JP2004134821A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004134821A
JP2004134821A JP2004031161A JP2004031161A JP2004134821A JP 2004134821 A JP2004134821 A JP 2004134821A JP 2004031161 A JP2004031161 A JP 2004031161A JP 2004031161 A JP2004031161 A JP 2004031161A JP 2004134821 A JP2004134821 A JP 2004134821A
Authority
JP
Japan
Prior art keywords
resin
semiconductor chip
semiconductor device
wiring board
circuit wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004031161A
Other languages
English (en)
Other versions
JP3846890B2 (ja
Inventor
Hiroshi Yamada
山田 浩
Takashi Togasaki
栂嵜 隆
Masayuki Saito
斉藤 雅之
Soichi Honma
本間 荘一
Miki Mori
森 三樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004031161A priority Critical patent/JP3846890B2/ja
Publication of JP2004134821A publication Critical patent/JP2004134821A/ja
Application granted granted Critical
Publication of JP3846890B2 publication Critical patent/JP3846890B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83104Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus by applying pressure, e.g. by injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

【目的】 半導体素子と回路基板との間隙に配置される樹脂中での気泡の発生を防止し、信頼性を向上させた半導体装置を提供する。
【構成】 回路配線基板と、この基板上にバンプ電極を介して実装された半導体素子とを具備し、前記回路配線基板と半導体素子との間隙および半導体素子の周囲に樹脂が配置された半導体装置である。前記バンプ電極は前記半導体素子の外周に沿って形成され、前記回路配線基板表面のバンプ電極で囲まれている領域内に凹部が形成されていることを特徴とする。
【選択図】   図11

Description

 本発明は半導体装置に係り、特にバンプ電極部分の接続信頼性を高くするために、半導体素子と回路配線基板の隙間部分に樹脂を封入したフリップチップ構造の半導体装置に関する。
 近年、半導体装置は高集積化に伴って、実装技術も高密度化が求められており、ワイヤボンディング技術、TAB技術などに加えて、図18に示すようなフリップチップ実装技術(米国特許第3,401,126号公報、および米国特許第3,429,040号公報等)が、コンピュータ機器などの分野で広く用いられている。
 一般的に、半導体チップの熱膨張係数と回路配線基板の熱膨張係数とは異なるので、半導体チップの動作中に発生した熱が、バンプ電極を通して回路配線基板に伝達して熱膨張係数の違いに起因する変位が半導体チップと回路配線基板に発生する。発生した変位は、半導体チップと回路配線基板を接続するバンプ電極に応力歪みを発生させ、この応力歪みは、バンプ電極を破壊させることになり、結果として装置の信頼性寿命を低下させてしまう(Microelectronic Packaging Handbook(Van Nostrand Reinhold,1989”)。
 なお、信頼性寿命は、Nf=Cf1/3 γmax ・exp(1428/Tmax)
(Cは定数、fは周波数、Tmaxは最大温度である。)で表されるサイクル寿命の式から、バンプ部分に発生する最大剪断歪みγmax を減少させることにより信頼性寿命が向上することが知られている(IBM J.Res.Develop.,13;251(1969))。
 ここで、バンプ電極に発生する最大剪断歪みは以下の式で表される。
γmax ={1/(Dmin /2)2/β }(V/πh1+β1/β ・d・ΔT・Δα
(Dmin;最小バンプ径,β;材料定数,V;はんだ体積,h;はんだ高さ,Δα;熱膨張係数の差,ΔT;温度差,d;チップ中心からバンプ中心までの距離)
したがって、従来のフリップチップ実装技術においては、以下に挙げるような手段を用いてバンプ電極に発生する応力を低減させてきた。すなわち、(1)半導体チップの中心からバンプ電極の中心までの距離を小さくする、(2)半導体チップの熱膨張係数と回路配線基板の熱膨張係数との差を小さくする、(3)接続部の温度差が大きくならないように装置の放熱性を向上させる、(4)発生する応力歪みを充分に吸収できるように、バンプ電極の構造を改良する等の手段である。
 さらに、図19に示すように半導体チップ72と回路配線基板71との間隙およびチップの周囲に樹脂78を注入する方法、および、半導体チップをシリコンゲルなどで封止することによって、耐湿性の向上を図るとともに、バンプ電極部分に加わる応力を軽減してサイクル寿命を低下させない構造を得ることが提案されている。
 しかしながら、半導体チップと回路配線基板の隙間を充填する実装方法(特開昭57−208149号公報、実開昭58−18348号公報)では、樹脂の物性が特定されていないため、接続バンプ部分の破壊が加速されることがあった。また、樹脂の充填をスムーズに行うためにガラス基板に孔を開け、この孔部分から樹脂を充填する方法(実開昭58−18348号公報、特開昭58−103143号公報等)では、熱サイクルストレスに起因して基板に設けられた孔周辺にクラックが発生することは明らかであり、実用上問題があるとともに、バンプ接続部分の信頼性を保証できるものではなかった。
