JP2007016072A - Method for producing porous carbon material - Google Patents

Method for producing porous carbon material Download PDF

Info

Publication number
JP2007016072A
JP2007016072A JP2005196639A JP2005196639A JP2007016072A JP 2007016072 A JP2007016072 A JP 2007016072A JP 2005196639 A JP2005196639 A JP 2005196639A JP 2005196639 A JP2005196639 A JP 2005196639A JP 2007016072 A JP2007016072 A JP 2007016072A
Authority
JP
Japan
Prior art keywords
carbon material
porous carbon
moss
dry distillation
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005196639A
Other languages
Japanese (ja)
Inventor
Shiyuujun Kano
秀順 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005196639A priority Critical patent/JP2007016072A/en
Publication of JP2007016072A publication Critical patent/JP2007016072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a porous carbon material, which improves qualities of a porous carbon material, suppresses an installation cost and a running cost, is suitable for mass production and excellently prevents environmental pollution. <P>SOLUTION: The method for producing a porous carbon material comprises a process for kneading bran with at least one kind selected from the group consisting of a thermosetting resin, an aqueous solution containing animal or vegetable glue and water to give a kneaded material, a process for granulating the kneaded material to give bran granule and subjecting the bran granule to dry distillation to give a raw carbon material and a process for baking and carbonizing the raw carbon material to give a porous carbon material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、籾殻、米糠、麩等に代表される麩糠類を原料として得られる多孔性炭素材の製造方法に関する。   The present invention relates to a method for producing a porous carbon material obtained from raw materials such as rice husks, rice bran, and rice bran.

我が国の主要穀物である米からは、副産物として大量の籾殻や糠が生じる。また、同様に、麦や蕎麦、大豆等の穀類からも大量の殻や麩(フスマ)が生じる。これら穀類からの副産物の多くは、邪魔者として焼却処分に回される。一部のものだけが利用されているに過ぎない。例えば、米糠は搾油して米糠油として、殻(特に籾殻)の一部は暗渠用資材や燻炭等として、またその製炭過程で留出された乾留気化物は、凝縮されて防虫剤や動物忌避剤、土壌改良剤、水虫治療薬等として利用されているに過ぎない。このように脱脂糠を含む麩糠類は、大部分が飼料化、茸培地化、あるいは肥料化される等して農業用資材として活用される程度に止まっている。これら麩糠類の工業用資材としての利用が模索されている。   A large amount of rice husks and rice husks are produced as a by-product from rice, the main grain in Japan. Similarly, a large amount of shells and straws are produced from grains such as wheat, buckwheat and soybeans. Many of these by-products from cereals are sent to incineration as an obstacle. Only some are used. For example, rice bran is extracted into rice bran oil, part of the shell (especially rice husk) is used as a material for dark straw, charcoal, etc., and dry-distilled vapors distilled during the coal making process are condensed into insecticides and They are only used as animal repellents, soil conditioners, athlete's foot treatments, and the like. As described above, most of the cocoons containing defatted cocoons are used as agricultural materials by being converted into feed, potato medium, or fertilizer. The use of these moss as industrial materials is being sought.

そのような状況において、麩糠類を原材料とした多孔性炭素材の製造方法が知られている(例えば、特許文献1参照)。しかし、ここで記載されている多孔性炭素材は、以下で記載するように、性能面において改良の余地があった。またその製造方法についても大量生産や環境汚染防止という観点から、改良の余地があった。籾殻や米糠を含む麩糠類等の植物性有機材料は、炭化する際、揮発成分が多く残炭率、いわゆる歩留は20〜30%と低い。そこで、特許文献1に記載のように、混練状麩糠類を造粒して得られた材料をロータリーキルンなどの焼成炉に直接投入し滞留時間1時間程の焼成、炭化を行っただけでは、予熱、加熱に時間がかかり、熱分解や炭化が不充分になり混練状麩糠類の構造変化が十分に行われず、良好なセラミック状態を形成するのは難しかった。一方、残留するタール分を減らすなどし、より高品質な多孔性炭素材を得るには、焼成炉を大型化したり1回の焼成量を減らすなどする必要があり、品質面とコスト面との両立を図るには検討の余地があった。また、熱硬化性樹脂としてフェノール樹脂を用いた場合、フェノール樹脂には未反応のフェノールとアルデヒドが残存するため、排ガス、排熱処理に伴う環境汚染を防止するためには、公害防止設備を拡充する必要があった。また、分解ガス(CO、H2、CH4等)の排出量は膨大であり、臭気の問題もあり、これらについての対策も講ずる必要があった。さらにまた、生産量を増やす場合、単に焼成炉を増設するだけでは、メンテナンスやランニングコストの増大に対処できなかった。そこで、多孔性炭素材の品質を向上させることができる製造方法であって、かつ設備費やランニングコストを抑え、大量生産にも適しており環境汚染防止にも優れた多孔性炭素材の製造方法の提供が望まれていた。 Under such circumstances, a method for producing a porous carbon material using moss as a raw material is known (see, for example, Patent Document 1). However, the porous carbon material described here has room for improvement in terms of performance as described below. Also, the manufacturing method has room for improvement from the viewpoint of mass production and prevention of environmental pollution. Plant carbonaceous materials such as rice husks and rice bran containing rice husks have many volatile components when carbonized, and the residual carbon ratio, so-called yield, is as low as 20 to 30%. Therefore, as described in Patent Document 1, the material obtained by granulating the kneaded cocoons is directly put into a firing kiln such as a rotary kiln, and firing and carbonization for about 1 hour of residence time are performed. Preheating and heating take time, thermal decomposition and carbonization are insufficient, and the structural change of the kneaded potato is not sufficiently performed, and it is difficult to form a good ceramic state. On the other hand, to obtain a higher quality porous carbon material by reducing the remaining tar content, it is necessary to increase the size of the firing furnace or reduce the amount of firing at one time. There was room for consideration to achieve both. In addition, when phenol resin is used as the thermosetting resin, unreacted phenol and aldehyde remain in the phenol resin. Therefore, in order to prevent environmental pollution caused by exhaust gas and exhaust heat treatment, we will expand pollution prevention equipment. There was a need. In addition, the amount of cracked gas (CO, H 2 , CH 4, etc.) emitted is enormous and there is a problem of odor, and it is necessary to take measures against these. Furthermore, when increasing the production volume, it was not possible to cope with an increase in maintenance and running costs simply by adding a firing furnace. Therefore, a method for producing a porous carbon material that can improve the quality of the porous carbon material, and that is suitable for mass production with reduced equipment costs and running costs, and is excellent in preventing environmental pollution. The offer of was desired.

特開2004−137144号公報JP 2004-137144 A

そこで、本発明は、多孔性炭素材の品質を向上させることができ、設備費やランニングコストを抑え、大量生産にも適しており環境汚染防止にも優れた多孔性炭素材の製造方法を提供することを課題とする。   Therefore, the present invention provides a method for producing a porous carbon material, which can improve the quality of the porous carbon material, suppress equipment costs and running costs, is suitable for mass production, and is excellent in preventing environmental pollution. The task is to do.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、多孔性炭素材の新しい製造方法を開発した。   As a result of intensive studies to solve the above problems, the present inventors have developed a new method for producing a porous carbon material.

すなわち、本発明は、以下のとおりである。
(1)麩糠類と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを混練し混練物を得る工程と、該混練物を造粒し得られた麩糠類粒状素材を乾溜することにより素炭素材を得る工程と、該素炭素材を焼成、炭化することにより多孔性炭素材を得る工程とを有する、多孔性炭素材の製造方法。
(2)前記混練物を加圧しながら造粒し所望の形状の造粒物を得た後、該造粒物を乾燥することにより前記麩糠類粒状素材を得る、(1)に記載の多孔性炭素材の製造方法。
(3)前記混練物を乾燥させつつ造粒することにより前記麩糠類粒状素材を得る、(1)に記載の多孔性炭素材の製造方法。
(4)籾殻と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを混練し混練物を得る工程と、該混練物を乾溜することにより素炭素材を得る工程と、該素炭素材を焼成、炭化することにより多孔性炭素材を得る工程とを有する、多孔性炭素材の製造方法。
(5)前記乾溜を行った後、得られた素炭素材に、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種を含浸させ、該含浸後の素炭素材を焼成、炭化する、(1)〜(4)の何れかに記載の多孔性炭素材の製造方法。
That is, the present invention is as follows.
(1) A step of kneading at least one selected from the group consisting of moss, a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water to obtain a kneaded product, and granulating the kneaded product. A method for producing a porous carbon material, comprising: a step of obtaining a raw carbon material by dry-distilling the obtained porcelain granular material; and a step of obtaining a porous carbon material by firing and carbonizing the raw carbon material.
(2) The porous material according to (1), wherein the kneaded product is granulated while being pressed to obtain a granulated product having a desired shape, and then the granulated material is dried to obtain the moss-like granular material. Method for producing carbonaceous material.
(3) The method for producing a porous carbon material according to (1), wherein the kneaded material is granulated while being dried to obtain the moss-like granular material.
(4) A step of kneading at least one selected from the group consisting of rice husk, a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water to obtain a kneaded product, and carbonizing the kneaded product by dry distillation The manufacturing method of a porous carbon material which has the process of obtaining a raw material, and the process of obtaining a porous carbon material by baking and carbonizing this raw carbon material.
(5) After the dry distillation, the obtained carbon material is impregnated with at least one selected from the group consisting of a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water, The method for producing a porous carbon material according to any one of (1) to (4), wherein the carbon material is fired and carbonized.

本発明により、性能が高く、工業製品としての利用価値の高い麩糠類を原材料とした多孔性炭素材を提供することができる。また、本発明の多孔性炭素材の製造方法は大量生産にも環境汚染防止にも適したものとなっている。   According to the present invention, it is possible to provide a porous carbon material made from a moss having high performance and high utility value as an industrial product. The method for producing a porous carbon material of the present invention is suitable for mass production and prevention of environmental pollution.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の多孔性炭素材の製造方法は、麩糠類と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを混練し混練物を得る工程(以下、第1の工程ともいう)と、該混練物を造粒し得られた麩糠類粒状素材を乾溜することにより素炭素材を得る工程(以下、第2の工程ともいう)と、該素炭素材を焼成、炭化することにより多孔性炭素材を得る工程(以下、第3の工程ともいう)とを有する。   The method for producing a porous carbon material of the present invention comprises a step of kneading moss and at least one selected from the group consisting of a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water to obtain a kneaded product ( Hereinafter, also referred to as a first step), a step of obtaining a carbonaceous material by dry-distilling a moss-like granular material obtained by granulating the kneaded product (hereinafter also referred to as a second step), and And a step of obtaining a porous carbon material by firing and carbonizing the carbonaceous material (hereinafter also referred to as a third step).

本発明の製造方法は、第3の工程における焼成(本焼成)を行う前に、第2の工程で乾溜(仮焼成)を行うことに特徴を有している。乾溜を行うことにより麩糠類粒状素材は熱分解され、水やガス、タールが溜出し、炭素分が残る。その残った炭素分(素炭素材)が第3工程の焼成に供されるので、第3工程における炉での加熱は、おもに素炭素材に構造変化を生じさせセラミック化させるためにのみ使われ、よって良好なセラミック状態を形成することができ、その結果高品質な多孔性炭素材を得ることができる。また、乾溜時に溜出されるCO、H2、CH4、NH3、H2S等の乾溜ガスを燃焼することにより、その熱エネルギーを利用すれば、2回目以降の乾溜を行う際の熱源を確保することができる。それにより、1回目の乾溜を行う際に少量の燃料(具体的には、灯油50〜60l程度)が必要となる他は、2回目以降、自力で熱源を確保することができるため、ランニングコストをかなり下げることができる。また、乾溜を行うことにより、未反応のフェノールとアルデヒドは乾溜ガスと共に燃焼させることができ、環境汚染防止に通じる。また、アンモニア、アミン、アルデヒド等の臭気成分についても、乾溜ガスと共に燃焼させることができ、刺激臭の抑制に通じる。 The production method of the present invention is characterized in that dry distillation (preliminary firing) is performed in the second step before firing (main firing) in the third step. By dry distillation, the moss particulate material is pyrolyzed, water, gas and tar are distilled out, and carbon remains. Since the remaining carbon (carbon material) is used for firing in the third step, heating in the furnace in the third step is mainly used only to cause structural changes in the carbon material and make it ceramic. Therefore, a good ceramic state can be formed, and as a result, a high-quality porous carbon material can be obtained. Further, CO which distill during dry distillation, by burning H 2, CH 4, NH 3 , H 2 dry distillation gas S such as, by utilizing the heat energy, the heat source when performing the second and subsequent dry distillation Can be secured. As a result, since a small amount of fuel (specifically, about 50 to 60 liters of kerosene) is required for the first dry distillation, the heat source can be secured by itself from the second time onwards, so the running cost Can be lowered considerably. Moreover, by carrying out dry distillation, unreacted phenol and aldehyde can be burned together with dry distillation gas, leading to prevention of environmental pollution. Also, odorous components such as ammonia, amines, and aldehydes can be combusted together with dry distilled gas, leading to suppression of irritating odors.

以下、第1工程から順に詳しく説明する。
<第1工程>
Hereinafter, the first step will be described in detail.
<First step>

本発明の多孔性炭素材は、麩糠類と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを含有する。   The porous carbon material of the present invention contains moss and at least one selected from the group consisting of a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water.

ここで麩糠類とは、米糠油を搾油した後に大量に残る脱脂糠を始めとし、小麦をひいて粉にしたときに皮屑として出る麩(フスマ)、更には、籾殻や蕎麦殻、大豆殻、グルテンフィード(トウモロコシの皮や実の滓、即ちコーンスターチを製造したときの残滓)等、穀類を加工処理する過程で発生する皮殻をいう。本発明では、麩糠類として特に籾殻が好ましく適用できる。   Here, cocoons include defatted rice bran that remains in large quantities after squeezing rice bran oil, rice bran (husma) that appears as waste when milled with wheat, and also rice husk, buckwheat husk, soybean Shells generated in the process of processing cereals, such as husks, gluten feed (corn husks and cocoons, ie, residues from the production of corn starch). In the present invention, rice husk is particularly preferably applied as the moss.

また、上記熱硬化性樹脂、動植物性糊料入り水溶液、又は水は、麩糠類と混合させた場合、麩糠類に対し糊剤として働く。この熱硬化性樹脂、動植物性糊料入り水溶液、又は水(以下、これらをまとめて糊料ともいう)は、2種以上組み合わせて使用することもできる。   Moreover, the said thermosetting resin, the aqueous solution containing animal and vegetable paste, or water acts as a paste with respect to moss, when mixed with moss. This thermosetting resin, an aqueous solution containing animal or vegetable glue, or water (hereinafter, collectively referred to as glue) can be used in combination of two or more.

上記熱硬化性樹脂としては、フェノール樹脂や不飽和ポリエステルが好適に使用できる。尚、本発明では、熱硬化性樹脂は液状であっても粉体であっても使用することができる。但し、熱硬化性樹脂が粉体である場合には、麩糠類への混合、攪拌作業を円滑にするため、麩糠類と熱硬化性樹脂の他に水を加え、これらを混練するとよい。   As said thermosetting resin, a phenol resin and unsaturated polyester can be used conveniently. In the present invention, the thermosetting resin can be used in a liquid form or a powder form. However, when the thermosetting resin is a powder, in order to facilitate mixing and stirring into the moss, it is advisable to add water in addition to the moss and the thermosetting resin and knead them. .

また、上記動植物性糊料として、海草糊料を用いることもできる。具体的には、動植物性糊料としてコラーゲン、澱粉、リグニン等が挙げられる。   In addition, seaweed paste can be used as the animal and plant paste. Specifically, collagen, starch, lignin, etc. are mentioned as animal and vegetable paste.

上記した麩糠類と糊料とを混練し混練物を得る。ここで、使用される麩糠類の粒度等の条件については特に制限はなく、ロータリーシフターによりゴミ、夾雑物等のコンタミが除去されている麩糠類であれば使用することができる。具体的には、3メッシュ(10mm)の篩を通過させ、コンタミを除去した麩糠類を用いる。但し、後述する第2工程における第2の態様で使用する場合には、乾溜時に微粉による悪影響が生じないよう、100メッシュ(0.15mm)以下のものは含まないよう除いておくとよい。   A kneaded product is obtained by kneading the above-mentioned moss and paste. Here, there is no restriction | limiting in particular about conditions, such as a particle size of the moss to be used, If it is moss from which contaminants, such as garbage and a foreign material, were removed with the rotary shifter, it can be used. Specifically, moss that has been passed through a 3 mesh (10 mm) sieve to remove contamination is used. However, when it is used in the second mode in the second step to be described later, it should be excluded so as not to include those of 100 mesh (0.15 mm) or less so as not to cause an adverse effect due to fine powder during dry distillation.

熱硬化性樹脂と麩糠類とを混合する場合、その混合割合は、麩糠類20〜95重量部に対し、熱硬化性樹脂は5〜80重量部程度、より好ましくは麩糠類40〜90重量部に対し、熱硬化性樹脂は10〜60重量部程度であるとよい。尚、この熱硬化性樹脂と麩糠類とを混練する工程において、必要に応じて、糖液等の繋ぎ剤を適量混合した水溶液を加えてもよい。又は、予め、繋ぎ剤入り水溶液と熱硬化性樹脂とを混合し、その後その混合液と麩糠類とを混練させてもよい。   When the thermosetting resin and the moss are mixed, the mixing ratio thereof is about 5 to 80 parts by weight of the thermosetting resin with respect to 20 to 95 parts by weight of the moss, more preferably 40 to 40 parts of the moss. The thermosetting resin is preferably about 10 to 60 parts by weight with respect to 90 parts by weight. In the step of kneading the thermosetting resin and moss, an aqueous solution in which a proper amount of a binder such as a sugar solution is mixed may be added as necessary. Alternatively, an aqueous solution containing a binder and a thermosetting resin may be mixed in advance, and then the mixed solution and koji may be kneaded.

また、糊料として動植物性糊料を用いる場合には、1.0〜30重量%の濃度の動植物性糊料入り水溶液を用いることができる。また、この動植物性糊料入り水溶液を用いて麩糠類と混合する場合、その混合割合としては、例えば麩糠類90〜97重量部に対し、動植物性糊料入り水溶液は3〜10重量部程度であるとよい。   Moreover, when using animal and vegetable paste as paste, the aqueous solution containing animal and vegetable paste of the density | concentration of 1.0-30 weight% can be used. Moreover, when mixing with moss using this aqueous solution containing animal and vegetable paste, as the mixing ratio, for example, 3 to 10 parts by weight of aqueous solution containing animal and plant paste is used with respect to 90 to 97 parts by weight of moss. Good degree.

また、糊料として水を用いる場合には、その混合割合としては、例えば麩糠類80〜95重量部に対し、水は5〜20重量部程度であるとよい。   Moreover, when using water as a paste agent, as the mixing ratio, it is good in water being about 5-20 weight part with respect to moss 80-95 weight part, for example.

麩糠類と糊料とを混練する際、糊料が麩糠類の内部までまんべんなく浸透するよう、混合、撹拌作業環境や混合、撹拌後の放置時間等の条件を考慮するとよい。混練機としては、ニーダー、その他の連続式又はバッチ式の混練機、例えば、クリモト(株)製のKTF−40機を使用することができる。   When kneading potatoes and paste, conditions such as mixing, stirring work environment, mixing, and standing time after stirring are preferably taken into consideration so that the paste can penetrate evenly into the potato. As the kneader, a kneader or other continuous or batch kneader, for example, KTF-40 manufactured by Kurimoto Co., Ltd. can be used.

本発明の好ましい態様としては、麩糠類を一定量ずつニーダーに送り、また別に液体用
定量ポンプを用いて糊料をそのニーダーに送り、それらを一定時間混練するという方法が挙げられる。混練は、60〜90rpmの回転速度で2〜3分行うとよい。混練後は、その混練物を希望サイズにするため、すなわち造粒工程に供するため、デスクペレッター等の連続ペレット化マシンに送る。
<第2工程>
As a preferred embodiment of the present invention, there is a method in which moss is sent to a kneader by a certain amount, and a paste is sent to the kneader using a liquid metering pump, and they are kneaded for a certain time. The kneading is preferably performed for 2 to 3 minutes at a rotational speed of 60 to 90 rpm. After kneading, the kneaded product is sent to a continuous pelletizing machine such as a desk pelleter in order to make the kneaded product into a desired size, that is, to be used in a granulation process.
<Second step>

上記で得られた混練物を造粒し麩糠類粒状素材を得る。   The kneaded product obtained above is granulated to obtain a moss-like granular material.

ここで、所定の大きさに造粒する必要があるのは、麩糠類の中に存在する細かい粒子が、乾溜時に炉の中で攪拌機の回転により飛び散り煙道を詰まらせたり、乾溜ガスやタールに混ざり一緒に燃焼され熱量の安定的確保の妨げになったりするからである。   Here, it is necessary to granulate to a predetermined size because fine particles present in moss are scattered by the rotation of the stirrer in the furnace during dry distillation, clogging the flue, This is because they are mixed with tar and combusted together, which hinders stable securing of heat.

この場合、造粒し麩糠類粒状素材を得る好ましい方法(第1の態様)としては、混練物を加圧しながら造粒し所定の大きさの造粒物を得た後、該造粒物を乾燥することにより麩糠類粒状素材を得る方法が挙げられる。   In this case, as a preferred method (first embodiment) for granulating and obtaining the moss-like granular material, the kneaded product is granulated while being pressed to obtain a granulated product of a predetermined size, and then the granulated product. The method of obtaining moss-like granular material by drying is mentioned.

加圧下で造粒を行うことにより混練状態のより好ましい造粒物を得ることができ、このような造粒物を使用すると、乾溜時における造粒物の細かい微粉の飛び散りによる問題も有効に防止することができる。ここで、圧力は、60kg/cm2程度であるとよい。また造粒物の大きさは、直径Φが0.5〜10mm、長さLが1〜15mm、より好ましくは、直径Φが1〜3mm、長さLが3〜5mmであるとよい。造粒物の大きさや造粒の際の圧力を調整することにより所望の固さの造粒物が形成できる。上記大きさの範囲に設定することにより乾溜時における上記微粉の飛び散りの問題をさらに有効に防止することができるとともに、所望の固さにするために必要な熱硬化性樹脂の使用量を減らすことができる。尚、造粒は、デスクペレッターなどの連続ペレット化マシン等を使用することができ、例えば、不二パウダル社製のデスクペレッターF−20型を使用することができる。 By performing granulation under pressure, it is possible to obtain a more preferable granulated product in a kneaded state, and using such a granulated product effectively prevents problems caused by fine fine particles scattered during dry distillation. can do. Here, the pressure is preferably about 60 kg / cm 2 . The size of the granulated product is 0.5 to 10 mm in diameter Φ and 1 to 15 mm in length L, more preferably 1 to 3 mm in diameter Φ and 3 to 5 mm in length L. A granulated product having a desired hardness can be formed by adjusting the size of the granulated product and the pressure during granulation. By setting the size within the above range, the problem of scattering of the fine powder during dry distillation can be prevented more effectively, and the amount of the thermosetting resin used for obtaining the desired hardness can be reduced. Can do. For granulation, a continuous pelletizing machine such as a desk pelleter can be used. For example, a desk pelleter F-20 manufactured by Fuji Powder Corporation can be used.

造粒後、造粒物を乾燥し麩糠類粒状素材を得る。乾燥は、揮発分を除去するために行うことから、粒状素材の重量に対し残留揮発分が6%以下まで減るよう乾燥させるとよい。具体的には、品温60〜80℃で、7分間程度行うとよい。乾燥には、パドル式回転乾燥機を用いることができる。   After granulation, the granulated product is dried to obtain a moss-like granular material. Since drying is performed to remove volatile matter, it is preferable to dry the volatile matter so that the residual volatile matter is reduced to 6% or less with respect to the weight of the granular material. Specifically, it is good to carry out for about 7 minutes at the product temperature of 60-80 degreeC. A paddle type rotary dryer can be used for drying.

また、造粒し麩糠類粒状素材を得る方法の他の方法(第2の態様)として、混練物を乾燥させつつ造粒することにより麩糠類粒状素材を得る方法も挙げられる。   In addition, as another method (second embodiment) for granulating and obtaining a moss-like granular material, a method for obtaining a moss-like granular material by granulating the kneaded product while drying is also mentioned.

揮発分を除去するため、品温60〜80℃に加熱しながら造粒し造粒物を得る。上記第1の態様が好ましい態様ではあるが、この第2の態様のように、造粒時に加圧をせずとも、平面型造粒機や筒型造粒機等の公知の造粒機を用いて、通常の造粒方法により造粒物を得る方法も本発明では含めることができる。   In order to remove volatile matter, granulation is performed while heating to a product temperature of 60 to 80 ° C. to obtain a granulated product. Although the first aspect is a preferred aspect, a known granulator such as a flat granulator or a cylindrical granulator can be used as in the second aspect without applying pressure during granulation. A method of using the usual granulation method to obtain a granulated product can also be included in the present invention.

上記のようにして得られた麩糠類粒状素材は、素炭素材を得るため次に乾溜工程に供される。尚、ここで、より好ましい態様としては、得られた麩糠類粒状素材をすぐに乾溜工程に供するのではなく、一旦サイロ又はホッパーなどの貯蔵庫(1次貯蔵庫)に保管し、ある程度の量貯まった後、まとめて乾溜工程に供するのがよい。   The moss-like granular material obtained as described above is then subjected to a dry distillation process in order to obtain a carbonaceous material. Here, as a more preferable embodiment, the obtained moss-like granular material is not immediately subjected to a dry distillation process, but is temporarily stored in a storage (primary storage) such as a silo or a hopper and stored in a certain amount. Then, it is good to use for a dry distillation process collectively.

乾溜は、攪拌流動床式炭化機を用いて行うことができる。最初に該炭化機に麩糠類粒状素材を炭化機容量の1/2程度投入し、灯油を用いて炭化機に付属している炉に点火し徐々に温度を上げる。麩糠類粒状素材の乾溜が始まったら麩糠類粒状素材を連続的に投入して炭化機温度約600℃まで加熱し、その温度で維持し乾溜を行う。ガスが発生して発生ガス単独で燃焼し始めるまで灯油バーナーを併用する。麩糠類粒状素材は乾溜され、その
後素炭素材が得られる。炉に投入される麩糠類粒状素材の量のおおよその目安としては、50〜200kg/hである。乾溜工程に要する時間は、約45分であり、乾溜は空気と接触しない密閉された中で行われるため、麩糠類粒状素材が燃焼する心配はない。
Dry distillation can be performed using a stirred fluidized bed carbonizer. First, moss particulate material is charged to the carbonizer at about half of the capacity of the carbonizer, and a furnace attached to the carbonizer is ignited using kerosene to gradually raise the temperature. When dry distillation of the moss particulate material begins, the moss granular material is continuously charged and heated to a carbonizer temperature of about 600 ° C., and maintained at that temperature for dry distillation. A kerosene burner is used in combination until the gas is generated and begins to burn alone. The moss-like granular material is dry-distilled. As a rough standard of the quantity of the moss particulate material thrown into a furnace, it is 50-200 kg / h. The time required for the dry distillation process is about 45 minutes, and since the dry distillation is performed in a sealed state that does not come into contact with air, there is no fear of burning the moss particulate material.

乾溜により生じたCO、H2、CH4、NH3、H2S等の乾溜ガスは、ガス燃焼炉で燃焼されることにより、2回目以降の乾溜を行う際の熱源としてその熱エネルギーを利用することができる。尚、この熱エネルギーは、乾溜工程で使用するのみならず、上述した乾燥工程においても使用することができる。本発明では、乾溜を行う焼成炉と乾溜により発生したガスを燃焼させる燃焼炉とを併有したバイオカーボン研究所(株)製の流動床式攪拌炭化機を好ましく用いることができる。
<第3工程>
CO, H 2 , CH 4 , NH 3 , H 2 S, and other dry gas generated by dry distillation is burned in a gas combustion furnace, and its thermal energy is used as the heat source for the second and subsequent dry distillation. can do. This thermal energy can be used not only in the dry distillation process but also in the drying process described above. In the present invention, a fluidized bed agitated carbonizer manufactured by Biocarbon Laboratory Co., Ltd., which has both a firing furnace for performing dry distillation and a combustion furnace for burning gas generated by dry distillation, can be preferably used.
<Third step>

乾溜後、得られた素炭素材は、炉から抜き出され、水冷されたのち、次工程の本焼成に供される。尚、ここで、より好ましい態様としては、得られた素炭素材はすぐに本焼成、炭化工程に供されるのではなく、一旦炭化物ストックタンク(2次貯蔵庫)に保管し、ある程度の量貯まった後、まとめて本焼成、炭化工程に供するのがよい。   After carbonization, the obtained carbon material is extracted from the furnace, cooled with water, and then subjected to the main firing in the next step. Here, as a more preferable aspect, the obtained carbon material is not immediately subjected to the main firing and carbonization step, but is temporarily stored in a carbide stock tank (secondary storage) and stored to a certain amount. Then, it is good to use for a main baking and a carbonization process collectively.

仮焼成を行うことにより、麩糠類粒状素材より体積が約1/2、重量が1/3〜1/2に減少した素炭素材が得られるが、これらを本焼成、炭化工程に供すると、セラミック状態が良好な品質のよい多孔性炭素材が得られるとともに、1回の焼成工程で得られる多孔性炭素材の収量が大幅にアップする。   By performing pre-firing, raw carbon materials having a volume reduced to about 1/2 and a weight reduced to 1/3 to 1/2 from the moss-like granular material can be obtained. As a result, a good quality porous carbon material having a good ceramic state can be obtained, and the yield of the porous carbon material obtained in one firing process can be greatly increased.

本焼成は、ロータリーキルンの焼成炉で行うことができる。焼成は、上記した糊料を含む麩糠類粒状素材が燃焼してしまわないように、窒素ガス等の不活性ガス雰囲気中といった無酸素状態下で行われる。多孔性炭素材の強度や密度等を左右する焼成具合に繋がる各要素を勘案し、焼成時間を設定する。焼成温度は、約700℃以上、さらに好ましくは900℃以上で設定されるとよい。また、焼成時間は、少なくとも1時間程度かけるとよい。   The main firing can be performed in a firing kiln of a rotary kiln. Firing is performed under an oxygen-free condition such as in an inert gas atmosphere such as nitrogen gas so that the moss-like granular material containing the paste is not burned. The firing time is set in consideration of each element that leads to the firing condition that affects the strength and density of the porous carbon material. The firing temperature may be set at about 700 ° C. or higher, more preferably 900 ° C. or higher. The firing time is preferably at least about 1 hour.

具体的には、ロータリーキルンの入り口温度700℃、中間温度800℃、出口温度900℃になるように設定し、素炭素材の投入量を50〜300kg/h程度とし、滞留1〜3時間で本焼成するのがよい。尚、籾殻素炭素材を使用する場合は、出口温度が1200℃であるとよい。   Specifically, the rotary kiln has an inlet temperature of 700 ° C., an intermediate temperature of 800 ° C., and an outlet temperature of 900 ° C., the amount of raw carbon material is about 50 to 300 kg / h, and the residence time is 1 to 3 hours. It is good to fire. In addition, when using rice husk carbon | carbon material, it is good that an exit temperature is 1200 degreeC.

焼成・炭化工程を経た多孔性炭素材は常温まで冷却されるが、その際水冷却機を用いるとよい。   The porous carbon material that has undergone the calcination / carbonization process is cooled to room temperature, and a water cooler may be used at that time.

尚、上記本発明の製造方法においては、麩糠類が特に籾殻である場合には、籾殻の形状はほぼ一定で壊れにくいという特徴を有していることから、造粒工程を経なくてもよく、具体的には、第1工程で混練物を得た後、該混練物を直接乾溜工程に供してもよい。   In the above production method of the present invention, when the cocoon is a rice husk, the shape of the rice husk is almost constant and is not easily broken. More specifically, after obtaining a kneaded product in the first step, the kneaded product may be directly subjected to a dry distillation step.

また、本発明の製造方法においては、上記のようにして乾溜を行った後、得られた素炭素材に対し糊料を含浸させ、該含浸後の素炭素材を本焼成、炭化工程に供してもよい。乾溜前に糊料を加えるのは、乾溜時に麩糠類粒状素材の形が壊れないよう、ある程度の強度を持たせるのに有効だからである。それに対し、乾溜後に糊料を加えるのは、素炭素材は多孔性に富んでおり糊料が含浸されやすいため、該素炭素材に添加する糊料の添加量を調節することで、できあがりの多孔性炭素材の物性(硬度や気孔率など)を調節することができるからである。   Further, in the production method of the present invention, after performing dry distillation as described above, the obtained carbonaceous material is impregnated with a paste, and the impregnated carbonaceous material is subjected to a main firing and carbonization step. May be. The reason why the paste is added before dry distillation is that it is effective for giving a certain degree of strength so that the shape of the moss-like granular material is not broken during dry distillation. On the other hand, the paste is added after dry distillation because the carbon material is rich in porosity and is easily impregnated with the paste, so the amount of paste added to the carbon material can be adjusted by adjusting the amount of paste added. This is because the physical properties (hardness, porosity, etc.) of the porous carbon material can be adjusted.

上記のようにして得られた多孔性炭素材は、良好なセラミック状態が形成された高品質
なものとなっている。そして、この多孔性炭素材は、成形体や多孔性炭素材製品を製造するための中間体として、特開2004−137144号公報に記載の多孔性炭素材と同じように使用されることができる。本発明で得られた多孔性炭素材を用い、特開2004−137144号公報に記載の方法のようにして多孔性炭素材製品を製造すると、焼成収縮率、曲げ応力、圧縮応力、耐摩耗性などが向上した多孔性炭素材製品が得られる。
The porous carbon material obtained as described above has a high quality in which a good ceramic state is formed. And this porous carbon material can be used like the porous carbon material of Unexamined-Japanese-Patent No. 2004-137144 as an intermediate body for manufacturing a molded object or a porous carbon material product. . When the porous carbon material obtained by the present invention is used to produce a porous carbon material product according to the method described in JP-A-2004-137144, the firing shrinkage rate, bending stress, compression stress, wear resistance A porous carbon material product with improved characteristics can be obtained.

また、本発明の製造方法は、乾溜工程を入れず麩糠類粒状素材を直接本焼成の工程に供する従来の方法に比べ、1回の本焼成で得られる多孔性炭素材の量が、米糠の場合で3〜7倍、籾殻の場合で5〜10倍多くなる。また、乾溜炉の方が、本焼成で使用する炉より価格が安く、本発明の製造方法は、ランニングコストもかからないため、本焼成炉を2基用意して稼動させるより、遙かに本発明の製造方法を用いて多孔性炭素材を製造する方がコストは安く、従って、本発明の製造方法は、従来の方法に比べ大量生産に適したものとなっている。   In addition, the production method of the present invention has an amount of the porous carbon material obtained by one main firing in comparison with the conventional method in which the porcelain granular material is directly subjected to the main firing step without a dry distillation step. 3 to 7 times in the case of, and 5 to 10 times more in the case of rice husk. In addition, the dry distillation furnace is cheaper than the furnace used in the main firing, and the production method of the present invention does not require running costs. Therefore, the present invention is much more effective than the preparation and operation of two main firing furnaces. It is cheaper to produce a porous carbon material using this production method, and therefore the production method of the present invention is more suitable for mass production than the conventional method.

また、本発明の製造方法は、未反応のフェノールやアルデヒドの処理問題や臭気汚染の問題にも対処できており、環境汚染防止にも優れたものとなっている。   In addition, the production method of the present invention can cope with the problem of processing unreacted phenol and aldehyde and the problem of odor pollution, and is excellent in preventing environmental pollution.

以下、本発明を実施例によりさらに具体的に説明する。
<実施例1>
Hereinafter, the present invention will be described more specifically with reference to examples.
<Example 1>

籾殻を一定量ずつニーダー(クリモト(株)製KTF-40)に送った。一方、そのニーダーには、液体用定量ポンプを用いてフェノール樹脂水溶液を、籾殻75重量部に対し25重量部の割合になるよう送った。これらを、70rpmの回転速度で3分混練し、その後、該混練物を不二パウダル製デスクペレッターF-20型に送り、60kg/cm2で加圧しながら、直径Φ5mm、長さL5mmの大きさの造粒物を作製した。次に、得られた造粒物を、缶体温度120℃に加熱したパドル式回転乾燥機(Φ800mm×長さL4000mm×2段)において、品温80℃で7分乾燥し、粒状素材の揮発分が5%まで減った乾燥粒状素材を得た。これをサイロに一旦保管した。 A certain amount of rice husk was sent to a kneader (KTF-40 manufactured by Kurimoto Co., Ltd.). On the other hand, the phenol resin aqueous solution was sent to the kneader using a liquid metering pump so that the ratio was 25 parts by weight with respect to 75 parts by weight of rice husk. These are kneaded for 3 minutes at a rotational speed of 70 rpm, and then the kneaded product is sent to a Fuji Paudal desk pelleter F-20 type and pressurized at 60 kg / cm 2 while having a diameter of Φ5 mm and a length of L5 mm. A granulated product was prepared. Next, the obtained granulated product was dried at a product temperature of 80 ° C. for 7 minutes in a paddle type rotary dryer (Φ800 mm × length L4000 mm × 2 stages) heated to a can body temperature of 120 ° C. to volatilize the granular material. A dry granular material with a fraction reduced to 5% was obtained. This was temporarily stored in a silo.

流動床式攪拌炭化機(バイオカーボン研究所(株)製)を使い、最初にサイロから粒状素材を70kg投入し、灯油を用いて徐々に温度を上げ約600℃まで加熱した。その後、サイロから取り出した粒状素材は上記炭化機へ70kg/hの割合で連続投入した。乾溜工程で得られた分解ガスは、燃焼することにより、その熱エネルギーを2回目以降の乾溜を行う際の熱源として使用した。乾溜時間は45分間とした。乾溜後、得られた素炭素材は、連続的に炭化機から抜き出し、水冷した後、炭化物ストックタンクに保存した。   Using a fluidized bed type agitating carbonizer (manufactured by Biocarbon Laboratory Co., Ltd.), 70 kg of the granular material was first charged from the silo, and the temperature was gradually raised using kerosene and heated to about 600 ° C. Thereafter, the granular material taken out from the silo was continuously charged into the carbonizer at a rate of 70 kg / h. The cracked gas obtained in the dry distillation process was used as a heat source when performing the second and subsequent dry distillation by burning. The drying time was 45 minutes. After carbonization, the obtained carbon material was continuously extracted from the carbonizer, cooled with water, and stored in a carbide stock tank.

ロータリーキルン(Φ400mm×長さL6500mm、消費電力量120kw/h)の入り口温度700℃、中間温度800℃、出口温度900℃になるよう温度設定し、該ロータリーキルンへ炭化物ストックタンクから取り出した素炭素材を、投入量60kg/hの割合で投入した。滞留時間1.5時間とし、素炭素材を焼成、炭化した。
<比較例1>
The rotary kiln (Φ400 mm × length L6500 mm, power consumption 120 kw / h) is set to an inlet temperature of 700 ° C., an intermediate temperature of 800 ° C., and an outlet temperature of 900 ° C., and the carbon material taken out from the carbide stock tank is transferred to the rotary kiln. , And charged at a rate of 60 kg / h. The residence time was 1.5 hours, and the carbon material was fired and carbonized.
<Comparative Example 1>

実施例1と同様にして混練物を得た後、揮発分を除去するため80℃に加熱し乾燥させながら造粒した。得られた造粒物を投入量10kg/hの割合で直接ロータリーキルン(実施例1と同様の条件)へ投入し、焼成、炭化を行った。
<試験例1>
A kneaded material was obtained in the same manner as in Example 1, and then granulated while heating to 80 ° C. and drying to remove volatile components. The obtained granulated material was directly charged into a rotary kiln (same conditions as in Example 1) at a rate of 10 kg / h, and calcination and carbonization were performed.
<Test Example 1>

上記で得られた比較例1の多孔性炭素材は、タール分を含む軟らかい微粉が多くふくまれていたが、実施例1の多孔性炭素材は、そのようなものは含まれておらず、良好なセラ
ミック状態が形成されていた。
The porous carbon material of Comparative Example 1 obtained above contained a lot of soft fine powder containing tar, but the porous carbon material of Example 1 does not contain such a thing. A good ceramic state was formed.

また、これら多孔性炭素材の物性を以下に記載の方法により測定した。
(1)測定試料の作製
Moreover, the physical properties of these porous carbon materials were measured by the methods described below.
(1) Preparation of measurement sample

以下で記載するビッカーズ硬度と耐摩耗性の測定には、下記の方法により作製した測定試料を用いた。
多孔性炭素材(以下、RHCと略す)をアトマイザーで粉砕後、選別して150μm以下の粉体RHCを得た。DIK社製フェノライト5510 25w%を加えよく混合した後、100g分取し、150℃に加熱した金型(155mm×77mm×100mm t(厚さ))に投入した。続いて圧縮成形機(東邦マシナリー社製100t成形機)を用いて60kg/cm2(成形品単位面積当たりの受圧)の加圧、解圧を繰り返し、約10分間かけて150mm×75mm×6mm tの成形板を得た。成形板を最大温度900℃で、N2ガス雰囲気中で、一定の昇温・降温速度(前記特許文献1の昇温・降温速度参照)で焼成して、成形体RHCを得た。次にサンドペーパーAA−800、AA−1500、最後に♯4000(住友3M社製)を用いて研磨し仕上げた。
(2)測定方法
For the measurement of Vickers hardness and wear resistance described below, a measurement sample prepared by the following method was used.
A porous carbon material (hereinafter abbreviated as RHC) was pulverized with an atomizer and then screened to obtain a powder RHC of 150 μm or less. Phenolite 5510 (25% by weight) manufactured by DIK was added and mixed well, and 100 g was collected and charged into a mold heated to 150 ° C. (155 mm × 77 mm × 100 mm t (thickness)). Subsequently, using a compression molding machine (100t molding machine manufactured by Toho Machinery Co., Ltd.), pressurization and decompression of 60 kg / cm 2 (pressure received per unit area of the molded product) were repeated, and 150 mm × 75 mm × 6 mm t over about 10 minutes. A molded plate was obtained. The molded plate was fired at a maximum temperature of 900 ° C. in a N 2 gas atmosphere at a constant temperature increase / decrease rate (see the temperature increase / decrease rate in Patent Document 1) to obtain a molded body RHC. Next, sandpaper AA-800, AA-1500, and finally # 4000 (manufactured by Sumitomo 3M) were polished and finished.
(2) Measuring method

(i)硬さ
JIS−K−1474の測定に順じ、150〜650μmの粒状の多孔性炭素材の試料を鋼球と共に入れた硬さ試験用皿を振とうした後、目開き140μmのふるいでふるい分けし、ふるい上に残った試料の質量を求め、下記式を用いて元の試料の質量の比から硬さを求めた。
(I) Hardness In accordance with the measurement of JIS-K-1474, after shaking a hardness test dish in which a sample of a granular porous carbon material having a particle size of 150 to 650 μm is put together with a steel ball, a sieve having an opening of 140 μm is used. And the mass of the sample remaining on the sieve was determined, and the hardness was determined from the ratio of the mass of the original sample using the following formula.

Figure 2007016072
(H:硬さ(%)、W:ふるい上に残った試料の質量(g)、S:ふるい上及び受皿に残った試料の質量の合計(g))
(ii)ビッカーズ硬度
Figure 2007016072
(H: hardness (%), W: mass of the sample remaining on the sieve (g), S: total mass of the sample remaining on the sieve and on the pan (g))
(Ii) Vickers hardness

実施例1、比較例1で得られたRHCを用い上記(1)のようにして得られた成形体RHCを測定試料とし、50mm×10mm×5mm tに切断して試験片を得た。該試験片に対し、対面角が136°のダイヤモンド正四角すい圧子を用い、試験片面にくぼみをつけたときの試験荷重と、くぼみの対角線の長さから求めた表面積とから、下記式を用いてビッカーズ硬度を算出した。   Using the RHC obtained in Example 1 and Comparative Example 1, the molded product RHC obtained as described in (1) above was used as a measurement sample and cut into 50 mm × 10 mm × 5 mm t to obtain test pieces. For the test piece, a diamond square square indenter with a diagonal angle of 136 ° was used, and the following formula was used from the test load when the test piece surface was indented and the surface area determined from the length of the diagonal line of the indentation. The Vickers hardness was calculated.

Figure 2007016072
(HV:ビッカーズ硬度、F:試験荷重(N)、S:くぼみの表面積(mm2)、d:くぼみの対角線の長さの平均(mm)、θ:ダイヤモンド圧子の対面角(度))
Figure 2007016072
(H V : Vickers hardness, F: test load (N), S: surface area of the indentation (mm 2 ), d: average length of the diagonal of the indentation (mm), θ: facing angle of the diamond indenter (degree))

尚、ビッカーズ硬度は、試験片30カ所についての測定結果の平均値で求めた。
(iii)耐摩耗性
In addition, Vickers hardness was calculated | required by the average value of the measurement result about 30 test pieces.
(Iii) Abrasion resistance

往復摩擦試験装置(HEIDON−22)を用いて行った。上記(1)のようにして得られた成形体RHCを測定試料とし、50mm×10mm×5mm tに切断して試験片
を得た。該試験片に対し、以下に示す条件で、重錘により所定の加重をかけた後、平板の該試験片を所定のすべり速度、所定のストロークで運動させることにより摩耗性試験を行った。試験条件は、下記表1に示すとおりである。
A reciprocating friction test apparatus (HEIDON-22) was used. The molded body RHC obtained as described in (1) above was used as a measurement sample and cut into 50 mm × 10 mm × 5 mm t to obtain test pieces. The test piece was subjected to a wear test by applying a predetermined weight with a weight under the following conditions and then moving the flat test piece at a predetermined sliding speed and a predetermined stroke. The test conditions are as shown in Table 1 below.

Figure 2007016072
摩耗試験の結果、下記式を用い比摩耗量を算出することにより、耐摩耗性の結果を得た。
Figure 2007016072
As a result of the wear test, the specific wear amount was calculated using the following formula, thereby obtaining a wear resistance result.

Figure 2007016072
(WS:比摩耗量、V:摩耗体積、W:垂直荷重、L:すべり距離)
(iv)アルコール抽出物
Figure 2007016072
(W S : specific wear amount, V: wear volume, W: vertical load, L: slip distance)
(Iv) Alcohol extract

150μm以下の粉体RHC5gを300ml容三角フラスコ(1)にとり、95W/V%エタノール水溶液50mlを加えて60℃に加熱した。次いで5分放置した後、上澄アルコール液をろ紙(1)を用いてろ過し、得られたろ液を別な三角フラスコ(2)にとった。
三角フラスコ(1)に沈殿している粉体RHCに95W/V%エタノール水溶液50mlを加えて60℃に加熱し5分放置した。その後、上記ろ紙(1)を用いて上澄アルコール液をろ過し、ろ液を上記三角フラスコ(2)にとった。
この操作を再度繰り返した。三角フラスコ(1)に沈殿している粉体RHCに、95W/V%エタノール水溶液50mlを加えて60℃に加熱し、5分放置後、上記ろ紙(1)を用いて上澄アルコール液をろ過し、ろ液を上記三角フラスコ(2)にとった。
このようにして得られた、三角フラスコ(2)に入っているろ液に対し、該ろ液のアルコール分を蒸発させた。蒸発後の三角フラスコ(2)の重量を求め、その値から三角フラスコ(2)の重量を差し引いた。そして下記式を用いてアルコール抽出物(%)を算出した。
5 g of powder RHC of 150 μm or less was placed in a 300 ml Erlenmeyer flask (1), and 50 ml of 95 W / V% ethanol aqueous solution was added and heated to 60 ° C. Next, after leaving for 5 minutes, the supernatant alcohol solution was filtered using filter paper (1), and the obtained filtrate was taken in another Erlenmeyer flask (2).
To the powder RHC precipitated in the Erlenmeyer flask (1), 50 ml of 95 W / V% ethanol aqueous solution was added and heated to 60 ° C. and left for 5 minutes. Thereafter, the supernatant alcohol solution was filtered using the filter paper (1), and the filtrate was taken into the Erlenmeyer flask (2).
This operation was repeated again. Add 50 ml of 95 W / V% ethanol aqueous solution to powder RHC precipitated in Erlenmeyer flask (1), heat to 60 ° C., leave it for 5 minutes, and filter the supernatant alcohol using the filter paper (1). The filtrate was taken into the Erlenmeyer flask (2).
With respect to the filtrate contained in the Erlenmeyer flask (2) thus obtained, the alcohol content of the filtrate was evaporated. The weight of the Erlenmeyer flask (2) after evaporation was determined, and the weight of the Erlenmeyer flask (2) was subtracted from that value. And alcohol extract (%) was computed using the following formula.

Figure 2007016072
(E:アルコール抽出物(%)、W:粉体RHC重量(g)、F1:蒸発後の三角フラスコの重量(g)、F0:三角フラスコの重量(g))
Figure 2007016072
(E: alcohol extract (%), W: powder RHC weight (g), F 1 : weight of the Erlenmeyer flask after evaporation (g), F 0 : weight of the Erlenmeyer flask (g))

上記のようにして測定した多孔性炭素材の各物性値を表2に示す。   Table 2 shows the physical property values of the porous carbon material measured as described above.

Figure 2007016072
Figure 2007016072

上記結果から明らかな通り、実施例1の多孔性炭素材は、高品質なものとなっており、本願発明により、高品質な多孔性炭素材が製造できることが確認できた。   As is clear from the above results, the porous carbon material of Example 1 is of high quality, and it was confirmed that the high quality porous carbon material can be produced by the present invention.

本発明の製造方法により得られた多孔性炭素材は、電磁シールド材、導電性炭素材、摺動部材、各種プラスチックフィラー、粉体塗料用配合材、導電性塗料、粉体潤滑材、成型用剥離材、アスファルト舗装用増量材、置物用素材、電極用負極材、スリップ防止用添加剤、水処理材又は吸着材、飼料添加物、食品添加物、発熱体、遠赤外線発光体等に利用することができる。   The porous carbon material obtained by the production method of the present invention includes an electromagnetic shielding material, a conductive carbon material, a sliding member, various plastic fillers, a powder coating compound, a conductive coating, a powder lubricant, and a molding material. Used for exfoliation material, asphalt pavement extender, figurine material, electrode negative electrode material, anti-slip additive, water treatment material or adsorbent, feed additive, food additive, heating element, far-infrared emitter, etc. be able to.

Claims (5)

麩糠類と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを混練し混練物を得る工程と、該混練物を造粒し得られた麩糠類粒状素材を乾溜することにより素炭素材を得る工程と、該素炭素材を焼成、炭化することにより多孔性炭素材を得る工程とを有する、多孔性炭素材の製造方法。 A step of kneading koji and at least one selected from the group consisting of a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water to obtain a kneaded product, and a koji obtained by granulating the kneaded product A method for producing a porous carbon material, comprising: a step of obtaining a carbonaceous material by dry distillation of a moss-like granular material; and a step of obtaining a porous carbon material by firing and carbonizing the carbonaceous material. 前記混練物を加圧しながら造粒し所望の形状の造粒物を得た後、該造粒物を乾燥することにより前記麩糠類粒状素材を得る、請求項1に記載の多孔性炭素材の製造方法。 The porous carbon material according to claim 1, wherein the kneaded product is granulated while being pressed to obtain a granulated product having a desired shape, and the granulated product is dried to obtain the moss-like granular material. Manufacturing method. 前記混練物を乾燥させつつ造粒することにより前記麩糠類粒状素材を得る、請求項1に記載の多孔性炭素材の製造方法。 The method for producing a porous carbon material according to claim 1, wherein the kneaded material is granulated while being dried to obtain the moss-like granular material. 籾殻と、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種とを混練し混練物を得る工程と、該混練物を乾溜することにより素炭素材を得る工程と、該素炭素材を焼成、炭化することにより多孔性炭素材を得る工程とを有する、多孔性炭素材の製造方法。 A step of kneading rice husk, a thermosetting resin, an aqueous solution containing animal and vegetable glues, and at least one selected from the group consisting of water to obtain a kneaded product, and obtaining a carbonaceous material by dry-distilling the kneaded product The manufacturing method of a porous carbon material which has a process and the process of obtaining a porous carbon material by baking and carbonizing this raw carbon material. 前記乾溜を行った後、得られた素炭素材に、熱硬化性樹脂、動植物性糊料入り水溶液、及び水からなる群より選ばれる少なくとも1種を含浸させ、該含浸後の素炭素材を焼成、炭化する、請求項1〜4の何れか一項に記載の多孔性炭素材の製造方法。 After the carbonization, the obtained carbon material is impregnated with at least one selected from the group consisting of a thermosetting resin, an aqueous solution containing animal and vegetable glues, and water, and the impregnated carbon material is obtained. The manufacturing method of the porous carbon material as described in any one of Claims 1-4 which calcinate and carbonize.
JP2005196639A 2005-07-05 2005-07-05 Method for producing porous carbon material Pending JP2007016072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196639A JP2007016072A (en) 2005-07-05 2005-07-05 Method for producing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196639A JP2007016072A (en) 2005-07-05 2005-07-05 Method for producing porous carbon material

Publications (1)

Publication Number Publication Date
JP2007016072A true JP2007016072A (en) 2007-01-25

Family

ID=37753519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196639A Pending JP2007016072A (en) 2005-07-05 2005-07-05 Method for producing porous carbon material

Country Status (1)

Country Link
JP (1) JP2007016072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100677A (en) * 2016-01-19 2018-09-11 데쿠세리아루즈 가부시키가이샤 Porous carbon material, its production method, and carrier for filter, sheet and catalyst
CN112522726A (en) * 2020-10-30 2021-03-19 徐州瑞鑫新材料研究院有限公司 Preparation method and application of nitrogen-doped porous carbon/molybdenum disulfide composite material derived from natural agar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328116A (en) * 1989-06-22 1991-02-06 Tokai Carbon Co Ltd Production of low density porous carbon grain
JPH10101453A (en) * 1996-10-01 1998-04-21 Sanwa Yushi Kk Production of porous carbon material product and hard porous carbon material product
JP2002187774A (en) * 2000-12-15 2002-07-05 Minebea Co Ltd Material for bearing rolling element
JP2002187773A (en) * 2000-12-15 2002-07-05 Minebea Co Ltd Material for bearing retainer
JP2004137144A (en) * 2002-09-27 2004-05-13 Sanwa Yushi Kk Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328116A (en) * 1989-06-22 1991-02-06 Tokai Carbon Co Ltd Production of low density porous carbon grain
JPH10101453A (en) * 1996-10-01 1998-04-21 Sanwa Yushi Kk Production of porous carbon material product and hard porous carbon material product
JP2002187774A (en) * 2000-12-15 2002-07-05 Minebea Co Ltd Material for bearing rolling element
JP2002187773A (en) * 2000-12-15 2002-07-05 Minebea Co Ltd Material for bearing retainer
JP2004137144A (en) * 2002-09-27 2004-05-13 Sanwa Yushi Kk Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100677A (en) * 2016-01-19 2018-09-11 데쿠세리아루즈 가부시키가이샤 Porous carbon material, its production method, and carrier for filter, sheet and catalyst
KR102636938B1 (en) 2016-01-19 2024-02-16 데쿠세리아루즈 가부시키가이샤 Porous carbon material, method for producing the same, and carrier for filters, sheets, and catalysts
CN112522726A (en) * 2020-10-30 2021-03-19 徐州瑞鑫新材料研究院有限公司 Preparation method and application of nitrogen-doped porous carbon/molybdenum disulfide composite material derived from natural agar

Similar Documents

Publication Publication Date Title
JP3530329B2 (en) Method for manufacturing porous carbon material product
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
JP2009173540A (en) Porous carbon material powder and method of manufacturing the same
JP4130826B2 (en) Method for producing molded charcoal for fuel
JP2019502013A (en) Biofuel
JP6606845B2 (en) Method for producing solid fuel and solid fuel
JP2014098097A (en) Method for producing solid fuel and solid fuel
JP4328591B2 (en) Porous carbon material, method for producing the same, and method for producing a porous carbon material product using the same
CA2674339A1 (en) Flax based fuel pellet and method of manufacture
JP6328901B2 (en) Method for producing solid fuel and solid fuel
RU2771121C1 (en) Moulded product for application in production of carbon clusters and method for production thereof
JP2007016072A (en) Method for producing porous carbon material
CN109370692A (en) A kind of heating tailored version mixture charcoal and preparation method thereof based on stalk pyrolysis-type charcoal
CN1613971A (en) Method for modifying and pre-treating coal as raw material for coke for blast furnace
JP5303698B2 (en) Carbide manufacturing method and carbide
WO2009093926A1 (en) Method for reprocessing organic waste materials into carbon-containing moulds
KR101726978B1 (en) Solid fuel, solid fuel producting method and system
Damayanti et al. The effect of adding rice straw charcoal to the processing of bio-pellet from cacao pod husk
JPH0986910A (en) Production of carbide
KR101980364B1 (en) Process for producing pellets using coffee sludge
JP3060389U (en) Porous carbon material products formed from fusarium
RU2707297C2 (en) Fuel briquette and method for production thereof
KR101160738B1 (en) Method to make solid fuel of rice straw
KR101959764B1 (en) Briquette manufacturing method using the coffee sludge
KR102683863B1 (en) Manufacturing method of pellet fuel using food waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018