carbon material powder comprising the porous carbon material according to any one of Items 1 or 2 as a raw material. 粒度を調整した米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を乾燥して造粒した上、所定粒度以下に篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却して多孔性炭素材とする工程、以上の各工程を順次経過させていくようにしたことを特徴とする、請求項1または2何れか記載の多孔性炭素材の製造方法。 To a rice bran such as rice bran or fu with adjusted particle size, a thermosetting resin, and a step of kneading by adding an appropriate amount of an aqueous solution or water containing a paste, and drying and granulating the kneaded fu brans, A step of sieving to a predetermined particle size or less, sorting to form a granulated rice bran, a step of firing and carbonizing the granulated rice bran in an inert gas atmosphere or in a vacuum, and finalizing the carbonized granulated rice bran 3. The process according to claim 1, wherein the step of cooling the porous carbon material from the firing temperature to a normal temperature at a predetermined temperature lowering rate is performed, and the above steps are sequentially performed. Manufacturing method of carbon material. 20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を、60ないし80℃程度まで加温して揮発性物質を除去しながら乾燥して造粒した上、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却して多孔性炭素材とする工程、以上の各工程を順次経過させていくようにしたことを特徴とする、請求項1または2何れか記載の多孔性炭素材の製造方法。 A step of adding a thermosetting resin and an appropriate amount of aqueous solution or water containing a paste to kneaded rice bran such as rice bran and grated rice bran with a 20 mesh under, and kneading the mixture. A process of drying and granulating while removing volatile substances by heating and sieving into 4 mesh under, sorting and forming into a granular rice bran material, in a gas atmosphere of an inert gas Or a step of baking and carbonizing in a vacuum, a step of cooling the carbonized granular rice bran from the final baking temperature to a normal temperature at a predetermined temperature lowering rate to form a porous carbon material, so that the above steps are sequentially performed. The method for producing a porous carbon material according to claim 1, wherein: 20メッシュアンダーの米糠や麩等の麩糠類に、熱硬化性樹脂、および適量の糊料入り水溶液または水を加えて混練する工程、それら混練状麩糠類を、60ないし80℃程度まで加温して揮発性物質を除去しながら乾燥して造粒した上、4メッシュアンダーに篩分け、選別して麩糠類粒状素材にする工程、それら麩糠類粒状素材を、不活性ガス雰囲気中または真空中で所定の昇温速度に従って昇温させていき、最終焼成温度で略700℃以上の温度で焼成、炭化する工程、それら炭化粒状麩糠類を最終焼成温度から所定降温速度で常温まで冷却する工程、以上の各工程を順次経過させていくようにしたことを特徴とする、請求項1または2何れか記載の多孔性炭素材の製造方法。 A step of adding a thermosetting resin and an appropriate amount of aqueous solution or water containing a paste to kneaded rice bran such as rice bran and grated rice bran with a 20 mesh under, and kneading the mixture. A process of drying and granulating while removing volatile substances by heating and sieving into 4 mesh under, sorting and forming into a granular rice bran material, in a gas atmosphere of an inert gas Or raising the temperature in vacuum according to a predetermined heating rate, firing and carbonizing at a temperature of about 700 ° C. or more at the final firing temperature, and heating the carbonized granular rice bran from the final firing temperature to a normal temperature at a predetermined cooling rate. The method for producing a porous carbon material according to claim 1, wherein the cooling step and the above steps are sequentially performed. 焼成、炭化工程は、600ないし1100℃の温度で、1ないし3時間程度としてなる、請求項4ないし6何れか記載の多孔性炭素材の製造方法。 The method for producing a porous carbon material according to any one of claims 4 to 6, wherein the firing and carbonizing steps are performed at a temperature of 600 to 1100 ° C for about 1 to 3 hours. 請求項4ないし7何れかに記載の多孔性炭素材の製造方法における最終工程に引き続き、それら最終工程で得られた冷却済みの多孔性炭素材を粉砕して所望粒度に粉末化する工程、以上の各工程を順次経過させていくようにしたことを特徴とする、請求項4ないし7何れか記載の多孔性炭素材の製造方法を組み込んだ多孔性炭素材粉末の製造方法。 8. A step of pulverizing the cooled porous carbon material obtained in the final step and pulverizing it to a desired particle size, following the final step in the method for producing a porous carbon material according to any one of claims 4 to 7. 8. A method for producing a porous carbon material powder incorporating the method for producing a porous carbon material according to any one of claims 4 to 7, wherein each of the steps is sequentially performed. 