 このため、図20に示すように、半導体チップ72、回路配線基板71およびバンプ電極73で囲まれた領域81に樹脂を充填しないことによって、バンプ接続部の信頼性向上を図ることが提案された(特開昭58−204546号公報、特開昭57−208149号公報、特開昭58−134449号公報等)が、この場合には、間隙部分81に水分が堆積保持されて、バンプ電極73の腐食が発生するという問題があった。
 さらに、アレイバンプが形成されたはんだ接続点の少なくとも外側の1部分を封止して、中央部分のはんだ接続部分と隣接の上下面を誘電材料で埋め込まずに残すことにより凹凸形状になるアッセンブリ構造体の信頼性を向上させる方法(特開昭61−177738号公報)が提案されたが、熱膨張係数差が極めて大きい有機高分子基板の場合には、応力を十分に緩和することができなかった。
 また、半導体チップと回路配線基板との間隙に軟質樹脂を充填する方法も開示されている(特開昭58−10841号公報)が、軟質樹脂の熱膨張係数が非常に大きいため、バンプ接続部分の熱サイクル寿命の向上は十分ではない。
 これらの問題を解決するために、樹脂の物性、組成等を選択してバンプ接続部分の熱サイクル寿命を向上させることが提案されており(特公平4−51057号公報、特開昭63−316447号公報、特開平4−219944号公報等)、比較的寸法の小さい半導体チップを実装する場合には、効果を発揮していた。
 なお、半導体チップと回路配線基板との隙間に樹脂を配置する際には、半導体チップの表面または回路配線基板の半導体チップ搭載場所に予め樹脂を塗布し、半導体チップを回路配線基板に接続ボンディングする方法(特開平4−7447号公報、特開平2−234447号公報等)が代表的であり、封止樹脂をバンプ電極を除いた基板上の一部に適量を塗布後、半導体チップをアッセンブリ加圧して隙間全体に樹脂を配置して接続不良を避ける方法(特開昭62−132331号公報等)も提案されている。
 さらに、半導体チップを回路配線基板にフリップチップ実装後、毛細管現象を利用して半導体チップと回路配線基板との隙間部分に樹脂を封止する方法(特開昭60−147140号公報、特開平3−18435号公報等)も行われており、この場合には、樹脂を硬化温度以下で加熱して樹脂粘度を下げることによって、20μm〜50μm程度の間隙への樹脂封止を可能にしている。
 しかしながら、前述のように毛細管減少を利用して半導体チップと回路基板との間隙に樹脂を注入する場合には、半導体チップの寸法が大きくなるにつれて、樹脂の封入が困難となる。
 なお、樹脂の流入速度は、V=1200h/(μL)で表わされる(hは間隙寸法(mm)、μは粘度(ポイズ)、Lは流入距離(mm)である)。すなわち、流入速度は、半導体チップと回路基板との距離(間隙寸法)に比例し、粘度と半導体チップの寸法に反比例するので、半導体チップの寸法が大きくなるにしたがって、樹脂の粘度を低下させる、または間隙寸法を大きくする等の対策をとる必要がある。
 半導体チップと回路基板との熱膨張係数の差を小さくするためには、樹脂にフィラを混入する必要があるものの、フィラの混入によって樹脂の粘度は増加してしまう。一方、間隙寸法は接続後におけるバンプの高さに等しくなるが、接続時にはバンプが溶融して球状となるので、バンプ高さをバンプ直径以上に高くすることは不可能である。したがって、バンプの高さには限界があり、半導体チップと回路配線基板との距離を大きくして樹脂の封入を容易にすることも困難である。
 さらに、樹脂の流入速度は、図21に示すように、流入距離が大きくなると急激に低下する。なお、図21に示す曲線は、半導体チップと回路基板との距離(間隙寸法)を0.5mmとし、10〜100ポイズの5種類の粘度の樹脂について得た結果である。
 また、半導体チップと回路基板との間隙に樹脂を注入する際には、図22(a)〜(c)に示すように、樹脂86は、チップ84と基板83との間隙のみならず、チップ84の周囲をも進行する。樹脂の流れる速度は、チップの中央部と比較してチップの周辺で大きくなるので、最終的に図22(d)に示すように気泡87が発生するおそれがある。
 さらに、特開昭63−245942では半導体チップ周囲にバンプを露出させたコーティング層を設け、半導体能動素子部分が凹部となる構造が提案されているが、この構造においては、バンプ接続部分での半導体チップと回路配線基板との間隙がバンプ高さ以下と狭くなり、樹脂の封入が困難になるという問題があった。
 半導体チップと回路配線基板とを接続するバンプ電極に発生する応力を緩和するためには、熱膨張係数の小さい樹脂を、半導体チップと回路基板との間隙に配置することが好ましい。したがって、従来は、フィラの含有量を多くすることによって、熱膨張係数を小さくし弾性係数を大きくした樹脂を、半導体チップと回路配線基板との間隙に配置していた。水分遮蔽の目的からも、フィラの含有量は高い方が好ましく、さらに、フィラの粒径は大きい方がより水分遮蔽効果を発揮できる。
 しかしながら、近年、半導体チップの寸法が大きくなるにつれて、従来の樹脂では対処しきれない問題が発生し、半導体装置の信頼性を十分に確保することが困難になりつつある。すなわち、フィラ含有量が多い樹脂は粘度が高くなるので、半導体チップと回路基板との間隙に注入することが不可能となる。
 また、粒径の大きなフィラが含有された樹脂では、バンプ電極ピッチの微細化に対応できず、バンプ電極の内側領域に注入することが不可能となる。仮に注入が可能な程度のフィラが含有されている樹脂の場合でも、フィラが半導体チップのパッシベーション膜を通過して、半導体チップを破壊するおそれがある。
 上述の問題に加えて、半導体チップの寸法が大きくなるにしたがって、半導体チップと回路基板との間隙に樹脂を注入する際に樹脂中に気泡を巻き込みやすくなり、機械的強度の低下、気泡中への結露による配線の腐食等が生じ、信頼性が低下するという問題があった。
 そこで本発明は、半導体素子と回路基板との間隙に配置される樹脂中での気泡の発生を防止し、信頼性を向上させた半導体装置を提供することを目的とする。
 上記課題を解決するために、本発明は、回路配線基板と、この基板上にバンプ電極を介して実装された半導体素子とを具備し、前記回路配線基板と半導体素子との間隙および半導体素子の周囲に樹脂が配置された半導体装置において、前記バンプ電極は前記半導体素子の外周に沿って形成され、前記回路配線基板表面のバンプ電極で囲まれている領域の内側に凹部が形成されていることを特徴とする半導体装置を提供する。
 また、本発明は、回路配線基板と、この基板上にバンプ電極を介して実装された半導体素子とを具備し、前記回路配線基板と半導体素子との間隙および半導体素子の周囲に樹脂が配置された半導体装置において、前記樹脂は、室温で50ポイズ以下の粘度を有し、最大粒径が前記半導体素子と回路配線基板との距離の1/2以下の充填材を、20ないし70重量%の割合で含有し、前記間隙体積の1倍以上3倍以下の体積で配置されていることを特徴とする半導体装置を提供する。
 本発明によれば、半導体素子と回路基板との間隙に配置される樹脂中での気泡の発生を防止し、信頼性を向上させた半導体装置が提供される。
 本発明の半導体装置においては、回路基板表面の半導体チップの中央に相当する部分に凹部を形成している。このため、半導体チップ中央部での樹脂の速度が増加して間隙部分への注入が容易になり、一方、半導体チップ周辺部分での樹脂の封入速度が増加しない。すなわち、半導体チップの周辺部分と中央部とにおける樹脂の流入速度の差を小さくしているので、樹脂中への気泡の巻き込みを防ぐことができる。
 さらに、本発明者らは、封止樹脂が流れる速度は、バンプ電極より外側の領域(半導体チップの外周辺部)では樹脂の塗布量の増加につれて大きくなるのに対し、バンプ電極より内側の領域では、樹脂の塗布量に依存しないことを見出だした。本発明はこのような知見のもとになされたものである。
 すなわち、本発明では、半導体素子と回路基板との間隙および半導体素子の周囲に配置される樹脂の塗布量を、前記間隙の体積の1倍以上3倍以下と限定しているので、気泡の巻き込みを防止することができる。
 以下、図面を参照して、本発明をより詳細に説明する。
 (参考例I)
 図1に、参考例Iの半導体装置の断面図を示し、図2にこの装置の平面図を示す。
 図1に示すように、半導体装置9においては、接続用端子4が形成された回路配線基板2上に、バンプ電極3およびAlボンディングパッド8を介して半導体チップ1が実装されている。さらに、図2に示すように、半導体チップ1と回路配線基板2との間隙、すなわち、最外周バンプ電極で囲まれている領域の内側には、第1の樹脂5が配置されている。一方、この最外周バンプ電極で囲まれていない外側の領域には第2の樹脂6が配置されている。なお、最外周バンプ電極で囲まれている領域とは、具体的には、最外周バンプ電極の中心線7をつないだ領域内をさす。
 樹脂としては、無機充填材を含有し、無溶剤型の熱硬化性樹脂を使用することができ、例えば、フェノール系エポキシ樹脂のうち、ビスフェノール型エポキシ樹脂と、酸無水物硬化剤とイミダゾール硬化触媒との混合物、または、シリコンゴムとしてのジメチルポリシロキサン、有機過酸化物の混合物、またはポリイミド樹脂、マレイミド樹脂、ポリウレタン樹脂、アクリル樹脂、フェノール系エポキシ樹脂等が挙げられる。また、無機充填材としては、シリカ、石英、および溶融シリカ等を使用することができる。
 なお、前記第1の樹脂および第2の樹脂に含有されるフィラの含有量および粒径は、それぞれの相対的な関係で決定することができる。すなわち、第1の樹脂においては、第2の樹脂に含有されるフィラの最大粒径および平均粒径より小さい粒径のフィラを、第2の樹脂より少ない割合で混合して使用する。例えば、第1の樹脂におけるフィラ含有量は、45重量%以下とすることが好ましく、40重量%以下がより好ましい。また、フィラの最大粒径および平均粒径は、好ましくは、それぞれ45μm以下および25μm以下であり、より好ましくは、それぞれ40μm以下および20μm以下である。
 一方、第2の樹脂におけるフィラ含有量は、50重量%以下とすることが好ましく、45重量%以下がより好ましい。また、フィラの最大粒径および平均粒径は、好ましくは、それぞれ60μm以下および40μm以下であり、より好ましくは、それぞれ50μm以下および45μm以下である。
 さらに、第1の樹脂に含有されるナトリウムイオン量および塩素イオン量の少なくとも一方を、第2の樹脂よりも少なくすることによって、腐食による不良の発生を防止することができる。
 この場合には、第1の樹脂中のナトリウムイオン量およびは塩素イオン量は、例えば、それぞれ1ppm以下、および5ppm以下であることが好ましく、第2の樹脂のナトリウムイオン量およびは塩素イオン量は、例えば、それぞれ10ppm以下、および10ppm以下であることが好ましい。
 図1に示した半導体装置は、例えば、以下のような工程で製造することができる。図3および4に、製造方法の第1の例を表わす工程図を示す。
 まず、図3(a)に示すような半導体チップ1と、図3(b)に示すような回路配線基板2とを準備する。半導体チップ1の裏面のバンプ電極3は、例えば、蒸着法または電気メッキ法を用いて形成することができる。このバンプ電極の材質としては、一般的には、はんだが用いられるが、これに限定されるものではなく、例えば、はんだと比較して剛性を有するAu,Cu等の金属を使用しても良い。
 なお、半導体チップのサイズ、バンプ電極数、およびバンプピッチは、任意とすることができ、レイアウトもエリア化されたものであってもよく、何等限定されるものではない。
 ここでは、10mm×10mmの半導体チップを使用し、Cu/Tiバリアメタル10を形成した後、Pb/Sn=40/60合金で、直径100μm、高さ75μm±5μmのバンプ3を形成した。なお、バンプは、半導体チップの周囲に添って256個配置した。
 すなわち、図3(a)に示すように、半導体チップ1表面には、Alボンディングパッド8およびパッシベーション膜11が形成されており、さらに、Alボンディングパッド8表面には、バリアメタル10を介してバンプ電極3が形成されている。
 また、回路配線基板2の材質および構造は、特に限定されるものではなく、例えば、積層ガラスエポキシ基板等を使用することができる。以下、基板として、ガラスエポキシ基板上に、絶縁層と導体層とをビルドアップさせた方式のプリント基板SLC(Surface Laminar Circuit)基板を用いて説明する。
 すなわち、図3(b)に示すように、回路配線基板2には、半導体チップのバンプ電極に対する接続用端子部分4に110μmφの開孔が設けられ、端子材料としてのCuが露出しており、基板の端子部分以外にはソルダレジスト12が被覆されている。
 このような構成の回路配線基板2の上に、図3(c)に示すように、フリップチップボンダーを用いて半導体チップ1を位置合わせし、バンプ電極3と回路配線基板2の接続用端子4とを電気的、機械的に接触させる。このとき、回路配線基板2は、加熱機構を有するステージ13上に保持され、窒素雰囲気中で、Pb/Sn=40/60の融点よりも高い200℃に予備加熱されている。
 さらに、半導体チップ1と回路配線基板2とが接触された状態に保ち、半導体チップを保持するコレット14を、窒素雰囲気中で、前述のステージ13と同じ温度200℃に加熱する。これによって、はんだを溶融させ、半導体チップ1と回路配線基板2の電極とを電気的および機械的に仮接続させる。最後に、窒素雰囲気で250℃に加熱されたリフロー炉中に、半導体チップ1を搭載した回路配線基板2を通過させ、半導体チップと回路配線基板とを電気的、機械的に接続する。
 このとき、はんだの表面張力によりセルフアライン効果が発生し、マウント時に発生した多少の位置ずれは修正されるので、正確な位置にボンディングが可能になる。
 以上の工程により、図3(d)に示すように、半導体チップ1を回路配線基板2にバンプにより実装した構造が得られる。次いで、図4(a)に示すように、半導体チップ1と回路配線基板2とにより形成される隙間部分に、ディスペンサー15により第1の樹脂をポッティングする。樹脂5は、毛細管現象によりバンプ電極3で囲まれている領域内に注入され、図4(b)に示すように配置される。
 樹脂としては、ビスフェノール系エポキシ、イミダゾール硬化触媒、酸無水物硬化剤、および球状石英フィラ(最大粒径20μm、平均粒径5μm)を含有するものを用いた。フィラの含有量は30重量%とし、このような組成の樹脂を約4ml配置した。
 第1の樹脂は、後に配置する第2の樹脂とは組成が異なるので、バンプ電極3で囲まれている領域のゲル化時間が短くなる。したがって、第1の樹脂を注入することにより半導体チップ1が仮固定されるので、信頼性良く半導体チップ1を回路配線基板2にフリップチップ実装することができる。
 続いて、図4(c)に示すように、半導体チップ1周囲に、第2の樹脂6をポッティングして毛細管現象を利用してバンプ電極で囲まれていない領域に樹脂封止する。
 第2の樹脂は、最大粒径35μm、平均粒径10μmの球状の石英フィラを、45重量%の割合で混合した以外は、第1の樹脂と同様の組成であり、この第2の樹脂を、約2ml配置した。
 なお、配置される樹脂の量は、第1および第2の樹脂とも、半導体チップの寸法およびバンプ電極の高さ等によって適宜選択することできる。さらに、80℃で4時間クリーンオーブン中に保存して、配置された樹脂を硬化させることにより、図1に示した半導体装置が得られる。
 なお、第1および第2の樹脂の配置方法は、上述の例に限定されるものではなく、以下のようにして配置してもよい。図5に、図1に示した半導体装置の製造方法の第2の例を表わす工程図を示す。なお、ここで用いる半導体チップおよび回路配線基板は、それぞれ前述の図3(a)および図3(b)に示したものと同様の構造であり、第1の例で用いたものと同様の組成の樹脂を同量配置する。
 まず、図5(a)に示すように、第1の樹脂5を、回路配線基板2上のバンプ電極3で囲まれる領域内に予めポッティングしておく。次に、図5(b)に示すように、回路配線基板2の上に、フリップチップボンダーを用いて、半導体チップ1を位置合わせし、バンプ電極3と回路配線基板2の接続用端子4とを電気的、機械的に接続する。このとき、回路配線基板2は、加熱機構を有するステージ13上に保持され、窒素雰囲気中200℃で加熱される。
 予めポッティングされている第1の樹脂5は、図5(c)に示すように半導体チップ1と回路配線基板2との間隙内に完全に封入され、封止された樹脂も200℃の熱により仮硬化の状態にある。
 さらに、図4(c)と同様にして、第2の樹脂6を半導体チップ周囲にポッティングし、最後に80℃のクリーンオーブン中で4時間完全に硬化させる。なお、第1の樹脂5は、図6(a)に示すように、半導体チップ1上のバンプ電極3で囲まれる領域に部分に予めポッティングしてもよい。
 このように第1の樹脂が配置された半導体チップ1を、図6(b)に示すように、フリップチップボンダーを用いて回路配線基板2の上に位置合わせし、バンプ電極3と回路配線基板2の接続用端子4とを電気的、機械的に接触させる。このとき、回路配線基板2は、加熱機構を有するステージ13上に保持され、窒素雰囲気中200℃で加熱される。
 第1の樹脂5は、図6(c)に示すように半導体チップ1と回路配線基板2との間隙内に完全に封入されており、封止された樹脂も200℃の熱により仮硬化の状態にある。
 さらに、図4(c)と同様にして、第2の樹脂6を半導体チップ周囲にポッティングし、最後に80℃のクリーンオーブン中で4時間完全に硬化させる。図7に、図1に示した半導体装置の製造方法の第3の例を表わす工程図を示す。なお、ここで用いる半導体チップおよび回路配線基板は、それぞれ前述の図3(a)および図3(b)に示したものと同様の構造であり、第1の例で用いたものと同様の組成の樹脂を同量配置する。
 まず、図7(a)に示すように、第1の樹脂5、および第2の樹脂6を、回路配線基板2上のバンプ電極3で囲まれる領域内、および囲まれない領域にそれぞれポッティングしておく。
 次に、図7(b)に示すように、回路配線基板2の上に、フリップチップボンダーを用いて、半導体チップ1を位置合わせし、バンプ電極3と回路配線基板2の接続用端子4とを電気的、機械的に接続する。
 予めポッティングされている樹脂5および6は、図7(c)に示すように、半導体チップ1と回路配線基板2とで作られる間隙、および半導体チップの周囲にそれぞれ配置される。なお、第1および第2の樹脂は、いずれも仮硬化の状態にある。
 最後に、80℃のクリーンオーブン中で4時間完全に硬化させる。なお、第1の樹脂5および第2の樹脂6は、図8(a)に示すように、半導体チップ1上のバンプ電極3で囲まれている領域、および囲まれていない領域にそれぞれポッティングしてもよい。
 このように第1の樹脂5および第2の樹脂6が配置された半導体チップ1を、図7(b)に示すように、フリップチップボンダーを用いて回路配線基板2の上に位置合わせし、バンプ電極3と回路配線基板2の接続用端子4とを電気的、機械的に接触させる。このとき、回路配線基板2は、加熱機構を有するステージ13上に保持され、窒素雰囲気中200℃で加熱される。
 以上説明したような種々の方法によって、図1に示した半導体装置を製造することができる。次に、具体例を示して参考例Iをより詳細に説明する。
 上述の第1の製造方法を用いて、10mm×10mmの半導体チップ上にPb/Sn=40/60のバンプ電極を256個、径100μmφで形成し、SLC基板上にフリップチップ実装して、参考例(I−1)の半導体装置を得た。
 この参考例(I−1)においては、バンプで囲まれている領域に配置される樹脂(樹脂1)の弾性係数E1を900×107Paとし、バンプで囲まれていない領域に配置される樹脂(樹脂2)の弾性係数E2を1200×107Paとした。また、熱膨張係数αは、いずれの樹脂も39×10-6/℃とし、これらの物性は、樹脂に混入するフィラの含有率を主にして、最大粒径および平均粒径、必要に応じて樹脂分子量を変えることにより決定した。なお、第1の樹脂におけるフィラの含有率は25重量%、最大粒径は30μm、平均粒径は7μmとし、第2の樹脂におけるフィラの含有率は40重量%、最大粒径は40μm、平均粒径は15μmとした。
 得られた半導体装置を熱サイクル試験に供し、256ピンの1箇所でも接続がオープンになった場合を不良として、温度サイクルと累積不良率との関係を調べ、得られた結果を図9に曲線aで示した。なお、サンプル数は1000個とし、温度サイクルの条件は(−55℃(30分)〜25℃(5分)〜125℃(30分)〜25℃(5分))で行った。
 曲線aに示すように、バンプ電極で囲まれていない領域に配置される樹脂(樹脂2)の弾性係数E2 を、バンプ電極で囲まれている領域に配置される樹脂(樹脂1)の弾性係数E1 よりも大きくすることによって、2500サイクルまで不良は発生しないことがわかる。
 また、熱膨張係数の異なる樹脂を用いる以外は、同様にして参考例(I−2)の半導体装置を製造した。この参考例(I−2)においては、バンプで囲まれている領域に配置される樹脂(樹脂1)の熱膨張係数α1 を39×10-6/℃とし、バンプで囲まれていない領域に配置される樹脂(樹脂2)の熱膨張係数α2 を20×10-6/℃とした。また、弾性係数は、いずれの樹脂も900×107 Paとし、これらの物性は、樹脂に混入するフィラの含有率と必要に応じて樹脂の分子量とを変えることにより決定した。なお、第1の樹脂におけるフィラの含有率は30重量%、最大粒径は20μm、平均粒径は5μmとし、第2の樹脂におけるフィラの含有率は45重量%、最大粒径は35μm、平均粒径は10μmとした。
 得られた半導体装置を、前述と同様の熱サイクル試験に供し、サイクル数と累積不良率との関係を図9中に曲線bで示す。曲線bに示すように、バンプ電極で囲まれていない半導体チップ周辺領域の樹脂(樹脂2)の熱膨張係数α2を、バンプ電極で囲まれている領域に配置される樹脂(樹脂1)の熱膨張係数α1よりも小さくすることによって、3500サイクルまで不良は発生せず、信頼性は極めて向上することがわかる。
 さらに、弾性係数900×107Pa、熱膨張係数39×10-6/℃の樹脂をバンプ電極の内外の領域を配置する以外は、同様にして製造した半導体装置を比較例(I−1)とし、樹脂を配置せず製造した半導体装置を比較例(I−2)とした。これらの比較例(I−1)および(I−2)の半導体装置を同様の熱サイクル試験に供し、得られた結果を、それぞれ、曲線cおよびdで示す。
 曲線cに示すように、均一な物性の樹脂をバンプ電極の内外の領域に配置した場合には、2000サイクルまで不良が発生しないものの、2500サイクルでほぼ100%が不良となり、樹脂を配置しない場合(曲線d)では2サイクルで不良が発生し、10サイクル以上で100%が不良となった。
 以上の結果から、バンプ電極で囲まれている領域と囲まれていない領域とで、配置される樹脂の物性に差異を持たせることによって、信頼性が著しく向上することがわかる。
 次に、以下のようにフィラの含有量、平均粒径、および最大粒径を変化させた2種類の樹脂を用いて、前述の第1の製造方法により半導体装置を製造し、参考例(I−3)とした。 なお、バンプ電極で囲まれている領域に配置した樹脂(第1の樹脂)、およびバンプ電極で囲まれていない領域に配置した樹脂(第2の樹脂)に混入したフィラの含有量、平均粒径、および最大粒径は以下の通りである。
                 第1の樹脂   第2の樹脂
    フィラ含有量(重量%)   30      45
     平均粒径(μm)      5      10
     最大粒径(μm)     20      35
 得られた半導体装置100個について、85℃,85%,VDD=5Vの高温高湿バイアス保存試験を行い、バンプ電極が1箇所でもオープンあるいはショートを発生した場合を不良として、保存時間と累積不良率との関係を調べ、図10中に曲線eで示した。
 曲線eに示すように、バンプ電極で囲まれた領域と囲まれていない領域とでフィラの含有量、平均粒径、および最大粒径に差異を設けることによって、3000サイクルを超えるまで不良を発生しない。これは、チップ周囲の樹脂のフィラ含有量、最大粒径、平均粒径が大きいために、樹脂の水分遮蔽効果が充分に発揮されたことに起因すると考えられる。
 さらに、平均粒径7μm、最大粒径20μmのフィラを、40重量%の割合で混入した樹脂を、バンプ電極の内外領域に配置して製造した半導体装置を比較例(I−3)とし、樹脂を配置せずに製造した半導体装置を比較例(I−4)とした。これらの比較例(I−3)および比較例(I−4)の半導体装置について、前述の参考例(I−3)と同様の試験を行ない、得られた結果を図10中に、それぞれ曲線fおよび曲線gで示す。
 曲線fに示すように、均一な樹脂をバンプ電極の内外領域に配置した場合には、2000Hを超えるまで不良の発生を抑えることができたものの、2300Hで不良が発生し、樹脂を配置しない場合(曲線g)には、500Hで不良が発生し、保存時間が1000Hを超えると、100%が不良となった。
 以上の結果から、本参考例の半導体装置は、高温高湿下でも優れた信頼性を有することがわかる。
 (実施例I)
 以下、図面を参照して、本発明の半導体装置を詳細に説明する。
 図11に、本発明の半導体装置の一例を表わす断面図を示す。図11に示すように、本発明に係る半導体装置20は、回路基板21の接続電極22に、シリコン製半導体チップ23の外周に沿って形成された接続電極24が、ハンダバンプ25により接続されている。また、半導体チップ23と回路基板21との間隙および半導体チップ23の周辺部分には樹脂26が配置されている。
 本実施例に用いられる回路基板21の材質は、特に限定されるものではなく、例えば、ガラスエポキシ製、アラミド−エポキシ製、BTレジン製、PPE、Al23 製等の絶縁性の基板を使用することができる。この回路基板21表面の半導体チップ23の中央部に対応する領域には、凹部27が形成されている。なお、半導体チップ23の中央部とは、チップの外周に沿って形成された接続電極24で囲まれた領域の内側であり、好ましくは、接続電極24の内端から、0.3mmないし2.0mm程度内側の領域である。
 基板21表面に形成された凹部27の深さ、すなわち段差は、チップ23の寸法、ハンダバンプ25の高さ等によって適宜選択することができるが、10μm以上100μm以下とすることが好ましい。
 回路基板表面の凹部27は、例えば、回路基板21の表面を研削加工することによって形成することができるが、複数のガラスエポキシシートを積層してガラスエポキシ基板を形成する場合には、基板最上層のシートの所定領域をプレスで打ち抜き加工した後に積層することによって凹部を形成してもよい。さらに、半導体チップの周辺部のみに所定の膜厚でハンダレジストを塗布することによって、中央部に凹部を形成することもできる。
 なお、接続電極24は、例えば、チタンと銅とを順次積層することによって形成することができ、チタンと銅と金またはパラジウムとを順次積層してもよい。接続電極22は銅、または銅、ニッケル、金を順次積層することにより形成することができる。また、ハンダバンプ25は、SnとPbとの比率が6対4からなり、その高さは40から80μmとすることができる。
 間隙に配置される樹脂26としては、充填材を混入した任意の熱硬化性樹脂を使用することができるが、室温での粘度が50ポイズ以下のものが好ましい。なお、充填材としては、例えば、球状の石英フィラ、シリカ、粉砕シリカ、および熔融シリカ等を使用することができ、その最大粒径は、凹部27における半導体チップ23と基板21との距離の1/2以下が好ましく、樹脂中におけるフィラの含有量は、20重量%以上70重量%以下とすることが好ましい。
 この樹脂は、半導体チップ23および回路基板21の表面および、バンプ電極の内側面で囲まれる間隙の体積の1倍以上2倍以下の体積で用いることが好ましい。
 本実施例の半導体装置は、例えば、以下に示す工程で製造することができる。図12に、製造工程を表わす断面図を示す。まず、図12(a)に示すように、回路基板21にハンダバンプ25を介して半導体チップ23を接続する。
 次に、図12(b)は吐出量を制御する機能を有する液体吐出装置30を用いて、半導体チップ23の4辺のうちの1辺の端部に封止樹脂26を塗布する。続いて、回路基板を40℃から60℃に加熱して樹脂の粘度を低下させることにより、樹脂26は、図12(c)に示すように、毛細管現象によって半導体チップ23と回路基板21との間隙に流入する。
 最後に、オーブン中で加熱して、図12(d)に示すように樹脂を硬化させる。なお、加熱は、100℃で1時間、続いて120℃で3時間行ない、その雰囲気は、例えば、大気雰囲気、酸素濃度2%以下の窒素雰囲気、または1Pa以下の減圧雰囲気中とすることができる。
 以上の工程により、本発明の半導体装置が得られる。次に、具体例を示して、本発明をより詳細に説明する。8×8mm、深さ50±10μmの凹部が表面に形成されたガラスエポキシ製回路基板(50×35mm)の接続電極に、ハンダバンプにより半導体チップ(10.2×10.4mm)を接続した。なお、接続後のバンプの高さは70μmであった。
 半導体チップと回路基板との間隙内に、上述の方法を用いて樹脂を配置した。なお、本実施例においては、ビスフェノール系エポキシ、イミダゾール硬化触媒、酸無水物硬化剤、および球状の石英フィラー(平均粒径7μm、最大粒径20μm)を約40重量%の割合で含有し、室温での粘度が40ポイズのものを使用し、その量は、間隙の体積の3倍とした。
 この際、樹脂の流入距離と流入速度との関係を測定し、図13(a)中に曲線hで示した。なお、流入距離は、図13(b)に示すようにして測定した。さらに、比較例として、図14(a)および(b)に示すような従来の構造の半導体装置に、前述と同様の樹脂を注入し、その際の流入距離と流入速度との関係を調べた。なお、図14(a)に示す構造は、基板31の表面が平坦であり、図14(b)に示す構造では、基板表面が平坦であることに加えて、バンプ25の周囲にエポキシコーティング38が施されている。
 図14(a)および(b)に示す構造体に樹脂を注入する際に得られた結果を、図13中にそれぞれ曲線iおよび曲線jで示した。図13に示すように、流入が進むにつれて、樹脂の流入速度は低下する傾向にあるが、本発明(曲線h)の場合には、流入速度の低下が小さく十分な速度を維持できる。したがって、容易に含浸を行なえることがわかる。
 これに対して、曲線iに示されるように、図14(a)に示すような構造において樹脂含浸を行った場合には、間隙での流入速度が小さくなって含浸が不可能となる。なお、このような構造において、含浸を容易にするために低粘度樹脂を用いた場合には、半導体チップの周囲での樹脂の流入速度が大きくなるために、樹脂中に気泡を巻き込み易くなるおそれがある。
 また、曲線jに示すように、図14(b)に示すような構造においては、ハンダバンプが形成されているチップの周辺部での間隙寸法が小さいために、樹脂の流入速度は、この領域で著しく減少する。したがって、含浸が不可能となることがわかる。
 次に、チップの寸法を変えて、前述の樹脂を注入し、その際の樹脂含浸の可否、および含浸工程での気泡の巻き込みの有無を調べた。なお、樹脂の含浸状態の観察を容易にするために、ガラスチップを用い、チップ寸法は5.14×4.8mm、10.2×10.4mm、および12.52×11.96mmの3種類とした。これらのチップを実装するための基板表面の凹部の寸法は、それぞれ3.2×3.0mm、8.0×8.0mm、11.6×11.0mmとし、凹部の深さはいずれも50±10μmとした。
 さらに、比較例として、前述の図14(a)に示す構造体に同様の樹脂を注入して、その際の樹脂含浸の可否、および含浸工程での気泡の巻き込みの有無を調べた。得られた結果をそれぞれ下記表1および表2にまとめる。
Figure 2004134821
Figure 2004134821
 表1に示すように、本発明の半導体装置は、基板温度を40℃に設定することで、チップの寸法が大きくなっても含浸は可能であり、気泡の巻き込みも発生しなかった。
 一方、従来の構造の比較例では、40℃の加熱温度では、樹脂の含浸が困難であったため、基板温度を80℃にして樹脂の粘度を下げた状態での含浸も行った。その結果、基板温度を40℃とした場合には、10.2mm×10.4mmのチップを用いた場合に含浸不可能となる試料が発生し、12.52mm×11.96mmのチップでは、全て不良となった。また、基板温度を80℃とした場合には、5.14mm×4.8mmの最小のチップでも気泡の巻き込みが発生した。
 以上のことから、本実施例のように基板表面に凹部を形成することによって、樹脂含浸時の流入性が向上するので、大型の半導体チップの樹脂封止が可能であること、さらに樹脂含浸時の気泡の巻き込み防止にも効果があることがわかる。
 (実施例II)
 図15に、実施例IIの半導体装置の一例を表わす断面図を示す。
 図15に示すように、半導体装置40は、回路基板41の接続電極42に、シリコン製半導体チップ43の接続電極44が、ハンダバンプ45により接続されている。また、半導体チップ43と回路基板41との間隙および半導体チップ43の周辺部分には樹脂46が配置されている。
 回路基板41の材質は、特に限定されるものではなく、例えば、ガラスエポキシ製、アラミドエポキシ製、BTレジン製、アルミナセラミックス、窒化アルミニウム、ガラス製等の基板を使用することができる。
 なお、接続電極42は銅、または銅、ニッケル、金を順次積層することにより形成することができる。接続電極44は、チタンとニッケルとを順次積層することにより形成することができ、チタンとニッケルと金またはパラジウムを順次積層することによって形成してもよい。また、ハンダバンプ45は、SnとPbとの比率が6対4の組成物からなり、その高さは50ないし80μmとすることができる。
 間隙に配置される樹脂46としては、実施例Iで説明したものと同様の任意の熱硬化性樹脂を使用することができるが、室温での粘度が50ポイズ以下のものである。なお、充填材としては、その最大粒径は、半導体チップ表面と基板表面との距離の1/2以下とする以外は、前述と同様の球状の石英フィラ等を使用することができる。なお、樹脂中におけるフィラの含有量は、20重量%以上70重量%以下とする。
 この樹脂は、半導体チップ23および回路基板21の表面および、バンプ電極の内側面で囲まれる間隙の体積の1倍以上3倍以下の体積で用いる。図15に示した半導体装置は、例えば、以下に示すような工程で製造することができる。図16に、製造工程を表わす断面図を示す。
 まず、図16(a)に示すように、回路基板41にハンダバンプ45を介して半導体チップ43を接続する。次に、図16(b)は吐出量を制御する機能を有する液体吐出装置50を用いて、半導体チップ43の4辺のうちの1辺の端部に封止樹脂46を塗布する。
 続いて、回路基板を40℃から60℃に加熱して樹脂の粘度を低下させることにより、樹脂46は、図16(c)に示すように、毛細管現象によって半導体チップ43と回路基板41との間隙に流入する。
 最後に、オーブン中で加熱して、図16(d)に示すように樹脂を硬化させる。なお、加熱は、100℃で1時間、続いて120℃で3時間行ない、その雰囲気は、例えば、大気雰囲気、酸素濃度2%以下の窒素雰囲気、または1Pa以下の減圧雰囲気中とすることができる。
 以上の工程により、図15に示した半導体装置が得られる。次に、具体例を示して、本実施例をより詳細に説明する。ガラスエポキシ製回路基板(50×35mm)の接続電極に、ハンダバンプにより半導体チップ(10.2×10.4mm)を接続した。なお、接続後のバンプの高さは70μmであり、基板、チップおよびバンプ電極で囲まれた間隙の体積は7.4mm3 であった。
 さらに、半導体チップと回路基板との間隙内に、上述の方法を用いて樹脂を配置した。ここでは、ビスフェノール系エポキシ、イミダゾール硬化触媒、酸無水物硬化剤および球状の石英フィラー(平均粒径5μm、最大粒径12μm)を約40重量%の割合で含有し、室温での粘度が30ポイズのものを使用し、樹脂の体積は、半導体チップ、回路基板およびバンプ電極で囲まれた領域の体積の1.5倍とした。
 まず、配置する樹脂の体積を変化させ、チップ中央とチップ周辺とにおける樹脂量と流入速度との関係を調べた。得られた結果を図17に示す。なお、流入速度は、半導体チップの封止樹脂を塗布した辺から5mmの距離までの樹脂の流入速度の平均値を用いた。
 図17に示すように、半導体チップの周辺を流れる樹脂の速度は、樹脂の塗布量が大きくなるにしたがって急激に増大する。一方、チップ中央での流入速度は、塗布量によらずほぼ一定である。したがって、樹脂の塗布量が少ないほどチップの周辺と中央とでの流入速度との差が小さくなる。
 次に、樹脂の塗布量を変えて、前述の図16に示す工程で種類の試料を作製してボイドの発生数を調べた。なお、回路基板、半導体チップおよび樹脂は、前述と同様のものを使用した。得られた結果を下記表3に示す。
Figure 2004134821
 表3に示すように、封止樹脂の体積が、半導体チップと回路基板との間隙の体積の5倍以上となると、気泡の巻き込みが発生する。したがって、樹脂の体積は、間隙体積の3倍以下と限定することによって、ボイドの発生を防げることができる。
参考例の半導体装置を示す断面図。 参考例の半導体装置を示す平面図。 参考例の半導体装置の製造工程の一例を示す断面図。 参考例の半導体装置の製造工程の一例を示す断面図。 参考例の半導体装置の製造工程の他の例を示す断面図。 参考例の半導体装置の製造工程の他の例を示す断面図。 参考例の半導体装置の製造工程の他の例を示す断面図。 参考例の半導体装置の製造工程の他の例を示す断面図。 サイクル数と累積不良率との関係を示すグラフ図。 保持時間と累積不良率との関係を示すグラフ図。 本発明の半導体装置の一例を示す断面図。 本発明に係る半導体装置の製造工程を示す断面図。 樹脂の流入距離と流入速度との関係を示す図。 従来の構造の半導体装置を示す断面図。 本発明にかかる半導体装置の他の例を示す断面図。 本発明にかかる半導体装置の製造工程の他の例を示す断面図。 樹脂塗布量と流入速度との関係を示すグラフ図。 従来の半導体装置を示す断面図。 従来の半導体装置を示す断面図。 従来の半導体装置を示す断面図。 樹脂の流入距離と流入速度との関係を示すグラフ図。 半導体チップと回路基板との間に注入された樹脂の流入状態を示す図。
符号の説明
 1…半導体チップ,2…回路配線基板,3…バンプ電極,4…接続用端子
 5…第1の樹脂,6…第2の樹脂,7…最外周バンプ電極の中心
 8…Alボンディングパッド,9…半導体装置,10…バリアメタル
 11…パッシベーション膜,12…ソルダーレジスト,13…ステージ
 14…コレット,15…ディスペンサー,20…半導体装置,21…回路基板
 22…接続電極,23…半導体チップ,24…接続電極,25…ハンダバンプ
 26…樹脂,27…凹部,28…液体吐出装置,30…半導体装置,31…回路基板
 32…接続電極,33…半導体チップ,34…接続電極,35…ハンダバンプ
 36…樹脂,37…半導体装置,38…エポキシコーティング層,40…半導体装置
 41…回路基板,42…接続電極,43…半導体チップ,44…接続電極
 45…ハンダバンプ,46…樹脂,48…液体吐出装置,70…半導体装置
 71…回路配線基板,72…半導体チップ,73…バンプ電極,74…接続用端子
 75…接続用端子,77…半導体装置,78…従来の樹脂,80…半導体装置
 81…間隙部分,83…回路基板,84…半導体チップ,85…バンプ電極
 86…樹脂,87…気泡。

Claims (2)

  1.  回路配線基板と、この基板上にバンプ電極を介して実装された半導体素子とを具備し、前記回路配線基板と半導体素子との間隙および半導体素子の周囲に樹脂が配置された半導体装置において、
     前記バンプ電極は前記半導体素子の外周に沿って形成され、前記回路配線基板表面のバンプ電極で囲まれている領域内に凹部が形成されていることを特徴とする半導体装置。
  2.  回路配線基板と、この基板上にバンプ電極を介して実装された半導体素子とを具備し、前記回路配線基板と半導体素子との間隙および半導体素子の周囲に樹脂が配置された半導体装置において、
     前記樹脂は、室温で50ポイズ以下の粘度を有し、最大粒径が前記半導体素子と回路配線基板との距離の1/2以下の充填材を、20ないし70重量%の割合で含有し、前記間隙体積の1倍以上3倍以下の体積で配置されていることを特徴とする半導体装置。
JP2004031161A 2004-02-06 2004-02-06 半導体装置 Expired - Fee Related JP3846890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031161A JP3846890B2 (ja) 2004-02-06 2004-02-06 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031161A JP3846890B2 (ja) 2004-02-06 2004-02-06 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP351895A Division JP3648277B2 (ja) 1995-01-12 1995-01-12 半導体装置

Publications (2)

Publication Number Publication Date
JP2004134821A true JP2004134821A (ja) 2004-04-30
JP3846890B2 JP3846890B2 (ja) 2006-11-15

Family

ID=32291504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031161A Expired - Fee Related JP3846890B2 (ja) 2004-02-06 2004-02-06 半導体装置

Country Status (1)

Country Link
JP (1) JP3846890B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103450A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd モジュールの製造方法
JP2009071155A (ja) * 2007-09-14 2009-04-02 Fujitsu Ltd 半導体装置およびその製造方法
JP2012124238A (ja) * 2010-12-07 2012-06-28 Namics Corp 電子部品実装体、および電子部品の実装方法
CN111584435A (zh) * 2020-05-14 2020-08-25 南通通富微电子有限公司 基板、芯片封装结构及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103450A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd モジュールの製造方法
JP4752717B2 (ja) * 2006-10-18 2011-08-17 パナソニック株式会社 モジュールの製造方法
JP2009071155A (ja) * 2007-09-14 2009-04-02 Fujitsu Ltd 半導体装置およびその製造方法
JP2012124238A (ja) * 2010-12-07 2012-06-28 Namics Corp 電子部品実装体、および電子部品の実装方法
CN111584435A (zh) * 2020-05-14 2020-08-25 南通通富微电子有限公司 基板、芯片封装结构及其制备方法
CN111584435B (zh) * 2020-05-14 2023-11-24 南通通富微电子有限公司 基板、芯片封装结构及其制备方法

Also Published As

Publication number Publication date
JP3846890B2 (ja) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3648277B2 (ja) 半導体装置
JP4534062B2 (ja) 半導体装置
US5864178A (en) Semiconductor device with improved encapsulating resin
US7816780B2 (en) Semiconductor apparatus and manufacturing method of semiconductor apparatus
US7300865B2 (en) Method for bonding IC chips to substrates incorporating dummy bumps and non-conductive adhesive
US6373142B1 (en) Method of adding filler into a non-filled underfill system by using a highly filled fillet
US8338287B2 (en) Semiconductor device and method for manufacturing the same
US7955896B2 (en) Method of manufacturing stacked semiconductor device
JP4206631B2 (ja) 熱硬化性液状封止樹脂組成物、半導体素子の組立方法及び半導体装置
US6605491B1 (en) Method for bonding IC chips to substrates with non-conductive adhesive
US20090017582A1 (en) Method for manufacturing semiconductor device
JP3454977B2 (ja) 半導体装置及びその製造方法
JP2003258034A (ja) 多層配線基体の製造方法および多層配線基体
JPH10294337A (ja) 半導体装置及びその製造方法
JP3846890B2 (ja) 半導体装置
JP4089531B2 (ja) 半導体装置の製造方法
JP6123836B2 (ja) 半導体装置の製造方法
JP2000290471A (ja) 封止用樹脂組成物
JP5245270B2 (ja) 半導体装置及びその製造方法
JP2000036506A (ja) 半導体装置の製法
JPH09172110A (ja) 半導体装置
JP3333355B2 (ja) 半導体装置
JP2000164610A (ja) 半導体装置及びその製造方法
JP2008147510A (ja) フリップチップ実装方法
JP2001352013A (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees