WO2020136734A1 - Resin molded article and method for producing resin molded article - Google Patents

Resin molded article and method for producing resin molded article Download PDF

Info

Publication number
WO2020136734A1
WO2020136734A1 PCT/JP2018/047701 JP2018047701W WO2020136734A1 WO 2020136734 A1 WO2020136734 A1 WO 2020136734A1 JP 2018047701 W JP2018047701 W JP 2018047701W WO 2020136734 A1 WO2020136734 A1 WO 2020136734A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
carbonization
resin molded
waste
carbon
Prior art date
Application number
PCT/JP2018/047701
Other languages
French (fr)
Japanese (ja)
Inventor
大木 武彦
大木 達彦
Original Assignee
株式会社大木工藝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大木工藝 filed Critical 株式会社大木工藝
Priority to JP2020562000A priority Critical patent/JPWO2020136734A1/en
Priority to PCT/JP2018/047701 priority patent/WO2020136734A1/en
Publication of WO2020136734A1 publication Critical patent/WO2020136734A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a resin molded product using a resin material and a carbon material as raw materials and a method for manufacturing the resin molded product.
  • Patent Literature 1 proposes a food container made of a synthetic resin containing 70% or less and 10% or more of the total weight of a substance that emits far infrared rays.
  • the document discloses a tray in which 20% by weight of fine powder of zircon sand is kneaded with polypropylene.
  • the above document does not describe an example including a carbon material that can be easily and inexpensively obtained.
  • the carbon material can be expected to have an effect such as a far infrared ray effect, and it can be assumed that various effects can be maximized by setting the content ratio and the like to the optimum conditions.
  • the present invention has been proposed in view of such circumstances, and its purpose is mainly to provide a resin material containing as a raw material a carbon material that can be easily obtained at low cost and can be expected to have effects such as a far infrared ray effect. It is to provide a resin molded product as a raw material. Further, it is also included in the object of the present invention to provide a method for producing a resin molded product, which is capable of inexpensively producing a resin molded product by using waste.
  • the resin molded product of the present invention is a resin molded product containing a carbon material as a raw material, wherein the carbon material has a carbon purity of 90% or more, and the particle size of the carbon material is The carbon content is 10 ⁇ m or less, and the content of the carbon material is 5 to 40% by mass.
  • a method for producing a resin molded product of the present invention is a method for producing a resin molded product containing a carbon material as a raw material, wherein the carbon material has a carbon purity of 90% or more and a particle size of the carbon material is 10 ⁇ m or less, the content rate of the carbon material is 5 to 40% by weight, and the waste material containing the synthetic resin is heat-treated a plurality of times in a carbonization furnace in which the temperature is raised stepwise, and carbonization treatment is carried out.
  • the carbon material is obtained by sequentially carrying out a carbonization step for producing a carbonized material, a pulverization step for pulverizing the carbonized material, and an appropriate/inappropriate selection step for removing an inappropriate material by sieving the pulverized material.
  • the resin molded product of the present invention has the above-described configuration, the effect of the far infrared rays of the carbon material can be expected on an object that comes close to or in contact with the resin molded product. Further, since a carbon material is contained as a raw material, a resin molded product can be manufactured at low cost if the carbon material is manufactured based on various materials such as waste plastic.
  • the method for producing a resin molded product of the present invention has the above-described procedure, it is possible to effectively utilize the waste produced by the PET bottle to produce a container having a high far-infrared effect.
  • the resin molded product (container 1 in the illustrated example) contains the carbon material 5 as a raw material.
  • the carbon material 5 has a carbon purity of 90% or more, a particle size of the carbon material of 10 ⁇ m or less, and a carbon material content of 5 to 40 mass %.
  • FIG. 1 is an explanatory diagram of a container 1 manufactured from such raw materials.
  • the main body outer peripheral portion 1 a of the container 1 is configured such that the particulate carbon material 5 having the above-described particle size is contained in the resin material 6.
  • This container 1 is used, for example, as a cosmetics container.
  • the carbon material 5 to be contained in the resin material 6 has the above-mentioned carbon purity, particle size, and content rate, and the manufacturing method thereof does not matter, but in the present embodiment, the carbon material 5 is formed by heat-treating the waste material 3. Become.
  • the waste 3 contains polyethylene terephthalate (PET resin) such as PET bottles and other synthetic resins such as plastics. The method of manufacturing the carbon material 5 will be described later with the description of FIGS. 2 to 6.
  • thermoplastic resin or a thermosetting resin is used as the resin material 6 which is the main raw material.
  • the thermoplastic resin polypropylene, silicone, polystyrene, polyamide, vinyl halide resin, polyacetal, polyester, polycarbonate, polyaryl sulfone, polyaryl ketone, polyphenylene ether, polyphenylene sulfide, polyaryl ether ketone, polyether.
  • the thermosetting resin include urea resin and phenol resin.
  • the resin material 6 is made to contain the above-mentioned carbon material 5 in an amount of 5 to 40% by mass, pelletized, and the pellets melted by heating are supplied to a molding die (not shown) and injection-molded to form a container. 1 is molded.
  • the carbon material 5 may be supplied to the molding die from an injection port different from the resin material 6 in consideration of the case where the mass% of the carbon material 5 is large and the case where the carbon particles are large.
  • some resin materials 6 to be mixed do not mix well with the carbon material 5, and there are various problems in injection molding even if it is called carbon particles.
  • carbon particles For example, acetylene black is easy to form fine particles and has high conductivity, but is hard to mix with the resin material 6.
  • the inventors have found that it is optimal to crush and use the resin material 6 having a particle size of 10 ⁇ m or less, preferably 3 to 8 ⁇ m, for injection molding. If the above carbon material is larger than 10 ⁇ m, it tends to be difficult to mix with the resin material 6.
  • the content rate of the carbon material is preferably 5 to 40% by mass in consideration of the productivity (for example, the yield rate) of the molded product and the far-infrared effect of the carbon material 5 in the molded product in a comprehensive test. The inventors have judged that.
  • the container 1 containing such a carbon material 5 as a part of the raw material is used as a cosmetic container and a liquid cosmetic product is housed in the container 1, water molecules become fine due to the far infrared effect of the carbon material 5. Then, the cosmetic has a high penetration rate into the skin.
  • the cosmetic container may contain cream, gel, or the like. Further, it can be expected that the carbon material 5 delays the oxidation, and the contents contained therein last longer.
  • the container 1 containing this kind of carbon material 5 can be used as a food product container.
  • it can be used for drinking water containers, liquor containers, dressing containers, edible oil containers, seasoning containers and the like. It can be used not only for liquids but also for containers for tablets, supplements and powders.
  • a sensory test shows that the food contained in the food has a mellow taste.
  • the resin molded product is not limited to the container 1, but includes various products.
  • it can be applied to various parts and main bodies used for electric appliances such as vacuum cleaners and air conditioners, fixed telephones, mobile phones, daily necessities, kitchen utensils, stationery and the like.
  • it is effective when applied to a resin molded product in which the quality of the resin molded product is improved by influencing a product near or in contact with the resin molded product by a far infrared effect or the like.
  • the carbon material 5 made of activated carbon is used as a raw material in a resin molded product that is the outer shell of the vacuum cleaner, the odor of collected dust can be reduced. If the activated carbon contains an antibacterial agent such as silver, the effect can be further enhanced.
  • the waste 3 is used as the raw material of the carbon material 5 as will be described later, it can be applied to a wider variety of resin molded products. It will greatly contribute to the solution.
  • This manufacturing method is a method of manufacturing the carbon material 5 from the waste 3 containing at least a PET bottle (PET resin) as a raw material, and is also a method of reusing the waste 3.
  • PET resin PET resin
  • This manufacturing method is a procedure in which a sorting process, a cutting process, a carbonization process, a crushing process, and an appropriate/unsuitable sorting process are sequentially executed (see FIGS. 2 and 3).
  • the sorting step may not be performed. Further, if the waste 3 contains plastic dust and has a size of about 5 cm (about fist) to about 10 cm, carbonization is possible without performing a cutting process.
  • this sorting step is a step of ranking the waste 3 into three ranks A, B, and C based on the content rate of the PET bottle.
  • the A rank has a PET bottle content of about 100%
  • the B rank has a PET bottle content of about 70 to 90%
  • the C rank has a PET bottle content of about 50 to 70%.
  • Such selection may be performed manually or by a machine.
  • the container 1 shown in FIG. 1 it is sufficient to use the material selected in the A rank as the carbon material 5 as the raw material of the container 1.
  • the cutting process is a process of cutting the waste material 3 as a raw material into flakes (thin pieces), and is performed by using the cutting device 10.
  • the cutting device 10 is not particularly limited, and a known device can be used.
  • the size to be cut into flakes may be determined for each rank. For example, A rank is cut to about 0.5 mm to 3 mm, B rank is cut to about 0.5 to 3 cm, and C rank is cut to about 5 to 10 cm. This cutting size is not particularly limited.
  • the “after cutting process” column of the table in FIG. 6 shows a photograph of the waste 3 containing plastic waste after cutting each of A rank, B rank, and C rank.
  • the A rank has a plastic bottle content of about 100%, and therefore is composed of only transparent plastic bottle materials.
  • the content of the B-rank is about 70 to 90% in the B-rank, so most of them are transparent PET bottles, but the existence of colored plastic material is seen, and the B-rank is Contains a thermosetting resin and a thermoplastic resin. Further, as can be seen from FIG.
  • thermosetting resin and the thermoplastic resin are mixed, but also It is also possible to see the existence of garbage whose material cannot be specified, such as wood chips, rubber, and paper.
  • the cut products 4 thus cut and formed are housed in the carbonization furnace 21 of the carbonization apparatus 20 in a stacked state together with the carbonization container 25 (see FIG. 3).
  • the carbonized container 25 is preferably one in which no air layer is formed between the cut products 4. This is because the smaller the air layer, the better the carbonization efficiency.
  • the carbonization step is carried out using such a carbonization device 20, and here, an example in which a batch type heated steam carbonization device is used as the carbonization device 20 will be described.
  • the carbonization container 25 containing the cut product 4 need only be allowed to stand at a predetermined place in the carbonization furnace 21.
  • the carbonization step may be performed using the carbonization device 20 for each rank.
  • Carbonization of the cut product 4 is performed while gradually increasing the temperature in the carbonization furnace 21, as described above.
  • the temperature may be raised in three steps.
  • the case of the carbonization furnace 21 capable of carbonizing the cut product 4 of 100 tons per month will be specifically described.
  • the heating burner is activated to heat the inside of the carbonization furnace 21 to 420 to 430°C.
  • the temperature inside the carbonization furnace 21 is maintained at around 400°C.
  • the cut product 4 (carbonization container 25) is stored in the carbonization furnace 21 which is hermetically sealed, heated for 100 to 160 minutes, heated to 500 to 550° C., and further heated for 30 to 50 minutes. Good.
  • the heating burner that heats the carbonization furnace 21 is not particularly limited, but a burner that uses kerosene or the like as fuel is adopted. If the plastic waste contained in the waste 3 contains a thermoplastic resin and is suddenly treated at a high temperature, it will melt and disappear, while if it contains a thermosetting resin, it will be hard. It becomes a lump and it is difficult to obtain high quality carbide. However, by gradually raising the temperature a plurality of times as described above, it is possible to obtain 20 tons per month of uniformly and high-quality carbonized product of the cut product 4 of 100 tons per month. In the column of "after carbonization step" in the table of FIG. 6, a photograph of the state of the carbide carbonized by the above-mentioned method is shown.
  • the temperature may be raised to 750 to 850° C. for treatment.
  • microwave heating may be performed in the carbonization furnace 21 in addition to normal heating.
  • the cut product 4 is internally heated when irradiated with microwaves, the temperature rising rate can be increased and the processing time can be shortened. Further, in this case, since the cut product 4 is heated from the inside by the microwave in addition to the usual heating from the outside, it is possible to obtain a more uniform and high quality carbide.
  • the carbonizer 20 is not particularly limited as long as it has a function of gradually raising the temperature by a known carbonizer, but here, a batch type heated steam type carbon device will be described.
  • the carbonization apparatus 20 includes a carbonization furnace 21 in which carbonization containers 25 are stored in a stacked state, a heating unit 23 that heats the carbonization furnace space 21a to carbonize the cut product 4, and a carbonization furnace space 21a.
  • the carbonization furnace 21 has a closed structure and has a carbonization furnace space 21 a in which the carbonization vessels 25 can be stored in a stacked state. In order to achieve almost complete carbonization, it is desirable to use a double-structured closed type that can block oxygen.
  • the wall portion of the carbonization furnace 21 may be a metal kiln.
  • at least the inner wall 21b side of the carbonization furnace 21 is preferably formed of heat-resistant brick or fire-resistant brick having heat resistance of 2000° C., for example. .. Further, it is desirable to apply a heat resistant paint to the inner wall 21b in order to use the carbonization furnace 21 for a long period of time.
  • the heating unit 23 of the carbonization apparatus 20 is configured to directly use heated steam as a heating source, and keeps the temperature in the carbonization furnace space 21a constant by convection of the heated steam. Due to such a convection effect, the plurality of stored carbonized containers 25 (cutting products 4) are heated so that the temperature becomes uniform.
  • the control unit 22 is composed of a CPU, a program, etc., and is capable of heating and holding the carbonization furnace space 21a in cooperation with a heating unit 23, a temperature detection unit (not shown), and the like.
  • the sealing door 24 is a door for sealing the inside of the carbonization furnace 21 in an oxygen-free state, and a large one is arranged as shown in FIG. 2 so that a plurality of carbonization containers 25 can be taken in and out by a forklift 26. Is desirable.
  • the carbonization device 20 since it has a closed structure, it is possible to block oxygen, suppress the generation of carbon dioxide, and improve the accuracy of carbonization. Also, since it is a batch type, it has better cost performance than the rotary type, and it is easy to add more units depending on the amount of processing. Further, if the carbonization container is shaken to perform the carbonization process, the carbonization process can proceed without solidification, but this can be appropriately omitted depending on the amount of carbonization at one time. Since a mechanism such as stirring is unnecessary, the cost of the device itself (initial cost) can be reduced. Further, the carbonization device 20 may be configured to be able to use the dry distillation gas generated by carbonization as heat energy. By doing so, running costs can be reduced.
  • the carbonization container 25 containing the cut product 4 is left standing at a predetermined location in the carbonization furnace 21 for carbonization in this example, a simple rocking mechanism for rocking the carbonization container 25 may be added. Needless to say. In this case, it is possible to obtain a more uniform and high-quality carbide by a large amount of treatment.
  • a rocking drum type carbonization furnace or a fluidized bed type carbonization furnace may be adopted as the carbonization device 20.
  • the inside of the carbonization furnace is divided into a plurality of zones, the temperature is raised in stages, and a blower fan and an air chamber are provided, whereby the carbonization treatment can be continuously performed.
  • carbonization can be performed more continuously than in the batch system described above, and thus it is suitable for treating waste containing a large amount of plastic waste.
  • waste heat generated in the treatment process in the carbonization device 20 may be recovered by a boiler, or a secondary combustion chamber for secondary combustion of carbonization gas generated from the carbonization device 20 may be provided.
  • the re-combustion system may be constructed.
  • a crushing device 11 that crushes the carbide to a predetermined particle size is used.
  • the crushing device 11 may be used to crush the carbide to, for example, 100 to 500 ⁇ m.
  • the column of "after crushing step" in the table of FIG. 6 the state after crushing the carbide is shown by a photograph.
  • rank A may be ground to 10 ⁇ m or less (for example, 3 to 8 ⁇ m)
  • rank B may be ground to 10 to 30 ⁇ m
  • rank C may be ground to 100 to 200 ⁇ m. Since the carbon material 5 having a particle size of 10 ⁇ m or less is required to manufacture the container 1, in this example, the A rank material is used as a raw material. However, as will be described later, if the particle size is pulverized to 10 ⁇ m or less, B, Even if it is C rank, it can be adopted as a raw material of the container 1.
  • the proper/inappropriate selection device 12 is used to remove the inadequate matter by sieving the pulverized material.
  • the suitable/inappropriate sorting device 12 is not particularly limited, and examples thereof include a vibrating screen device and a magnetic separation device.
  • the crushed carbide after the proper/inappropriate selection process is used as the carbon material 5 of the container 1.
  • the A-ranked one having a particularly small grain size is adopted as the carbon material 5.
  • the activation step may be carried out for those of A rank and B rank.
  • the activation step may be carried out for the C rank, but in the application example of the C rank, the activation step need not be carried out. The activation step will be described later.
  • the carbon material 5 that is the raw material of the container 1 is generated based on the A-rank waste 3 as described above. It is possible to preferably use the carbide. However, if a carbon material 5 having a particle size of 10 ⁇ m or less and a carbon purity of 90% or more is manufactured, even B and C rank carbides can be adopted as a raw material of the container 1. Further, on the assumption that the container 1 is manufactured in a large amount, it is desirable to use the waste material B of rank B, which is expected to generate a large amount, as a raw material of the container 1. That is, it is desirable to use the waste material 3 having a PET bottle content of 70% or more as the raw material of the carbon material 5 of the container 1.
  • the A rank products are subjected to alkali activation treatment in an activated carbon treatment device 13 composed of a hybrid carbonization furnace using microwaves and heat to form activated carbon having a specific surface area of 3,000 to 3,600 m2/g.
  • an activated carbon treatment device 13 composed of a hybrid carbonization furnace using microwaves and heat to form activated carbon having a specific surface area of 3,000 to 3,600 m2/g.
  • steam activation is performed in another activated carbon treatment device 13 to form activated carbon having a specific surface area of 500 to 1,000 m 2 /g.
  • the activated carbon thus formed may be crushed into particles having a predetermined particle size by using a crushing device (not shown) such as a jet mill for the purpose of reuse.
  • the A-ranked carbide can be activated carbon derived from polyethylene terephthalate (PET) that contains almost no substances other than PET bottles. By setting the particle size to 10 ⁇ m or less, the carbon material 5 as the raw material of the container 1 can be obtained. Can be used.
  • PET polyethylene terephthalate
  • A-ranked carbide can be used as activated carbon for electrode materials such as rapid charge/discharge capacitors (EDLC) of electric vehicles.
  • EDLC rapid charge/discharge capacitor
  • a rapid charge/discharge capacitor is formed by coating activated carbon on the surface of a current collector such as aluminum foil, and can store electricity on the surface.
  • Activated carbon derived from polyethylene terephthalate has a high specific surface area and a fine surface area. Although the pore structure was complicated and there was concern about the response characteristics when the current density was increased, by setting the particle size to 10 ⁇ m or less, not only high discharge capacity but also good speed characteristics can be achieved.
  • A-rank activated carbon can be used not only as an electrode material for fuel cells but also as a high-performance catalyst, an adsorbent for harmful substances, and a thread for highly functional fibers.
  • the B-ranked carbide can be activated carbon containing about 10 to 30% of substances other than PET bottles, and has a particle size of 10 to 30 ⁇ m or less, and is used for air conditioners, automobile filters, deodorants, purifying agents, etc. be able to.
  • As the filter body a porous sheet-like material is used, and a filter is formed by incorporating activated carbon into the sheet. Micropores are formed in the activated carbon, and if the micropores are stored with an artificial enzyme that has a function of decomposing the odorous component by oxidizing the odorous component with active oxygen and converting it into another substance, It can adsorb and decompose various odorous components.
  • the activated carbon thus formed based on the waste materials 3 of A rank and B rank may be used as the carbon material 5 of the container 1. Since activated carbon has a large specific surface area, a higher far-infrared effect can be expected. Alternatively, the carbon material 5 may be obtained by storing artificial enzymes or antibacterial agents in the fine pores of activated carbon.
  • crushed carbide of C rank in the present embodiment is carbonized to a uniform and good quality even if the substance other than the PET bottle is about 30 to 50% of the carbonized substance. It can be used for etc.
  • crushed carbide may be mixed in a volume ratio of about 10%. This makes it possible to convert clayey and hard soil into soft soil and improve water permeability and water retention of the soil.
  • alkaline soil experiments by the inventor have revealed that growing crops, flowers, and lawns in this soil improves the growing condition.
  • the carbonization by the above-mentioned stepwise temperature rise can uniformly and uniformly carbonize the waste 3 containing the plastic waste. That is, according to the above-mentioned method, the waste 3 containing the plastic waste can be reduced by 20% by carbonization (for example, about 30 tons of the waste 3 can be converted to about 6 tons of carbide), and Most of the carbide can be reused.
  • the carbonization step can be performed efficiently. be able to.
  • the temperature-controlled carbonization device 20 is operated for a predetermined time, so that use without specialized knowledge is required. A person can easily carry out the carbonization treatment. Therefore, if the waste 3 is introduced into a factory in which it is difficult to dispose of the waste 3, the waste 3 including defective products generated in manufacturing can be reused.
  • the waste 3 recycling processing method is performed to obtain the carbon material as the raw material. Therefore, it can be applied not only to the treatment facilities of local governments, but also to the waste treatment system in a factory of a private company, for example.
  • the batch-type carbonization device 20 described above has a smaller installation area than a rotary type or a screw type, can be easily reduced in cost, can be smokeless, and does not require cooling water. It is applicable to processing.
  • the waste 3 containing plastic waste can be efficiently carbonized, and the carbonized material can be used as the carbon material 5 as the raw material of the container 1. Can be effectively utilized. Therefore, it can contribute to the solution of illegal dumping and marine pollution, which have been regarded as social problems in recent years. Further, since the waste 3 having a low rank in which many things other than plastic waste are mixed can be effectively reused, it is possible to aim at zero disposal of the waste 3 containing plastic waste. As described above, if carbon materials, which are the materials for various resin molded products other than the container 1, are manufactured by the above-described manufacturing method, depending on the type of resin molded product to be molded, for example, C rank products can also be used. It can greatly contribute to the solution of plastic waste problems.
  • the present resin molded product such as the container 1 contains the carbon material 5, that is, the ratio of the resin material 6 is reduced as compared with general resin products, the post-treatment of the resin molded product itself. If it becomes easier. In this way, according to such a resin molded product, the amount of plastic dust generated can be reduced.
  • the waste 3 is classified into ranks A, B, and C according to the plastic bottle content rate, but the waste may not include plastic bottles. Further, such waste may be composed of only thermosetting resin, may be composed of only thermoplastic resin, or may be a mixture thereof. Further, the carbonization method may be changed according to the characteristic points such that the thermosetting resin is easily carbonized and the capacity after carbonization does not become so small.
  • the carbon material 5 used as the raw material of the resin molded product is not limited to the one manufactured by the above-described manufacturing method, and graphite particles crystallized by heat treatment at 2000° C. or higher may be used.
  • a phenol resin molded product (CFRP) having carbon fiber as a core material is manufactured, and is fired at 2000° C. to 3000° C. in a vacuum to carbonize a portion of the phenol resin to crystallize graphite particles. You may use it as the carbon material 5 which is a raw material of a molded article. If graphite particles are used as the carbon material 5, it is possible to protect the internal liquid from external heat due to its high thermal conductivity.
  • the carbon material 5, which is a raw material for the resin molded product may be manufactured by any method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

This resin molded article containing a carbon material 5 as a raw material is configured in such a manner that the carbon material 5 which is the raw material for the resin molded article (container 1) has a carbon purity of at least 90%, the particle size of the carbon material 5 does not exceed 10 μm, and the content of the carbon material 5 falls within the range of 5%-40% by mass.

Description

樹脂成形品および樹脂成形品の製造方法Resin molded product and method of manufacturing resin molded product
 本発明は、樹脂材料と炭素材料とを原料とした樹脂成形品および樹脂成形品の製造方法に関する。 The present invention relates to a resin molded product using a resin material and a carbon material as raw materials and a method for manufacturing the resin molded product.
 従来、炭素材料の遠赤外線放射効果などの種々の効果に着目し、炭素材料を含む種々の樹脂成形品が提案されている。特許文献1には、遠赤外線を放射する物質を全重量の70%以下10%以上を含む合成樹脂からなる食品用容器が提案されている。同文献には、実施例として、ジルコンサンドの微粉末20重量%をポリプロピレンに混錬したトレーが示されている。 Conventionally, various resin molded products containing carbon materials have been proposed, focusing on various effects such as the far-infrared radiation effect of carbon materials. Patent Literature 1 proposes a food container made of a synthetic resin containing 70% or less and 10% or more of the total weight of a substance that emits far infrared rays. As an example, the document discloses a tray in which 20% by weight of fine powder of zircon sand is kneaded with polypropylene.
特開平1-139372号公報JP-A-1-139372
 しかしながら、上記文献には、容易にかつ安価に入手できる炭素材料を含んだ例についての記載はない。上述したように、炭素材料は遠赤外線効果などの効果を期待でき、含有率などを最適な条件にすれば、種々の効果を最大限に引き出すことが想定できる。 However, the above document does not describe an example including a carbon material that can be easily and inexpensively obtained. As described above, the carbon material can be expected to have an effect such as a far infrared ray effect, and it can be assumed that various effects can be maximized by setting the content ratio and the like to the optimum conditions.
 本発明は、このような事情を考慮して提案されたもので、その目的は安価に容易に入手でき、かつ遠赤外線効果などの効果が期待できる炭素材料を原料として含んだ、樹脂材料を主原料とした樹脂成形品を提供することにある。また、廃棄物を用いて樹脂成形品を安価に製造する樹脂成形品の製造方法を提供することも本発明の目的に含まれる。 The present invention has been proposed in view of such circumstances, and its purpose is mainly to provide a resin material containing as a raw material a carbon material that can be easily obtained at low cost and can be expected to have effects such as a far infrared ray effect. It is to provide a resin molded product as a raw material. Further, it is also included in the object of the present invention to provide a method for producing a resin molded product, which is capable of inexpensively producing a resin molded product by using waste.
 上記目的を達成するために、本発明の樹脂成形品は、炭素材料を原料として含んだ樹脂成形品であって、前記炭素材料は、炭素純度が90%以上とされ、前記炭素材料の粒度が10μm以下、前記炭素材料の含有率が5~40質量%であることを特徴とする。 In order to achieve the above object, the resin molded product of the present invention is a resin molded product containing a carbon material as a raw material, wherein the carbon material has a carbon purity of 90% or more, and the particle size of the carbon material is The carbon content is 10 μm or less, and the content of the carbon material is 5 to 40% by mass.
 また、本発明の樹脂成形品の製造方法は、炭素材料を原料として含んだ樹脂成形品の製造方法であって、前記炭素材料は、炭素純度が90%以上とされ、前記炭素材料の粒度が10μm以下、前記炭素材料の含有率が5~40重量%であり、合成樹脂を含有した廃棄物を複数回、段階的に温度を昇温させた炭化炉内で熱処理し、炭化処理して炭化物を生成する炭化工程と、前記炭化物を粉砕する粉砕工程と、粉砕物を篩にかけて不適物を取り除く適不適選別工程を順次実行して、炭素材料を得ることを特徴とする。 Further, a method for producing a resin molded product of the present invention is a method for producing a resin molded product containing a carbon material as a raw material, wherein the carbon material has a carbon purity of 90% or more and a particle size of the carbon material is 10 μm or less, the content rate of the carbon material is 5 to 40% by weight, and the waste material containing the synthetic resin is heat-treated a plurality of times in a carbonization furnace in which the temperature is raised stepwise, and carbonization treatment is carried out. The carbon material is obtained by sequentially carrying out a carbonization step for producing a carbonized material, a pulverization step for pulverizing the carbonized material, and an appropriate/inappropriate selection step for removing an inappropriate material by sieving the pulverized material.
 本発明の樹脂成形品は上述した構成とされているため、その樹脂成形品に近接あるいは接触する物への炭素材料の遠赤外線の効果が期待できる。また、原料として炭素材料が含まれているため、炭素材料を種々の材料、例えば廃棄プラスチックなどをもとに製造すれば、低コストで樹脂成形品を製造することができる。 Since the resin molded product of the present invention has the above-described configuration, the effect of the far infrared rays of the carbon material can be expected on an object that comes close to or in contact with the resin molded product. Further, since a carbon material is contained as a raw material, a resin molded product can be manufactured at low cost if the carbon material is manufactured based on various materials such as waste plastic.
 本発明の樹脂成形品の製造方法は上述した手順とされているため、ペットボトルによる廃棄物を有効活用して、遠赤外線効果の高い容器を製造することができる。 Since the method for producing a resin molded product of the present invention has the above-described procedure, it is possible to effectively utilize the waste produced by the PET bottle to produce a container having a high far-infrared effect.
本発明の一実施形態に係る樹脂成形品(容器)の説明図である。(a)は同容器の斜視図、(b)は(a)のX部の拡大縦断面図である。It is explanatory drawing of the resin molded product (container) which concerns on one Embodiment of this invention. (A) is a perspective view of the same container, (b) is an enlarged vertical cross-sectional view of the X portion of (a). 本発明に係る樹脂成形品の原料とされる炭素材料の製造方法の詳細工程のうちのの選別工程を示す概念図である。It is a conceptual diagram which shows the selection process of the detailed processes of the manufacturing method of the carbon material used as the raw material of the resin molded product which concerns on this invention. 同製造方法における選別工程以降の工程の流れを示す図である。It is a figure which shows the flow of a process after a selection process in the manufacturing method. 同製造方法の炭化工程に用いられる炭化装置の概略構成図である。It is a schematic block diagram of the carbonization apparatus used for the carbonization process of the manufacturing method. 同炭化工程における制御温度の遷移例を示すグラフである。It is a graph which shows the example of transition of control temperature in the carbonization process. 同製造方法における各工程後の材料の状態を示す写真である。It is a photograph which shows the state of the material after each process in the manufacturing method.
 以下に、本発明の実施の形態について、添付図面をもとに説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
 以下に説明する実施形態に係る樹脂成形品(図例では容器1)は、炭素材料5を原料として含んでいる。この炭素材料5は、炭素純度を90%以上とし、炭素材料の粒度を10μm以下とし、炭素材料の含有率を5~40質量%とする。 The resin molded product (container 1 in the illustrated example) according to the embodiment described below contains the carbon material 5 as a raw material. The carbon material 5 has a carbon purity of 90% or more, a particle size of the carbon material of 10 μm or less, and a carbon material content of 5 to 40 mass %.
 図1は、このような原料で製造した容器1の説明図である。容器1の本体外郭部1aは、上述した粒度の粒子状の炭素材料5が樹脂材料6内に含有されてなる。この容器1は例えば、化粧品容器として用いられる。 FIG. 1 is an explanatory diagram of a container 1 manufactured from such raw materials. The main body outer peripheral portion 1 a of the container 1 is configured such that the particulate carbon material 5 having the above-described particle size is contained in the resin material 6. This container 1 is used, for example, as a cosmetics container.
 樹脂材料6に含有させる炭素材料5としては、上述した炭素純度、粒度、含有率とされ、その製造方法は問わないが、本実施形態では炭素材料5は廃棄物3を熱処理して形成されてなる。この廃棄物3には、ペットボトルなどのポリエチレンテレフタレート(PET樹脂)や、その他プラスチックなどの合成樹脂を含んだものとされる。その炭素材料5の製造方法については、図2~図6の説明とともに後述する。 The carbon material 5 to be contained in the resin material 6 has the above-mentioned carbon purity, particle size, and content rate, and the manufacturing method thereof does not matter, but in the present embodiment, the carbon material 5 is formed by heat-treating the waste material 3. Become. The waste 3 contains polyethylene terephthalate (PET resin) such as PET bottles and other synthetic resins such as plastics. The method of manufacturing the carbon material 5 will be described later with the description of FIGS. 2 to 6.
 一方、主原料である樹脂材料6としては熱可塑性樹脂や熱硬化性樹脂が用いられる。具体的には、熱可塑性樹脂として、ポリプロピレン、シリコーン、ポリスチレン、ポリアミド、ハロゲン化ビニル樹脂、ポリアセタール、ポリエステル、ポリカーボネート、ポリアリールスルホン、ポリアリールケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリフェニレンサルファイドスルフォン、ポリアリレート、液晶ポリエステル、フッ素樹脂等が挙げられる。これらは単独又は2種以上組み合わせて用いてもよい。また熱硬化性樹脂としては、ユリア樹脂やフェノール樹脂が挙げられる。 On the other hand, a thermoplastic resin or a thermosetting resin is used as the resin material 6 which is the main raw material. Specifically, as the thermoplastic resin, polypropylene, silicone, polystyrene, polyamide, vinyl halide resin, polyacetal, polyester, polycarbonate, polyaryl sulfone, polyaryl ketone, polyphenylene ether, polyphenylene sulfide, polyaryl ether ketone, polyether. Examples thereof include sulfone, polyphenylene sulfide sulfone, polyarylate, liquid crystal polyester, and fluororesin. You may use these individually or in combination of 2 or more types. Examples of the thermosetting resin include urea resin and phenol resin.
 このような樹脂材料6に上述の炭素材料5を5~40質量%含有させ、ペレット状にし、熱を加えて溶けたペレットを成形型(不図示)に供給して射出成形することで、容器1が成形される。なお、炭素材料5の質量%が大きい場合や、炭素粒子が大きい場合を考慮して、炭素材料5は樹脂材料6とは別の注入口より成形型に供給するようにしてもよい。 The resin material 6 is made to contain the above-mentioned carbon material 5 in an amount of 5 to 40% by mass, pelletized, and the pellets melted by heating are supplied to a molding die (not shown) and injection-molded to form a container. 1 is molded. The carbon material 5 may be supplied to the molding die from an injection port different from the resin material 6 in consideration of the case where the mass% of the carbon material 5 is large and the case where the carbon particles are large.
 しかし、混入させる樹脂材料6によっては炭素材料5とうまく混ざらないものもあり、ひとくちに炭素粒子といっても射出成形するには、様々な問題がある。例えばアセチレンブラックは、微細な粒子にしやすく高い導電性が有しているが、樹脂材料6と混ざりにくい。発明者らは種々試験を行った結果、上述の樹脂材料6と混ぜて射出成形を行うには、10μm以下、望ましくは3~8μmに粉砕して用いることが最適であることを見出した。上述の炭素材料を10μmより大きくなると樹脂材料6と混ざりにくい傾向となる。 However, some resin materials 6 to be mixed do not mix well with the carbon material 5, and there are various problems in injection molding even if it is called carbon particles. For example, acetylene black is easy to form fine particles and has high conductivity, but is hard to mix with the resin material 6. As a result of various tests, the inventors have found that it is optimal to crush and use the resin material 6 having a particle size of 10 μm or less, preferably 3 to 8 μm, for injection molding. If the above carbon material is larger than 10 μm, it tends to be difficult to mix with the resin material 6.
 また、炭素材料の含有率は、成形品の生産性(例えば歩留まり率)や、成形品における炭素材料5による遠赤外線効果を試験により総合的に考慮して、5~40質量%が適しているものと、発明者らは判断した。 In addition, the content rate of the carbon material is preferably 5 to 40% by mass in consideration of the productivity (for example, the yield rate) of the molded product and the far-infrared effect of the carbon material 5 in the molded product in a comprehensive test. The inventors have judged that.
 このような炭素材料5を原料の一部として含んだ容器1を化粧品容器として用い、容器1内に液状の化粧品を収容すれば、炭素材料5による遠赤外線効果により水分子は細かくなる。そして、その化粧品は皮膚への浸透率が高くなる。なお、この化粧品容器にクリーム、ジェルなどを収容するようにしてもよい。また、炭素材料5により酸化が遅れ、内部の収容物が長持ちすることも期待できる。 If the container 1 containing such a carbon material 5 as a part of the raw material is used as a cosmetic container and a liquid cosmetic product is housed in the container 1, water molecules become fine due to the far infrared effect of the carbon material 5. Then, the cosmetic has a high penetration rate into the skin. The cosmetic container may contain cream, gel, or the like. Further, it can be expected that the carbon material 5 delays the oxidation, and the contents contained therein last longer.
 また、この種の炭素材料5入りの容器1は食料品容器にも使用できる。例えば、飲料水容器、酒類容器、ドレッシング容器、食用油容器、調味料容器等に使用することができる。液体だけではなく、錠剤、サプリメント、粉末を収容するための容器にも利用できる。食品容器として用いる場合、官能検査によれば、収容する食品の味がまろやかになるとの検査結果も得られている。 Also, the container 1 containing this kind of carbon material 5 can be used as a food product container. For example, it can be used for drinking water containers, liquor containers, dressing containers, edible oil containers, seasoning containers and the like. It can be used not only for liquids but also for containers for tablets, supplements and powders. When it is used as a food container, a sensory test shows that the food contained in the food has a mellow taste.
 樹脂成形品としては容器1には限られず、種々のものが含まれる。例えば、掃除機、エアコンなどの電化製品や固定電話、携帯電話、日用品、台所用品、文具などに用いられる種々の部品や本体に適用され得る。特に、その樹脂成形品に近接あるいは接触する物へ遠赤外線効果などの炭素材料による影響を与えることで、その物の品質が向上するような樹脂成形品に適用すれば効果的である。例えば、活性炭よりなる炭素材料5を原料として掃除機の外郭である樹脂成形品に含めれば、収集ごみのにおいの軽減化を図ることができる。活性炭に銀などの抗菌剤を含ませればさらに効果を上げることができる。 The resin molded product is not limited to the container 1, but includes various products. For example, it can be applied to various parts and main bodies used for electric appliances such as vacuum cleaners and air conditioners, fixed telephones, mobile phones, daily necessities, kitchen utensils, stationery and the like. In particular, it is effective when applied to a resin molded product in which the quality of the resin molded product is improved by influencing a product near or in contact with the resin molded product by a far infrared effect or the like. For example, if the carbon material 5 made of activated carbon is used as a raw material in a resin molded product that is the outer shell of the vacuum cleaner, the odor of collected dust can be reduced. If the activated carbon contains an antibacterial agent such as silver, the effect can be further enhanced.
 なお、以上のような効果が期待できなくても、後述するように炭素材料5の原材料として廃棄物3を用いれば、多種多様のより多くの樹脂成形品に適用することが、プラスチックごみ問題の解決に大きく貢献することとなる。 Even if the above effects cannot be expected, if the waste 3 is used as the raw material of the carbon material 5 as will be described later, it can be applied to a wider variety of resin molded products. It will greatly contribute to the solution.
 つぎに、上記容器1などの樹脂成形品の原料に用いられる炭素材料5の製造方法について、図2~図6を参照しながら説明する。この製造方法は、ペットボトル(PET樹脂)をすくなくとも含有した廃棄物3を原料として炭素材料5を製造する方法であり、廃棄物3を再利用する方法でもある。 Next, a method of manufacturing the carbon material 5 used as a raw material for the resin molded product such as the container 1 will be described with reference to FIGS. 2 to 6. This manufacturing method is a method of manufacturing the carbon material 5 from the waste 3 containing at least a PET bottle (PET resin) as a raw material, and is also a method of reusing the waste 3.
 この製造方法は、選別工程、断裁工程、炭化工程、粉砕工程、適不適選別工程が順次実行される手順とされる(図2および図3参照)。 This manufacturing method is a procedure in which a sorting process, a cutting process, a carbonization process, a crushing process, and an appropriate/unsuitable sorting process are sequentially executed (see FIGS. 2 and 3).
 以下、各工程について説明する。なお、廃棄物3のペットボトル含有率が判明している場合は、選別工程は実行しなくてもよい。また、5センチ(にぎりこぶし程度)~10センチ程度の大きさの、プラスチックごみを含む廃棄物3であれば、断裁工程を実行しなくても、炭化は可能である。 The following describes each process. In addition, when the content rate of the plastic bottle in the waste 3 is known, the sorting step may not be performed. Further, if the waste 3 contains plastic dust and has a size of about 5 cm (about fist) to about 10 cm, carbonization is possible without performing a cutting process.
<選別工程>
 この選別工程は、図2に示すように、廃棄物3をペットボトルの含有率に基づいてA,B,Cの3ランクにランク分けする工程である。Aランクはペットボトル含有率が約100%、Bランクはペットボトル含有率が約70~90%、Cランクはペットボトル含有率が約50~70%とされる。このような選別は人手、機械のいずれで行ってもよい。図1に示した容器1については、Aランクに選別されたものを容器1の原料である炭素材料5として用いればよい。
<Sorting process>
As shown in FIG. 2, this sorting step is a step of ranking the waste 3 into three ranks A, B, and C based on the content rate of the PET bottle. The A rank has a PET bottle content of about 100%, the B rank has a PET bottle content of about 70 to 90%, and the C rank has a PET bottle content of about 50 to 70%. Such selection may be performed manually or by a machine. As for the container 1 shown in FIG. 1, it is sufficient to use the material selected in the A rank as the carbon material 5 as the raw material of the container 1.
<断裁工程>
 断裁工程は、原材料である廃棄物3をフレーク(薄片)状に断裁する工程であり、断裁装置10を用いて実行される。断裁装置10は特に限定されず、公知のものを用いることができる。フレーク状に断裁するサイズとしては、ランクごとに定めたものであればよい。例えばAランクのものは、0.5mm~3mm程度に断裁し、Bランクのものも、0.5~3cm程度に断裁し、Cランクものは、5~10cm程度に断裁する。この断裁寸法は特に限定されない。
<Cutting process>
The cutting process is a process of cutting the waste material 3 as a raw material into flakes (thin pieces), and is performed by using the cutting device 10. The cutting device 10 is not particularly limited, and a known device can be used. The size to be cut into flakes may be determined for each rank. For example, A rank is cut to about 0.5 mm to 3 mm, B rank is cut to about 0.5 to 3 cm, and C rank is cut to about 5 to 10 cm. This cutting size is not particularly limited.
 図6の表の「断裁工程後」の欄には、Aランク、Bランク、Cランクのそれぞれの断裁した後、プラスチックごみを含む廃棄物3の写真が示されている。図6からわかるように、Aランクはペットボトルの含有率が約100%であるので、透明なペットボトル素材ばかりで構成されている。また図6からわかるように、Bランクはペットボトルの含有率が約70~90%であるので、ほとんどが透明のペットボトルではあるが、着色されているプラスチック素材の存在がみてとれ、Bランクには、熱硬化性樹脂と熱可塑性樹脂とが混在している。さらに図6からわかるように、Cランクはペットボトルの含有率が約50~70%であるので、ペットボトル以外のプラスチック素材、熱硬化性樹脂と熱可塑性樹脂とが混在しているだけでなく、木片、ゴム、紙等、素材が特定不能なごみの存在もみてとれる。 The “after cutting process” column of the table in FIG. 6 shows a photograph of the waste 3 containing plastic waste after cutting each of A rank, B rank, and C rank. As can be seen from FIG. 6, the A rank has a plastic bottle content of about 100%, and therefore is composed of only transparent plastic bottle materials. Further, as can be seen from FIG. 6, the content of the B-rank is about 70 to 90% in the B-rank, so most of them are transparent PET bottles, but the existence of colored plastic material is seen, and the B-rank is Contains a thermosetting resin and a thermoplastic resin. Further, as can be seen from FIG. 6, since the content rate of the C rank is about 50 to 70% in the PET bottle, not only the plastic materials other than the PET bottle, the thermosetting resin and the thermoplastic resin are mixed, but also It is also possible to see the existence of garbage whose material cannot be specified, such as wood chips, rubber, and paper.
 こうして断裁されて形成された断裁品4は炭化容器25ごと、フォークリフト26を用いて炭化装置20の炭化炉21内に段積みされた状態で収容される(図3参照)。炭化容器25は断裁品4同士の間に空気層が形成されないものが望ましい。空気層が少なければ少ないほど、炭化効率がよいからである。 The cut products 4 thus cut and formed are housed in the carbonization furnace 21 of the carbonization apparatus 20 in a stacked state together with the carbonization container 25 (see FIG. 3). The carbonized container 25 is preferably one in which no air layer is formed between the cut products 4. This is because the smaller the air layer, the better the carbonization efficiency.
 図6の表の「断裁工程後」の欄には、断裁した後、プラスチックごみを含む廃棄物3の断裁品4の写真が示してある。 In the “After cutting process” column of the table of FIG. 6, a photograph of the cut product 4 of the waste 3 including the plastic waste after cutting is shown.
<炭化工程>
 炭化工程は、このような炭化装置20を用いて実施するもので、ここでは炭化装置20としてバッチ型加熱水蒸気式炭化装置を用いた例を説明する。この場合、断裁品4入りの炭化容器25は炭化炉21の所定の場所に静置するだけでよい。炭化工程についてもランクごとに炭化装置20を用いて実施すればよい。
<Carbonization process>
The carbonization step is carried out using such a carbonization device 20, and here, an example in which a batch type heated steam carbonization device is used as the carbonization device 20 will be described. In this case, the carbonization container 25 containing the cut product 4 need only be allowed to stand at a predetermined place in the carbonization furnace 21. The carbonization step may be performed using the carbonization device 20 for each rank.
 断裁品4の炭化は、上述したように、段階的に炭化炉21内の温度を昇温しながらなされる。例えば図5に示すように、3段階に温度を上げて行えばよい。 Carbonization of the cut product 4 is performed while gradually increasing the temperature in the carbonization furnace 21, as described above. For example, as shown in FIG. 5, the temperature may be raised in three steps.
 一例として、具体的に、月産100トンの断裁品4を炭化できる炭化炉21の場合を説明する。まず炭化炉21の起動ボタンをオンすると、加熱バーナーが起動し、炭化炉21内を420~430℃に熱する。炭化炉21内を400℃前後に昇温維持する。そして無酸素状態に密閉された炭化炉21内に断裁品4(炭化容器25)を格納し、100~160分間加熱した後、500~550℃に昇温し、さらに30~50分間加熱すればよい。 As an example, the case of the carbonization furnace 21 capable of carbonizing the cut product 4 of 100 tons per month will be specifically described. First, when the start button of the carbonization furnace 21 is turned on, the heating burner is activated to heat the inside of the carbonization furnace 21 to 420 to 430°C. The temperature inside the carbonization furnace 21 is maintained at around 400°C. Then, the cut product 4 (carbonization container 25) is stored in the carbonization furnace 21 which is hermetically sealed, heated for 100 to 160 minutes, heated to 500 to 550° C., and further heated for 30 to 50 minutes. Good.
 このとき、炭化炉21を加熱する加熱バーナーは特に限定されないが、灯油等を燃料としたバーナー等が採用される。廃棄物3に含まれたプラスチックごみの中に熱可塑性の樹脂が含まれている場合、いきなり高温で処理すると、溶けてなくなってしまう一方、熱硬化性の樹脂が含まれている場合は、硬くなって塊となり、良質な炭化物を得ることが難しい。しかしながら、上述のように複数回、段階的に昇温することで、月産100トンの断裁品4を均一で良質に炭化された炭化物を月産20トン、得ることができる。図6の表の「炭化工程後」の欄には、上述の方法で炭化された炭化物の状態の写真が示してある。 At this time, the heating burner that heats the carbonization furnace 21 is not particularly limited, but a burner that uses kerosene or the like as fuel is adopted. If the plastic waste contained in the waste 3 contains a thermoplastic resin and is suddenly treated at a high temperature, it will melt and disappear, while if it contains a thermosetting resin, it will be hard. It becomes a lump and it is difficult to obtain high quality carbide. However, by gradually raising the temperature a plurality of times as described above, it is possible to obtain 20 tons per month of uniformly and high-quality carbonized product of the cut product 4 of 100 tons per month. In the column of "after carbonization step" in the table of FIG. 6, a photograph of the state of the carbide carbonized by the above-mentioned method is shown.
 そして、この後、さらにダイオキシン類、ホルムアルデヒド類、フェノール樹脂類、コールタール類等の有害物質を分解するため、750~850℃に昇温して処理を行ってもよい。 Then, after this, in order to further decompose harmful substances such as dioxins, formaldehydes, phenol resins, coal tars, the temperature may be raised to 750 to 850° C. for treatment.
 さらに炭化炉21内に通常の加熱に加えてマイクロ波加熱を行ってもよい。この場合は、マイクロ波が照射されると断裁品4が内部から加熱されるため、昇温速度を早めることができ、処理時間を短縮することができる。またこの場合、断裁品4は通常の外部からの加熱に加え、マイクロ波により内部から加熱されるため、より一層ムラのない均一で良質な炭化物を得ることができる。 Further, microwave heating may be performed in the carbonization furnace 21 in addition to normal heating. In this case, since the cut product 4 is internally heated when irradiated with microwaves, the temperature rising rate can be increased and the processing time can be shortened. Further, in this case, since the cut product 4 is heated from the inside by the microwave in addition to the usual heating from the outside, it is possible to obtain a more uniform and high quality carbide.
 なお、廃棄物3の中に含まれるプラスチックごみを「炭化」するためには、普通ゴミを焼却して「灰」にする場合とは異なり、無酸素状態で行うことが好ましいが、低酸素状態であってもよい。焼却であれば二酸化炭素が発生するが、無酸素あるいはそれに近い状態であれば、二酸化炭素はほとんど発生することなく、固体の炭素が得られる。 In addition, in order to "carbonize" the plastic waste contained in the waste 3, it is preferable to carry out in anoxic condition, unlike the case of incinerating ordinary waste to "ash", but in a hypoxic condition. May be If incinerated, carbon dioxide is generated, but if it is oxygen-free or in a state close to it, carbon dioxide is hardly generated and solid carbon is obtained.
 炭化装置20は、特に限定されず、公知の炭化装置で段階的に昇温できる機能を有するものであればよいが、ここでは、バッチ型の加熱水蒸気式炭素装置について説明する。図4に示すように、炭化装置20は、炭化容器25が段積み状態で格納される炭化炉21と、炭化炉空間21aを加熱し断裁品4を炭化させる加熱部23と、炭化炉空間21aを所定の温度に昇温・維持するように加熱部23を制御する制御部22と、炭化炉21内を無酸素状態にするため密閉する密閉扉24とを有している。 The carbonizer 20 is not particularly limited as long as it has a function of gradually raising the temperature by a known carbonizer, but here, a batch type heated steam type carbon device will be described. As shown in FIG. 4, the carbonization apparatus 20 includes a carbonization furnace 21 in which carbonization containers 25 are stored in a stacked state, a heating unit 23 that heats the carbonization furnace space 21a to carbonize the cut product 4, and a carbonization furnace space 21a. Has a control unit 22 that controls the heating unit 23 so as to raise and maintain the temperature at a predetermined temperature, and a sealing door 24 that seals the inside of the carbonization furnace 21 in order to make it oxygen-free.
 炭化炉21は、密閉構造とされ、炭化容器25が段積み状態で格納できる炭化炉空間21aを有している。ほぼ完全な炭化を目指すためには、酸素を遮断できる二重構造の密閉式とすることが望ましい。炭化炉21の壁部は、金属窯としてもよい、長期利用を考慮すると、炭化炉21の少なくとも内壁21b側は、例えば2000℃の耐熱性を有した耐熱レンガや耐火レンガで形成することが望ましい。また、内壁21bには耐熱塗料を塗布しておくことが、炭化炉21を長期利用する上で望ましい。 The carbonization furnace 21 has a closed structure and has a carbonization furnace space 21 a in which the carbonization vessels 25 can be stored in a stacked state. In order to achieve almost complete carbonization, it is desirable to use a double-structured closed type that can block oxygen. The wall portion of the carbonization furnace 21 may be a metal kiln. In consideration of long-term use, at least the inner wall 21b side of the carbonization furnace 21 is preferably formed of heat-resistant brick or fire-resistant brick having heat resistance of 2000° C., for example. .. Further, it is desirable to apply a heat resistant paint to the inner wall 21b in order to use the carbonization furnace 21 for a long period of time.
 本炭化装置20の加熱部23は直接加熱源として加熱水蒸気を用いる構成とされており、炭化炉空間21aを加熱水蒸気の対流により温度を一定に保つようにしている。このような対流効果により、格納された複数の炭化容器25(断裁品4)は温度が均一になるよう昇温される。 The heating unit 23 of the carbonization apparatus 20 is configured to directly use heated steam as a heating source, and keeps the temperature in the carbonization furnace space 21a constant by convection of the heated steam. Due to such a convection effect, the plurality of stored carbonized containers 25 (cutting products 4) are heated so that the temperature becomes uniform.
 また、制御部22は、CPUやプログラムなどよりなり、加熱部23や温度検知部(不図示)などとの協働により、炭化炉空間21aを昇温、保持できるようにしている。 The control unit 22 is composed of a CPU, a program, etc., and is capable of heating and holding the carbonization furnace space 21a in cooperation with a heating unit 23, a temperature detection unit (not shown), and the like.
 密閉扉24は、炭化炉21内を無酸素状態に密閉するための扉であり、図2に示すように大きなものを配して、複数の炭化容器25の出し入れをフォークリフト26で行えるようにすることが望ましい。 The sealing door 24 is a door for sealing the inside of the carbonization furnace 21 in an oxygen-free state, and a large one is arranged as shown in FIG. 2 so that a plurality of carbonization containers 25 can be taken in and out by a forklift 26. Is desirable.
 以上のような炭化装置20によれば、密閉構造であるため酸素を遮断でき、二酸化炭素の発生を抑え、炭化の精度を高めることができる。また、バッチ式なのでロータリー式にくらべ、コストパフォーマンスにすぐれ、処理量に応じて増設もしやすい。また、炭化容器を揺らして炭化処理をすれば、固まることなく炭化処理を進めることができるが、これは適宜、一度に炭化させる量によっては不要とでき、いずれにしても、ロータリー式のような攪拌等の機構までは不要であるので、装置自体のコスト(初期コスト)を低減化できる。また、炭化装置20は、炭化により発生した乾留ガスを熱エネルギーとして利用できる構成としてもよい。そうすることでランニングコストを低減化することができる。 According to the carbonization device 20 as described above, since it has a closed structure, it is possible to block oxygen, suppress the generation of carbon dioxide, and improve the accuracy of carbonization. Also, since it is a batch type, it has better cost performance than the rotary type, and it is easy to add more units depending on the amount of processing. Further, if the carbonization container is shaken to perform the carbonization process, the carbonization process can proceed without solidification, but this can be appropriately omitted depending on the amount of carbonization at one time. Since a mechanism such as stirring is unnecessary, the cost of the device itself (initial cost) can be reduced. Further, the carbonization device 20 may be configured to be able to use the dry distillation gas generated by carbonization as heat energy. By doing so, running costs can be reduced.
 なお、ここでは断裁品4入りの炭化容器25は炭化炉21の所定の場所に静置して炭化させる例を説明したが、炭化容器25を搖動させる簡易な搖動機構を付加したものとしてもよいことはいうまでもない。この場合、より一層ムラのない均一で良質な炭化物を大量処理にて得ることができる。 Although the carbonization container 25 containing the cut product 4 is left standing at a predetermined location in the carbonization furnace 21 for carbonization in this example, a simple rocking mechanism for rocking the carbonization container 25 may be added. Needless to say. In this case, it is possible to obtain a more uniform and high-quality carbide by a large amount of treatment.
 炭化装置20としては、上述の他、搖動ドラム型の炭化炉や流動床式の炭化炉を採用してもよい。例えば、ドラム型の炭化炉の場合は、炭化炉内を複数のゾーンに分けて、段階的に昇温させ、送風ファン、エアチャンバーを設けることで、連続的に炭化処理を行うことができる。これらの場合、上述のバッチ式よりも連続的に炭化処理を行うことができるので、大量のプラスチックごみを含む廃棄物を処理しようとする場合に好適である。また搖動ドラム型とした場合は、後記する流動床式のものとは異なり、回転せず搖動するので、周辺に機器を設置することが可能である。また図示していないが、炭化装置20での処理工程で発生する廃熱はボイラーで熱回収する構成としてもよいし、炭化装置20から発生する乾留ガスを二次燃焼させる二次燃焼室を設け、再燃焼システムを構築したものとしてもよい。 In addition to the above, a rocking drum type carbonization furnace or a fluidized bed type carbonization furnace may be adopted as the carbonization device 20. For example, in the case of a drum type carbonization furnace, the inside of the carbonization furnace is divided into a plurality of zones, the temperature is raised in stages, and a blower fan and an air chamber are provided, whereby the carbonization treatment can be continuously performed. In these cases, carbonization can be performed more continuously than in the batch system described above, and thus it is suitable for treating waste containing a large amount of plastic waste. In addition, when the swing drum type is used, unlike the fluidized bed type described later, since it swings without rotating, it is possible to install equipment around it. Although not shown, waste heat generated in the treatment process in the carbonization device 20 may be recovered by a boiler, or a secondary combustion chamber for secondary combustion of carbonization gas generated from the carbonization device 20 may be provided. The re-combustion system may be constructed.
 この炭化工程の後には、炭化容器25から炭化物を取り出してから、ついで、その炭化物をさらに所定の粒度に粉砕する粉砕工程と、粉砕物を篩にかけて不適物を取り除く適不適選別工程とが実施される。 After this carbonization step, after removing the carbide from the carbonization container 25, a crushing step of further crushing the carbide to a predetermined particle size and an appropriate/inappropriate selecting step of removing the inappropriate material by sieving the crushed material are carried out. It
<粉砕工程>
 粉砕工程では、炭化物を所定の粒度に粉砕する粉砕装置11が用いられる。この粉砕装置11を用いて、炭化物を例えば100~500μmに粉砕すればよい。図6の表の「粉砕工程後」の欄には、炭化物を粉砕した後の状態を写真で示している。
<Crushing process>
In the crushing process, a crushing device 11 that crushes the carbide to a predetermined particle size is used. The crushing device 11 may be used to crush the carbide to, for example, 100 to 500 μm. In the column of "after crushing step" in the table of FIG. 6, the state after crushing the carbide is shown by a photograph.
 粉砕工程では、例えばAランクのものは10μm以下(例えば3~8μm)に粉砕し、Bランクのものは10~30μmに粉砕し、Cランクのものは100~200μmに粉砕してもよい。容器1の製造には粒度が10μm以下の炭素材料5を必要とするため、本例ではAランクのものが原料として用いられるが、後述するように、粒度を10μm以下に粉砕すれば、B,Cランクのものであっても容器1の原料として採用され得る。 In the crushing process, for example, rank A may be ground to 10 μm or less (for example, 3 to 8 μm), rank B may be ground to 10 to 30 μm, and rank C may be ground to 100 to 200 μm. Since the carbon material 5 having a particle size of 10 μm or less is required to manufacture the container 1, in this example, the A rank material is used as a raw material. However, as will be described later, if the particle size is pulverized to 10 μm or less, B, Even if it is C rank, it can be adopted as a raw material of the container 1.
 図6の表の「粉砕工程後」の欄には、Aランク、Bランク、Cランクのそれぞれの粉砕した後の状態が写真で示されている。Aランクの粉砕工程後の写真から非常にきめ細かく均質な炭化物であることがわかる。Bランクの粉砕工程後の写真からも同様にきめ細かく均質な活性炭であることがわかる。Cランクの粉砕工程後の写真からは、白黒化されているので、白っぽく写っているものがみられるが、不純物ではなく、均質に炭化されたものである。 In the column of "after crushing process" in the table of FIG. 6, the state after crushing of each of A rank, B rank, and C rank is shown in a photograph. It can be seen from the photograph after the crushing process of A rank that it is a very fine and homogeneous carbide. The photographs after the B rank pulverization process also show that the activated carbon is similarly fine and homogeneous. From the photograph after the crushing process of rank C, since it is black and white, some are seen as whitish, but it is not an impurity but a uniformly carbonized one.
<適不適選別工程>
 適不適選別工程では、粉砕物を篩にかけて不適物を取り除く適不適選別装置12が用いられる。適不適選別装置12としては、特に限定されないが、振動篩装置や磁選装置などが挙げられる。
<Appropriate selection process>
In the proper/inappropriate selection step, the proper/inappropriate selection device 12 is used to remove the inadequate matter by sieving the pulverized material. The suitable/inappropriate sorting device 12 is not particularly limited, and examples thereof include a vibrating screen device and a magnetic separation device.
 適不適選別工程が実施された後の粉砕炭化物が、容器1の炭素材料5として用いられる。本実施形態のものでは、特に粒度の小さいAランクのものが炭素材料5として採用される。なお、本工程を実施後、Aランク及びBランクのものについては賦活工程が実施されてもよい。またCランクのものについては賦活工程を実施してもよいが、Cランクの用途例では、賦活工程の実施は不要である。賦活工程については後述する。 The crushed carbide after the proper/inappropriate selection process is used as the carbon material 5 of the container 1. In the present embodiment, the A-ranked one having a particularly small grain size is adopted as the carbon material 5. In addition, after carrying out this step, the activation step may be carried out for those of A rank and B rank. The activation step may be carried out for the C rank, but in the application example of the C rank, the activation step need not be carried out. The activation step will be described later.
 上述した炭素材料の製造方法では、炭素材料5の粒度や炭素純度を考慮すれば、容器1の原料である炭素材料5として、上述したようにAランクの廃棄物3をもとにして生成された炭化物を好適に利用することができる。しかしながら、粒子を10μm以下とし、炭素純度を90%以上とした炭素材料5が製造されれば、B,Cランクの炭化物であっても容器1の原料として採用され得る。また、容器1を大量に製造することを前提とすれば、多くの発生が予想されるBランクの廃棄物3も容器1の原材料として用いることが望ましい。つまり、ペットボトル含有率が70%以上の廃棄物3を容器1の炭素材料5の原材料とすることが望ましい。 In the above-described carbon material manufacturing method, in consideration of the particle size and carbon purity of the carbon material 5, the carbon material 5 that is the raw material of the container 1 is generated based on the A-rank waste 3 as described above. It is possible to preferably use the carbide. However, if a carbon material 5 having a particle size of 10 μm or less and a carbon purity of 90% or more is manufactured, even B and C rank carbides can be adopted as a raw material of the container 1. Further, on the assumption that the container 1 is manufactured in a large amount, it is desirable to use the waste material B of rank B, which is expected to generate a large amount, as a raw material of the container 1. That is, it is desirable to use the waste material 3 having a PET bottle content of 70% or more as the raw material of the carbon material 5 of the container 1.
<賦活工程>
 Aランクのものについては、マイクロ波と熱を用いたハイブリッド炭化炉よりなる活性炭処理装置13にてアルカリ賦活処理がなされ、比表面積3,000~3,600m2/gの活性炭が形成される。Bランクのものについては、他の活性炭処理装置13にて水蒸気賦活がなされ、比表面積500~1,000m2/gの活性炭が形成される。
<Activation process>
The A rank products are subjected to alkali activation treatment in an activated carbon treatment device 13 composed of a hybrid carbonization furnace using microwaves and heat to form activated carbon having a specific surface area of 3,000 to 3,600 m2/g. For the B rank products, steam activation is performed in another activated carbon treatment device 13 to form activated carbon having a specific surface area of 500 to 1,000 m 2 /g.
 このように形成された活性炭は、再利用の目的におうじて、ジェットミルなどの粉砕装置(不図示)を用いて、所定の粒度のものに粉砕されればよい。 The activated carbon thus formed may be crushed into particles having a predetermined particle size by using a crushing device (not shown) such as a jet mill for the purpose of reuse.
<Aランク>
 Aランクの炭化物は、ペットボトル以外の物質がほとんど含まれていないポリエチレンテレフタレート(PET)由来の活性炭とすることができ、粒度を10μm以下にすることで、容器1の原料である炭素材料5として用いることができる。
<A rank>
The A-ranked carbide can be activated carbon derived from polyethylene terephthalate (PET) that contains almost no substances other than PET bottles. By setting the particle size to 10 μm or less, the carbon material 5 as the raw material of the container 1 can be obtained. Can be used.
 また、Aランクの炭化物は、電気自動車の急速充放電キャパシタ(EDLC)などの電極材用の活性炭として用いることができる。急速充放電キャパシタは、アルミ箔などの集電体の表面に活性炭を塗工することで形成され、表面に電気を蓄えることができるものであり、ポリエチレンテレフタレート由来の活性炭は、高い比表面積で細孔構造が複雑で電流密度を増大させたときの応答特性に懸念があったが、粒度を10μm以下とすることで、高い放電容量のみならず、良好な速度特性も両立できる。Aランクの活性炭は、燃料電池の電極材だけでなく、高性能の触媒としての活用、有害物質の吸着材、高機能繊維の糸としての活用も可能である。 Also, A-ranked carbide can be used as activated carbon for electrode materials such as rapid charge/discharge capacitors (EDLC) of electric vehicles. A rapid charge/discharge capacitor is formed by coating activated carbon on the surface of a current collector such as aluminum foil, and can store electricity on the surface.Activated carbon derived from polyethylene terephthalate has a high specific surface area and a fine surface area. Although the pore structure was complicated and there was concern about the response characteristics when the current density was increased, by setting the particle size to 10 μm or less, not only high discharge capacity but also good speed characteristics can be achieved. A-rank activated carbon can be used not only as an electrode material for fuel cells but also as a high-performance catalyst, an adsorbent for harmful substances, and a thread for highly functional fibers.
<Bランク>
 Bランクの炭化物は、ペットボトル以外の物質が約10~30%の活性炭とすることができ、粒度を10~30μm以下にして、エアコンや自動車のフィルターや、消臭剤、浄化剤などに用いることができる。フィルター本体は多孔質のシート状のものが用いられ、そのシートに活性炭を含有させることでフィルターが形成される。活性炭には微細孔が形成されており、その微細孔に、臭い成分を活性酸素で酸化して別の物質に変化させてその臭い成分を分解する作用を有する人工酵素を収蔵させておけば、種々の臭い成分を吸着、分解することができる。
<B rank>
The B-ranked carbide can be activated carbon containing about 10 to 30% of substances other than PET bottles, and has a particle size of 10 to 30 μm or less, and is used for air conditioners, automobile filters, deodorants, purifying agents, etc. be able to. As the filter body, a porous sheet-like material is used, and a filter is formed by incorporating activated carbon into the sheet. Micropores are formed in the activated carbon, and if the micropores are stored with an artificial enzyme that has a function of decomposing the odorous component by oxidizing the odorous component with active oxygen and converting it into another substance, It can adsorb and decompose various odorous components.
 このようにAランク、Bランクの廃棄物3をもとにして形成された活性炭も、容器1の炭素材料5として用いてもよい。活性炭は比表面積が大きいため、さらに高い遠赤外線効果を期待することができる。また、活性炭の微細孔に人工酵素や抗菌剤を収蔵させたものを炭素材料5として用いてもよい。 The activated carbon thus formed based on the waste materials 3 of A rank and B rank may be used as the carbon material 5 of the container 1. Since activated carbon has a large specific surface area, a higher far-infrared effect can be expected. Alternatively, the carbon material 5 may be obtained by storing artificial enzymes or antibacterial agents in the fine pores of activated carbon.
<Cランク>
 従来、Cランクに分類されるようなペットボトル以外の不純物が多いものは、埋め立てるか、投棄の対象となり、重大な環境問題になっていた。しかし本実施形態におけるCランクの粉砕炭化物は、ペットボトル以外の物質が約30~50%の炭化物であっても、均一で良質に炭化されるため、土壌改良材や融雪材、建材、保水ブロックなどに利用することができる。土壌保全・改良材としては、粉砕炭化物を容積比で約10%混入すればよい。これにより、粘土質で硬い土を柔らかい土にすることができ、土壌の透水性、保水性を改善することができる。また、アルカリ土壌にすることもできるので、この土壌で農作物、花、芝生を育成すれば、育成状態が良好になることが発明者の実験で明らかになっている。
<C rank>
Conventionally, those with many impurities other than PET bottles classified into C rank have been subject to landfill or dumping, which has been a serious environmental problem. However, the crushed carbide of C rank in the present embodiment is carbonized to a uniform and good quality even if the substance other than the PET bottle is about 30 to 50% of the carbonized substance. It can be used for etc. As a soil conservation/improvement material, crushed carbide may be mixed in a volume ratio of about 10%. This makes it possible to convert clayey and hard soil into soft soil and improve water permeability and water retention of the soil. Moreover, since it is possible to use alkaline soil, experiments by the inventor have revealed that growing crops, flowers, and lawns in this soil improves the growing condition.
 さらにこのようなアルカリ土壌は、土壌菌が定着しやすいため、有機栽培に適しており、酸性雨対策、土砂流亡防止策としても有効であるため、従来、埋め立てるか、投棄するしかなかったようなプラスチックごみを含む廃棄物3の有効利用として、画期的といえる。融雪材として例えばブロック状に固めたものを路面に配設したり、屋根材として屋根に配設することで、炭化物が有する熱伝導拡散作用により、ヒータや太陽光を利用して、寒冷地向けの融雪道路、融雪瓦として利用することができる。また水路や河川にCランクの粉砕炭化物が混入させたブロックを敷き詰めれば、炭化物が窒素やリン等を吸着し水中に住みついた微生物が有害物を分解し、水が浄化されることも発明者の実験により明らかになっている。このように、純度の低いプラスチックごみを含む廃棄物3より得られたCランクの炭化物であっても、廃棄することなく様々な用途に有効に活用することができる。 Furthermore, since soil fungi easily settle in these alkaline soils, they are suitable for organic cultivation, and are also effective as acid rain countermeasures and sediment erosion prevention measures. It can be said that this is a breakthrough in the effective use of waste 3 including plastic waste. For example, by installing a block of snow-melting material on the road surface or as a roofing material on the roof, the heat conduction and diffusion effect of the carbide makes it possible to use the heater and sunlight for cold regions. It can be used as a snow melting road and snow melting roof tile. In addition, if a block in which crushed carbide of C rank is mixed is spread in a waterway or a river, the carbide adsorbs nitrogen, phosphorus, etc., and microorganisms settled in the water decompose harmful substances to purify the water. It became clear by the experiment of. As described above, even the C-rank carbide obtained from the waste 3 containing low-purity plastic waste can be effectively used for various purposes without being discarded.
 上述の段階的な昇温による炭化では、プラスチックごみを含む廃棄物3をむらなく均一で良質に炭化できることが、本発明の発明者らによる種々の試験により実証されている。すなわち、上述の方法によれば、プラスチックごみを含む廃棄物3を炭化により20%減量(例えば約30トンの廃棄物3を約6トンの炭化物にすることができる)させることができ、かつ、その炭化物のほとんどを再利用することができる。 It has been proved by various tests by the inventors of the present invention that the carbonization by the above-mentioned stepwise temperature rise can uniformly and uniformly carbonize the waste 3 containing the plastic waste. That is, according to the above-mentioned method, the waste 3 containing the plastic waste can be reduced by 20% by carbonization (for example, about 30 tons of the waste 3 can be converted to about 6 tons of carbide), and Most of the carbide can be reused.
 また炭化炉21の大きさによっては炉内の温度を所定の温度に昇温させるまで時間を要するため、時間差で炭化が完了する炉を複数備え、入れ替え方式とすれば、効率よく炭化工程を行うことができる。 Further, depending on the size of the carbonization furnace 21, it takes time to raise the temperature in the furnace to a predetermined temperature. Therefore, if a plurality of furnaces that complete the carbonization with a time difference are provided and the replacement method is used, the carbonization step can be performed efficiently. be able to.
 さらに上述のように炭化炉21を備えた炭化装置20にプラスチックごみを含む廃棄物3を投入すれば、あとは温度制御された炭化装置20が所定時間稼働するので、専門的な知識がない使用者でも簡易に炭化処理を行うことができる。よって、廃棄物3の処理に困る工場へ導入すれば、製造で発生する不良品を含む廃棄物3を再利用可能に処理できる。 Further, as described above, when the waste 3 containing the plastic waste is put into the carbonization device 20 equipped with the carbonization furnace 21, the temperature-controlled carbonization device 20 is operated for a predetermined time, so that use without specialized knowledge is required. A person can easily carry out the carbonization treatment. Therefore, if the waste 3 is introduced into a factory in which it is difficult to dispose of the waste 3, the waste 3 including defective products generated in manufacturing can be reused.
 以上のように、本実施形態に係る容器の製造方法によれば、原料である炭素材料を得るために廃棄物3の再利用処理方法を実施することとなる。そのため、地方公共団体の処理施設に適用できることはもちろん、例えば民間企業の工場内の廃棄処理システムにも適用できる。特に上述のバッチ式の炭化装置20であれば、設置面積がロータリー式やスクリュー式に比べて小さく、低コスト化しやすく、無煙化も可能で冷却水も不要であるから、小規模処理から大規模処理まで適用可能である。 As described above, according to the container manufacturing method of the present embodiment, the waste 3 recycling processing method is performed to obtain the carbon material as the raw material. Therefore, it can be applied not only to the treatment facilities of local governments, but also to the waste treatment system in a factory of a private company, for example. In particular, the batch-type carbonization device 20 described above has a smaller installation area than a rotary type or a screw type, can be easily reduced in cost, can be smokeless, and does not require cooling water. It is applicable to processing.
 また、図2および図3に示した炭素材料の製造方法によれば、プラスチックごみを含む廃棄物3を効率よく炭化でき、炭化物を容器1の原料とされる炭素材料5として利用できるほか、その他の有効活用ができる。そのため、近年社会問題とされていた不法投棄や海洋汚染の解決に寄与することができる。また、プラスチックごみ以外のものが多数混在するランクの低い廃棄物3も有効に再利用できるため、プラスチックごみを含む廃棄物3の廃棄ゼロを目指すこともできる。上述したように、容器1以外の種々の樹脂成形品の材料である炭素材料を上記の製造方法で製造すれば、成形する樹脂成形品の種類によっては、例えばCランクのものでも活用できるので、プラスチックごみ問題の解決に大きく貢献することができる。 Further, according to the method for manufacturing a carbon material shown in FIGS. 2 and 3, the waste 3 containing plastic waste can be efficiently carbonized, and the carbonized material can be used as the carbon material 5 as the raw material of the container 1. Can be effectively utilized. Therefore, it can contribute to the solution of illegal dumping and marine pollution, which have been regarded as social problems in recent years. Further, since the waste 3 having a low rank in which many things other than plastic waste are mixed can be effectively reused, it is possible to aim at zero disposal of the waste 3 containing plastic waste. As described above, if carbon materials, which are the materials for various resin molded products other than the container 1, are manufactured by the above-described manufacturing method, depending on the type of resin molded product to be molded, for example, C rank products can also be used. It can greatly contribute to the solution of plastic waste problems.
 また、容器1などの本樹脂成形品には炭素材料5が含まれているため、つまり樹脂材料6の割合が一般の樹脂製品にくらべ低減化されているため、その樹脂成形品自体の後処理もしやすくなる。ようするに、このような樹脂成形品によれば、プラスチックごみ発生量を減少させることができる。 In addition, since the present resin molded product such as the container 1 contains the carbon material 5, that is, the ratio of the resin material 6 is reduced as compared with general resin products, the post-treatment of the resin molded product itself. If it becomes easier. In this way, according to such a resin molded product, the amount of plastic dust generated can be reduced.
 なお、本実施形態に係る上記の例では、廃棄物3としてペットボトル含有率によりA、B、Cにランク分けしたものを例示したが、ペットボトルを含まない廃棄物であってもよい。また、そのような廃棄物には、熱硬化性樹脂のみで構成されたものでもよいし、熱可塑性樹脂のみで構成されたものでもよいし、それらが混合されたものでもよい。また、熱硬化性樹脂は炭化しやすい点、炭化後の容量がそれほど小さくならない点などの特徴点にしたがって炭化方式を変えてもよい。 Note that, in the above example according to the present embodiment, the waste 3 is classified into ranks A, B, and C according to the plastic bottle content rate, but the waste may not include plastic bottles. Further, such waste may be composed of only thermosetting resin, may be composed of only thermoplastic resin, or may be a mixture thereof. Further, the carbonization method may be changed according to the characteristic points such that the thermosetting resin is easily carbonized and the capacity after carbonization does not become so small.
 また、樹脂成形品の原料とされる炭素材料5としては、上述した製造方法により製造されるものに限られず、2000℃以上の熱処理により結晶化した黒鉛粒子を用いてもよい。例えば、炭素繊維を芯材にしたフェノール樹脂成形物(CFRP)を製造し、それを真空中で2000℃~3000℃で焼成して、フェノール樹脂の部分を炭化させ結晶化した黒鉛粒子を、樹脂成形品の原料である炭素材料5として用いてもよい。炭素材料5として黒鉛粒子を用いれば、その高い熱伝導性により、内部の液体を外部の熱から保護することができる。なお、樹脂成形品の原料とされる炭素材料5は、その製造方法は問わない。 The carbon material 5 used as the raw material of the resin molded product is not limited to the one manufactured by the above-described manufacturing method, and graphite particles crystallized by heat treatment at 2000° C. or higher may be used. For example, a phenol resin molded product (CFRP) having carbon fiber as a core material is manufactured, and is fired at 2000° C. to 3000° C. in a vacuum to carbonize a portion of the phenol resin to crystallize graphite particles. You may use it as the carbon material 5 which is a raw material of a molded article. If graphite particles are used as the carbon material 5, it is possible to protect the internal liquid from external heat due to its high thermal conductivity. The carbon material 5, which is a raw material for the resin molded product, may be manufactured by any method.
 1     容器(樹脂成形品)
 3     廃棄物
 4     断裁品
 5     炭素材料
 6     樹脂材料
 
 

 
1 container (resin molded product)
3 Waste 4 Cut product 5 Carbon material 6 Resin material


Claims (6)

  1.  炭素材料を原料として含んだ樹脂成形品であって、
     前記炭素材料は、炭素純度が90%以上とされ、
     前記炭素材料の粒度が10μm以下、前記炭素材料の含有率が5~40質量%であることを特徴とする樹脂成形品。
    A resin molded product containing a carbon material as a raw material,
    The carbon material has a carbon purity of 90% or more,
    A resin molded article, wherein the carbon material has a particle size of 10 μm or less, and the carbon material content is 5 to 40 mass %.
  2.  請求項1において、
     前記炭素材料は、廃棄物を熱処理して形成されてなることを特徴とする樹脂成形品。
    In claim 1,
    A resin molded article, wherein the carbon material is formed by heat treating waste.
  3.  請求項2において、
     前記廃棄物は、ペットボトル含有率が所定値以上のものとされることを特徴とする樹脂成形品。
    In claim 2,
    A plastic molded product, wherein the waste has a plastic bottle content of a predetermined value or more.
  4.  請求項2または3において、
     前記炭素材料は、前記廃棄物を複数回、段階的に温度を昇温させた炭化炉内で炭化処理して形成されていることを特徴とする樹脂成形品。
    In Claim 2 or 3,
    The resin material is formed by carbonizing the waste material a plurality of times in a carbonization furnace in which the temperature is raised stepwise.
  5.  請求項1~4のいずれか1項において、
     化粧品容器として用いられることを特徴とする樹脂成形品。
    In any one of claims 1 to 4,
    A resin molded product, which is used as a cosmetic container.
  6.  炭素材料を原料として含んだ樹脂成形品の製造方法であって、
     前記炭素材料は、炭素純度が90%以上とされ、
     前記炭素材料の粒度が10μm以下、前記炭素材料の含有率が5~40重量%であり、
     合成樹脂を含有した廃棄物を複数回、段階的に温度を昇温させた炭化炉内で熱処理し、炭化処理して炭化物を生成する炭化工程と、
     前記炭化物を粉砕する粉砕工程と、
     粉砕物を篩にかけて不適物を取り除く適不適選別工程を順次実行して、前記炭素材料を得ることを特徴とする、樹脂成形品の製造方法。
    A method for producing a resin molded product containing a carbon material as a raw material,
    The carbon material has a carbon purity of 90% or more,
    The particle size of the carbon material is 10 μm or less, the content of the carbon material is 5 to 40% by weight,
    A carbonization step in which a waste containing a synthetic resin is heat-treated a plurality of times in a carbonization furnace where the temperature is raised stepwise, and a carbonization process is performed to generate a carbide.
    A crushing step of crushing the carbide,
    A method for producing a resin molded article, characterized in that the carbon material is obtained by sequentially performing an appropriate/inappropriate selection step of sieving a pulverized product to remove an inappropriate product.
PCT/JP2018/047701 2018-12-26 2018-12-26 Resin molded article and method for producing resin molded article WO2020136734A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562000A JPWO2020136734A1 (en) 2018-12-26 2018-12-26 Resin molded products and manufacturing methods for resin molded products
PCT/JP2018/047701 WO2020136734A1 (en) 2018-12-26 2018-12-26 Resin molded article and method for producing resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047701 WO2020136734A1 (en) 2018-12-26 2018-12-26 Resin molded article and method for producing resin molded article

Publications (1)

Publication Number Publication Date
WO2020136734A1 true WO2020136734A1 (en) 2020-07-02

Family

ID=71126912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047701 WO2020136734A1 (en) 2018-12-26 2018-12-26 Resin molded article and method for producing resin molded article

Country Status (2)

Country Link
JP (1) JPWO2020136734A1 (en)
WO (1) WO2020136734A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143611A (en) * 1997-07-29 1999-02-16 Hinomaru Kaabo Techno Kk Carbonaceous-material-containing resin composition, its production and carbonaceousmaterial-containing resin molding
JPH11223476A (en) * 1998-02-10 1999-08-17 Makoto Ogose Method and system for carbonizing organic matter
JP2000204186A (en) * 1999-01-11 2000-07-25 Sanwa Kako Co Ltd Polyethylene-based open-cell foam containing charcoal powder and production of the same
JP2000313884A (en) * 1999-03-03 2000-11-14 Toyoda Techno Kk Waste treating method
JP2001322809A (en) * 2000-05-12 2001-11-20 Kawasaki Heavy Ind Ltd Method and device for manufacturing activated carbide
JP2002114904A (en) * 2000-08-01 2002-04-16 Takashima:Kk Low-repulsion polyurethane foam containing carbon powder and manufacturing method therefor
JP2003128803A (en) * 2001-10-25 2003-05-08 Masudaya:Kk Synthetic resin sheet and packaging container and injection-molded container molded with the sheet
JP2004018830A (en) * 2002-06-20 2004-01-22 Tomikawa Kk Foamed resin product containing ceramic charcoal powder and method for producing it
JP2004137144A (en) * 2002-09-27 2004-05-13 Sanwa Yushi Kk Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder
JP2004224646A (en) * 2003-01-23 2004-08-12 Hinomaru Carbo Techno Co Ltd Method of producing bamboo charcoal, bamboo charcoal, and bamboo charcoal-blended sheet
JP2005192531A (en) * 2004-01-09 2005-07-21 Hinomaru Carbo Techno Co Ltd Freezing/thawing-accelerating material and method for freezing/thawing
JP2014185204A (en) * 2013-03-22 2014-10-02 Doshisha Method of producing thermoplastic resin molding
JP2016068059A (en) * 2014-10-01 2016-05-09 頼興 松本 Ethylene gas adsorbent, production method of ethylene gas adsorbent, disposal method of ethylene gas adsorbent, food product preservation member and food product preservation method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143611A (en) * 1997-07-29 1999-02-16 Hinomaru Kaabo Techno Kk Carbonaceous-material-containing resin composition, its production and carbonaceousmaterial-containing resin molding
JPH11223476A (en) * 1998-02-10 1999-08-17 Makoto Ogose Method and system for carbonizing organic matter
JP2000204186A (en) * 1999-01-11 2000-07-25 Sanwa Kako Co Ltd Polyethylene-based open-cell foam containing charcoal powder and production of the same
JP2000313884A (en) * 1999-03-03 2000-11-14 Toyoda Techno Kk Waste treating method
JP2001322809A (en) * 2000-05-12 2001-11-20 Kawasaki Heavy Ind Ltd Method and device for manufacturing activated carbide
JP2002114904A (en) * 2000-08-01 2002-04-16 Takashima:Kk Low-repulsion polyurethane foam containing carbon powder and manufacturing method therefor
JP2003128803A (en) * 2001-10-25 2003-05-08 Masudaya:Kk Synthetic resin sheet and packaging container and injection-molded container molded with the sheet
JP2004018830A (en) * 2002-06-20 2004-01-22 Tomikawa Kk Foamed resin product containing ceramic charcoal powder and method for producing it
JP2004137144A (en) * 2002-09-27 2004-05-13 Sanwa Yushi Kk Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder
JP2004224646A (en) * 2003-01-23 2004-08-12 Hinomaru Carbo Techno Co Ltd Method of producing bamboo charcoal, bamboo charcoal, and bamboo charcoal-blended sheet
JP2005192531A (en) * 2004-01-09 2005-07-21 Hinomaru Carbo Techno Co Ltd Freezing/thawing-accelerating material and method for freezing/thawing
JP2014185204A (en) * 2013-03-22 2014-10-02 Doshisha Method of producing thermoplastic resin molding
JP2016068059A (en) * 2014-10-01 2016-05-09 頼興 松本 Ethylene gas adsorbent, production method of ethylene gas adsorbent, disposal method of ethylene gas adsorbent, food product preservation member and food product preservation method

Also Published As

Publication number Publication date
JPWO2020136734A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7099736B2 (en) Solid fuel composition formed from mixed solid waste
KR100469581B1 (en) Method for treating combustible waste
KR101798643B1 (en) Method for preparing solid fuel using organic waste
AU2009200412A1 (en) Method for preparing a cellulosic product from cellulosic waste materials
CN110743599B (en) Preparation method and application of near infrared light response type thin layer carbon nitride photocatalytic material
CN108977251A (en) It is a kind of using house refuse preparation biomass can charcoal system and method
CN111263669B (en) Method and system for recycling waste
KR100803809B1 (en) Manufacturing method and manufacturing device for refuse derived fuel
WO2020136734A1 (en) Resin molded article and method for producing resin molded article
KR101860041B1 (en) Hybrid Sludge Fuel, Manufacturing Method and System of Fuel Production thereof
CN110615587A (en) Sludge recycling treatment process and system
JP6925081B1 (en) Waste volume reduction treatment method and waste volume reduction treatment system
KR20040103842A (en) The carbonization of food waste
KR101530552B1 (en) Refused Derived Fuel Produced by Mixing Chaff Powder and Paper Sludge
CN203159595U (en) Zymocyte culture apparatus for household garbage pretreatment
CN109226213A (en) A kind of domestic garbage comprehensive recycling processing method
CN206540133U (en) A kind of house refuse low temperature pyrogenation system
Nabil et al. Mass balance analysis of carbon black production from waste Polyethylene Terephthalate (PET)
JP2019094487A (en) Production method of mixed pyrolysis reformed solid fuel of waste plastic and organic waste
EP2978822B1 (en) Method and system for hybrid production of liquid fuel from waste, without the use of catalytic compounds.
KR20050112931A (en) Manufacture method of solid fuel to mix sewage sludge and waste plastic
CN102615087B (en) Method and equipment for obtaining high-quality solid fuel from solid wastes
JPH10249396A (en) Sewerage sludge carbonizing method and sewerage sludge carbonizing device
den Boer et al. How to improve the quality of waste derived fuels.
JP2022059700A (en) Thermal decomposition carbonization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945008

Country of ref document: EP

Kind code of ref document: A1