請求項8記載の製造方法における各工程に引き続き、それら工程を経過して得られた多孔性炭素材粉末に、適量の熱硬化性樹脂を加えて混練して混練物とした上、所望する金型内に充填、加圧して成形する工程、金型から脱型した成形品を不活性ガス雰囲気中または真空中で所定の昇温速度に従って所望する最終焼成温度にまで達しさせて焼成、炭化する工程、および最終焼成温度から所定降温速度で常温まで冷却する工程、以上の各工程を順次経過させていくようにしたことを特徴とする、請求項8記載の多孔性炭素材粉末の製造方法を組み込んだ多孔性炭素材製品の製造方法。 An appropriate amount of a thermosetting resin is added to the porous carbon material powder obtained through each of the steps following the steps in the manufacturing method according to claim 8, and the mixture is kneaded to obtain a kneaded product. Filling into a mold, molding by pressurizing, and firing and carbonizing the molded product demolded from the mold by reaching a desired final firing temperature according to a predetermined heating rate in an inert gas atmosphere or vacuum. The method for producing a porous carbon material powder according to claim 8, wherein the steps, and a step of cooling from a final firing temperature to a normal temperature at a predetermined temperature-lowering rate, are arranged so that each of the above steps is sequentially performed. Manufacturing method of the incorporated porous carbon material product. 多孔性炭素材粉末と熱硬化性樹脂との割合が、多孔性炭素材粉末90ないし40w%に対し、熱硬化性樹脂が10ないし60w%となるようにした、請求項9記載の多孔性炭素材製品の製造方法。          10. The porous carbon according to claim 9, wherein the ratio of the porous carbon material powder to the thermosetting resin is 10 to 60 w% with respect to the porous carbon material powder of 90 to 40 w%. Method of manufacturing raw material products. 金型内に充填した混練物は、成形品単位面積当り40ないし450kg/cm2の圧力で加圧、成形するようにした、請求項9または10何れか記載の多孔性炭素材製品の製造方法。 The method for producing a porous carbon material product according to claim 9, wherein the kneaded material filled in the mold is pressed and molded at a pressure of 40 to 450 kg / cm 2 per unit area of the molded product. 不活性ガス雰囲気中または真空中での焼成、炭化工程が、室温から250℃までは1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分の昇温速度で実施されるものとし、最終焼成温度が500℃以下の場合、その最終焼成温度で3時間保持した後、冷却工程では、1.5℃/分の降温速度で常温まで冷却されるようにした、請求項9ないし11何れか記載の多孔性炭素材製品の製造方法。 The firing and carbonization processes in an inert gas atmosphere or in a vacuum are performed at 1.2 ° C./minute from room temperature to 250 ° C., 1 ° C./minute from 250 ° C. to 350 ° C., and 1.2 ° C. from 350 ° C. to 500 ° C. If the final firing temperature is 500 ° C. or lower, the temperature is maintained at the final firing temperature for 3 hours, and then, in the cooling step, the temperature is lowered at a temperature lowering rate of 1.5 ° C./minute to room temperature. The method for producing a porous carbon material product according to claim 9, wherein the product is cooled. 不活性ガス雰囲気中または真空中での焼成、炭化工程が、室温から250℃までは1.2℃/分、250℃から350℃まで1℃/分、350℃から500℃まで1.2℃/分、500℃で1時間保持した上、500℃から目的とする最終焼成温度まで2℃/分の昇温速度で昇温され、最終焼成温度で2時間保持した後、冷却工程では、1.5℃/分の降温速度で常温まで冷却されるようにした、請求項9ないし11何れか記載の硬質多孔性炭素材製品の製造方法。        
The firing and carbonization processes in an inert gas atmosphere or in a vacuum are performed at 1.2 ° C./minute from room temperature to 250 ° C., 1 ° C./minute from 250 ° C. to 350 ° C., and 1.2 ° C. from 350 ° C. to 500 ° C. / Minute, at 500 ° C. for 1 hour, and then the temperature is raised from 500 ° C. to a target final firing temperature at a rate of 2 ° C./minute. The method for producing a hard porous carbon material product according to any one of claims 9 to 11, wherein the product is cooled to a normal temperature at a cooling rate of 0.5 ° C / min.
JP2003320344A 2002-09-27 2003-09-11 Porous carbon material, method for producing the same, and method for producing a porous carbon material product using the same Expired - Fee Related JP4328591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320344A JP4328591B2 (en) 2002-09-27 2003-09-11 Porous carbon material, method for producing the same, and method for producing a porous carbon material product using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002283666 2002-09-27
JP2003320344A JP4328591B2 (en) 2002-09-27 2003-09-11 Porous carbon material, method for producing the same, and method for producing a porous carbon material product using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009080665A Division JP2009173540A (en) 2002-09-27 2009-03-27 Porous carbon material powder and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004137144A true JP2004137144A (en) 2004-05-13
JP4328591B2 JP4328591B2 (en) 2009-09-09

Family

ID=32473202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320344A Expired - Fee Related JP4328591B2 (en) 2002-09-27 2003-09-11 Porous carbon material, method for producing the same, and method for producing a porous carbon material product using the same

Country Status (1)

Country Link
JP (1) JP4328591B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016221A (en) * 2004-06-30 2006-01-19 Yamamoto Co Ltd Method for producing porous carbon material, porous carbon material, sliding member using porous carbon material
JP2006087680A (en) * 2004-09-24 2006-04-06 Koichi Kunii Method for manufacturing doll or ornament
JP2006298674A (en) * 2005-04-18 2006-11-02 Koichi Kunii Method of manufacturing doll or ornament
JP2006335943A (en) * 2005-06-03 2006-12-14 Juki Corp Low alkali sliding material and composition containing low alkali sliding material
JP2007016072A (en) * 2005-07-05 2007-01-25 Shiyuujun Kano Method for producing porous carbon material
WO2010035828A1 (en) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 Battery component and battery
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
JP2010161338A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body, electromagnetic wave shielding body provided with the same, electronic device, inspection device of electronic device, and building material
US8728353B2 (en) 2008-09-29 2014-05-20 Asahi Organic Chemicals Industry Co., Ltd. Burned plant material and electromagnetic shielding member
JP2014214269A (en) * 2013-04-26 2014-11-17 旭化成ケミカルズ株式会社 Composition of modified conjugated diene polymer
KR20180100677A (en) * 2016-01-19 2018-09-11 데쿠세리아루즈 가부시키가이샤 Porous carbon material, its production method, and carrier for filter, sheet and catalyst
WO2020136734A1 (en) * 2018-12-26 2020-07-02 株式会社大木工藝 Resin molded article and method for producing resin molded article
CN116621581A (en) * 2023-04-24 2023-08-22 西南林业大学 Thermosetting resin foam carbon and preparation method thereof
CN117619347A (en) * 2023-11-27 2024-03-01 嘉应学院 Porous carbon material, preparation method thereof and application thereof in sewage treatment

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016221A (en) * 2004-06-30 2006-01-19 Yamamoto Co Ltd Method for producing porous carbon material, porous carbon material, sliding member using porous carbon material
JP4642392B2 (en) * 2004-06-30 2011-03-02 株式会社山本製作所 Method for producing porous carbon material, porous carbon material, and sliding component using the porous carbon material
JP4611696B2 (en) * 2004-09-24 2011-01-12 ▲高▼一 國井 How to make a doll or figurine
JP2006087680A (en) * 2004-09-24 2006-04-06 Koichi Kunii Method for manufacturing doll or ornament
JP2006298674A (en) * 2005-04-18 2006-11-02 Koichi Kunii Method of manufacturing doll or ornament
JP2006335943A (en) * 2005-06-03 2006-12-14 Juki Corp Low alkali sliding material and composition containing low alkali sliding material
JP2007016072A (en) * 2005-07-05 2007-01-25 Shiyuujun Kano Method for producing porous carbon material
JP2010161338A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body, electromagnetic wave shielding body provided with the same, electronic device, inspection device of electronic device, and building material
JP2010161337A (en) * 2008-09-29 2010-07-22 Sanwa Yushi Kk Plant baked body and electromagnetic wave shielding body
WO2010035828A1 (en) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 Battery component and battery
JPWO2010035828A1 (en) * 2008-09-29 2012-02-23 森田テック 株式会社 Battery parts and batteries
US8728353B2 (en) 2008-09-29 2014-05-20 Asahi Organic Chemicals Industry Co., Ltd. Burned plant material and electromagnetic shielding member
JP2014214269A (en) * 2013-04-26 2014-11-17 旭化成ケミカルズ株式会社 Composition of modified conjugated diene polymer
KR20180100677A (en) * 2016-01-19 2018-09-11 데쿠세리아루즈 가부시키가이샤 Porous carbon material, its production method, and carrier for filter, sheet and catalyst
KR102636938B1 (en) 2016-01-19 2024-02-16 데쿠세리아루즈 가부시키가이샤 Porous carbon material, method for producing the same, and carrier for filters, sheets, and catalysts
WO2020136734A1 (en) * 2018-12-26 2020-07-02 株式会社大木工藝 Resin molded article and method for producing resin molded article
JPWO2020136734A1 (en) * 2018-12-26 2021-11-04 株式会社大木工藝 Resin molded products and manufacturing methods for resin molded products
CN116621581A (en) * 2023-04-24 2023-08-22 西南林业大学 Thermosetting resin foam carbon and preparation method thereof
CN117619347A (en) * 2023-11-27 2024-03-01 嘉应学院 Porous carbon material, preparation method thereof and application thereof in sewage treatment

Also Published As

Publication number Publication date
JP4328591B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP2009173540A (en) Porous carbon material powder and method of manufacturing the same
JP6224678B2 (en) Grinding expanded graphite agglomerate, method for producing the same, and use thereof
JP2004137144A (en) Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder
Zafari et al. Factors affecting mechanical properties of biomass pellet from compost
CN101628807B (en) Convenient active carbon ceramic and preparation method thereof
CN108530098A (en) A kind of block carbon reinforcement/carbon composite and preparation method thereof
CN108300906A (en) Cubic boron nitride particle reinforced aluminum matrix composites
Zhang et al. Ultrasonic vibration-assisted pelleting of cellulosic biomass for ethanol manufacturing: An investigation on pelleting temperature
Wojdalski et al. Production and Properties of Apple Pomace Pellets and their Suitability for Energy Generation
JP3060389U (en) Porous carbon material products formed from fusarium
Jubu et al. Determination of the thermal properties of groundnut shell particles reinforced polymer composite
JP2007016072A (en) Method for producing porous carbon material
KR102243573B1 (en) Coal briquet composition using a soluble binder and method for producing the same
Damanhuri et al. Effect of corn starch and wood glue to physical and mechanical properties of rice-husk based particle board
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
Tumuluru et al. Binding Mechanism, Densification Systems, Process Variables, and Quality Attributes
Van Quyen et al. DEVELOPMENT OF SINGLE PELLETIZER UNIT FOR MODELLING FLAT DIE PELLETIZER
JP2024025561A (en) Method for producing coke
Van Quyen et al. Agglomeration of Acacia mangium biomass
KR100521653B1 (en) Preparation of sweet potato pulp anthracite blended briquettes
Dalimunthe et al. Physical Properties of Varied Composition of Peanut Shell and Palm Oil Shell’s Briquettes
SU233897A1 (en) METHOD OF OBTAINING PRESSES
JP2024025560A (en) Method for producing biomass molding
WO2023188911A1 (en) Method for producing particle board, and compressed material for producing particle board
Thanh et al. Study on the Production Formula Establishment of Multi-component Pellets from Sawdust and Food Plastic Waste

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4328591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees