JP2004134747A - 高温基板移送用ロボット - Google Patents
高温基板移送用ロボット Download PDFInfo
- Publication number
- JP2004134747A JP2004134747A JP2003200100A JP2003200100A JP2004134747A JP 2004134747 A JP2004134747 A JP 2004134747A JP 2003200100 A JP2003200100 A JP 2003200100A JP 2003200100 A JP2003200100 A JP 2003200100A JP 2004134747 A JP2004134747 A JP 2004134747A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- end effector
- link
- substrate
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67259—Position monitoring, e.g. misposition detection or presence detection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67748—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/106—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
- B25J9/1065—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
- B25J9/107—Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms of the froglegs type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39192—Compensate thermal effects, expansion of links
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49169—Compensation for temperature, bending of tool
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49207—Compensate thermal displacement using measured distance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Manipulator (AREA)
Abstract
【課題】処理システム内で基板を移送する為の、熱的影響を最小限にされたロボットを提供する。
【解決手段】処理システム100内で基板112を移送する為のロボット108は、本体と、リンクと、エンドエフェクタとを含み、エンドエフェクタは、基板を上部に維持するように適合されている。リンクは、本体にエンドエフェクタを結合する。エンドエフェクタ及び/又はリンクは、約5×10−6K−1未満の熱膨張係数を持つ材料から構成される。また、エンドエフェクタ及び/又はリンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比を持つ材料から構成される。
【選択図】図2
【解決手段】処理システム100内で基板112を移送する為のロボット108は、本体と、リンクと、エンドエフェクタとを含み、エンドエフェクタは、基板を上部に維持するように適合されている。リンクは、本体にエンドエフェクタを結合する。エンドエフェクタ及び/又はリンクは、約5×10−6K−1未満の熱膨張係数を持つ材料から構成される。また、エンドエフェクタ及び/又はリンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比を持つ材料から構成される。
【選択図】図2
Description
【発明の説明】
【0001】
[0001] 本願は、2001年7月12日に出願された米国特許出願第09/905091の一部継続出願および2001年7月12日に出願された同時係属出願であり、両方とも参考として全体が組み込まれている。
【発明の背景】
【0002】
発明の分野
[0002] 本発明の実施形態は、全体的に高温半導体処理システムで利用されるロボットコンポーネントに関する。
【0003】
関連技術の背景
[0003] 半導体基板処理は、基板上にデバイス、導体、絶縁体を作製する為に、通常、基板に複数の連続処理を受けさせることにより実行される。これらの処理は、生産処理の単一ステップを実行するように構成された処理チャンバ内で一般的に実行される。全体の連続処理を効率よく完了するために、多くの処理チャンバは、通常、中央移送用チャンバに結合され、この中央移送用チャンバは、ロボットを収容し、周囲の処理用チャンバ間の基板移送を容易にしている。この構成を有する半導体処理用プラットフォームは、クラスタツールとして一般的に知られており、これらの一例は、PRODUCER(登録商標)、 CENTURA(登録商標), ENDURA(登録商標)処理用プラットフォームのファミリーである。
【0004】
[0004] 通常、クラスタツールは、内部にロボットを配置させた中央移送用チャンバから成る。移送用チャンバは、一般的に、一以上の処理用チャンバにより囲まれている。処理用チャンバは、一般的に基板を処理する為に利用され、例えば、いろいろな処理ステップ(エッチング、物理蒸着、イオン注入、リソグラフィ等)を実行する。移送用チャンバは、それぞれが複数の基板を収容する複数の取り外し可能なカセットや基板貯蔵庫を収容するファクトリ・インターフェースに結合されることがある。移送用チャンバの真空環境とファクトリ・インターフェースの一般的な周囲環境との間の移送を容易にするため、ロードロック・チャンバが、移送用チャンバとファクトリ・インターフェースとの間に配置されている。
【0005】
[0005] 基板上に形成されるデバイスの特徴サイズやライン幅が減少するにつれて、低い欠陥率で繰り返しのデバイス製造を確実にする為に、移送用チャンバを囲む様々なチャンバ内の基板の位置的精度は最高になってきた。さらに、増加されたデバイス密度と大規模基板径のため、基板上に形成されるデバイス量は増えており、各基板の価値は大いに増加した。したがって、基板の不整列を理由とする非協調の為、基板に対する損傷や歩どまり損失は、非常に望ましくない。
【0006】
[0006] 処理システムを通して基板の位置精度を高める為に、多くの策が実施されてきた。たとえば、インターフェースは、しばしばセンサで装備され、センサは基板の不整列を基板貯蔵用カセット内で検知する。Chokshi氏などによって2000年5月2日に出願された米国特許第09/562252を参照されたい。ロボットの位置の較正は、より複雑化した。Chokshi氏などによって2000年10月30日に出願された米国特許第09/703061号を参照されたい。さらに、ロボットのブレード上の基板不整列を補償する為に、複数の方法が考案されてきた。Freerks氏等に対し発行された米国特許出願第5980194号、T. Matsumoto氏に1990年7月31日に発行された特許第4944650号を参照されたい。
【0007】
[0007] しかし、ロボットの精度を高める、これらの方法論は、熱が高温ウエハ及び処理チャンバ内の高温表面からロボットに伝達されるときにロボットが受ける熱膨張熱や収縮を一般的に補償するものではない。処理技術を進化させるにつれて、多くの処理の為に高い動作温度になり、移送用ロボットは、ますます高温に晒される。移送用ロボットの熱的露出、ロボット・リンク長や到達(リーチ)距離の増加のため、ロボットの熱膨張が実質的に基板の不整列の一因となっていることが明らかになった。
【0008】
[0008] たとえば、物理蒸着(PVD)を実行する処理チャンバ内で、処理温度は、200℃になる可能性がある。さらに、一部のCVDの温度は、400℃に達する。チャンバ内の処理が完了すると、ロボットの一部(一般的にはブレード及びリンクの一部)がチャンバ内に入り、熱い基板を取り出さなければならない。ロボットによって基板が保持されている間、基板および周囲領域からの熱エネルギがロボット・リンクに伝達される。熱エネルギの増加は、一般的に、リンクの膨張の原因になり、そのため、ロボットのコントローラに対するフィードバックがなければブレードの中央基準位置はずれる。これは、コントローラにより予期された位置とは異なる位置にブレード(及び基板)が置かれる原因になる。ロボット・リンクの冷却は、これらが冷やされるにつれてリンクが短くなることにより、同様の問題を生じさせる。このように、ブレードの中央基準位置の熱的ずれの為、後続する移送の間、他のチャンバ内で誤った位置決めがロボットによりなされる可能性がある。
【0009】
[0009] さらに、中心発見方法や装置を備えたシステムであっても、ロボットに対する熱的変化によって導入される誤差を解消することはできない。たとえば、中心発見センサが基板エッジに沿って場所を記録する一方、ある基板中央発見方法が基板を回転させる。
回転中心に関する基板中心が見つかる。基板の中心位置が知られると、ロボットは基板中心位置まで送られる。この技術や、それと同様な他の技術は、基板位置におけるオフセットを見つけるが、ロボット位置決めにおける誤差を見つけるものではない。ロボットは、リンク長が異なるため、予期された位置とは異なる位置に進むと、基板移送中、正しく位置決めされず、これは、基板損傷や欠陥処理になる可能性がある。
【0010】
[0010] 基板がブレード上にある間(特に、ロボットが後退位置にあるとき)、基板エッジのデータを集めることにより中心の発見を実行する装置では、誤差は一層、劇的かもしれない。これは、ロボットの位置誤差の大きさが、伸ばされた位置と比較して、後退位置では非常に異なるからである。
【0011】
[0011] さらに、熱的変化、或いは、ロボットの温度が多くの基板にわたって変化する長期影響のため、ロボット・リンクは、チャンバ間の移動中に長さが変化するかもしれない。このように、一つのチャンバで決定された基板中心のデータは、基板がその目的地(例えば、第2チャンバ)に達する時点では、多くの場合、正しくない。
【0012】
[0012] したがって、低い熱膨張を持ち、ロボット位置決めにおける熱的影響を最小限にするロボット構成要素が必要である。
【発明の概要】
【0013】
[0013] 全体的に基板を移送する為のロボットが提供される。一実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部に基板を維持するように適合されている。エンドエフェクタ及び/又はリンクは、5×10−6K−1未満の熱膨張係数を持つ材料から構成されている。
【0014】
[0014] 他の実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部で基板を維持するように適合されている。リンク及び/又はエンドエフェクタは、エンドエフェクタを持つか、或いは、リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張の比を持つ材料から構成される。
【0015】
[0015] 他の実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部で基板を維持するように適合されている。リンク及び/又はエンドエフェクタは、約10W/(m×K2)を越える熱導電率/熱膨張の比と、約1×106Pa×m0.5を越える破壊靱性を持つ材料から構成される。
【0016】
[0016] 本発明の上記列挙の特徴が達成され、詳細に理解される方式で、本発明の具体的な説明は、上記に簡単に要約されたが、添付図面に示された実施形態を参照する。
【0017】
[0017] しかし、添付図面は、単に典型的な本発明の実施形態を示すにすぎず、そのため、本発明の範囲が限定されると考えられるべきではなく、他の有効な実施形態も同様に許容されてもよいことに留意すべきである。
【好適実施形態の詳細な説明】
【0018】
[0018] 図1は、ロボット108の位置を決定する為の方法が実行される半導体処理システム100の一実施形態を表す。典型的な処理システム100は、一般的に移送用チャンバ102を含み、移送用チャンバ102は一以上の処理チャンバ104とファクトリ・インターフェース110と、一以上のロードロック・チャンバ106とにより外接されている。ロードロック・チャンバ106は、移送用チャンバ102とファクトリ・インターフェース110との間に概して配置され、移送用チャンバ102内で維持された真空環境と、ファクトリ・インターフェース110内で維持された周囲環境との間で基板移送を容易にする。本発明から利益を得るのに適している処理システムの一例は、カリフォルニア州サンタクララ市のアプライドマテリアルズ社から入手可能なCENTURA(登録商標)処理プラットフォームである。ロボットの位置を決定する為の方法は、例示的処理システム100を参照して説明されるが、この説明は、一例であり、したがって、当該方法は、ロボットまたはロボットの構成要素が温度変化あるいはロボットにより移送される基板の基準位置が望まれる適用例において、ロボットの位置や決定が望まれるときにはいつでも、実行可能である。
【0019】
[0019] ファクトリ・インターフェース110は、一般的に一以上の基板貯蔵用カセット114を収容する。各カセット114は、内部に複数の基板を貯蔵するように構成されている。ファクトリ・インターフェース110は、大気圧またはそれに近い圧力で一般的に保たれている。一実施形態において、濾過された空気は、ファクトリ・インターフェース110に供給され、ファクトリ・インターフェース内部の粒子の濃度、対応する基板のクリーン度を最小にする。本発明から利益を得るのに適したファクトリ・インターフェースの一例は、Kroeker氏により、1998年9月28日に出願された米国特許出願第09/161970号に記載されており、その全体が参考の為に本願に組み込まれている。
【0020】
[0020] 移送用チャンバ102は、アルミニウムのような材料の単体から一般的に製造される。移送用チャンバ102は、排気可能な内部容積128を画成し、それを通じて、基板は処理用チャンバ104間で移送され、処理用チャンバ104は移送用チャンバ102の外側に結合されている。ポンピング・システム(図示せず)は、チャンバ・フロア上に配置されたポートを通じて移送用チャンバ102に結合され、移送用チャンバ102内部の真空を保つ。一実施形態において、ポンピング・システムは、タンデム内でターボ分子ポンプまたは低温ポンプに結合された大雑把なポンプを含む。
【0021】
[0021] 処理チャンバ104は、通常、移送用チャンバ102の外部にボルトで締められている。利用可能な処理用チャンバ104の例は、エッチング用チャンバ、物理蒸着用チャンバ、化学蒸着用チャンバ、イオン注入用チャンバ、オリエンテーション用チャンバ、リソグラフィ用チャンバなどを含む。異なる処理用チャンバ104は、移送用チャンバ102に結合可能であり、予め規定された基板表面上の構造または特徴を形成するのに必要な処理シーケンスを提供する。
【0022】
[0022] ロードロック・チャンバ106は、一般的に、ファクトリ・インターフェース110と移送用チャンバ102との間に結合されている。ロードロック・チャンバ106は、移送用チャンバ102の内部で、真空損失を有することなく、移送用チャンバ102の真空環境と、ファクトリ・インターフェース110の実質的に周囲環境との間で、基板の移送を容易にするために一般的に使用されている。各ロードロック・チャンバ106は、スリット・バルブ226(図2参照)の使用を介して、選択的に移送用チャンバ106とファクトリ・インターフェース110から選択的に分離される。
【0023】
[0023] 基板移送用ロボット108は、移送用チャンバ102の内部容積128内に概して配置され、移送用チャンバ102に外接するいろいろなチャンバ間で基板112の移送を容易にする。ロボット108は、移送中に基板を支える為に利用される一以上のブレードを含んでもよい。ロボット108は、2以上のブレードを持ち、各ブレードは、独立して制御可能な(デュアルブレードロボットとして知られる)モータに結合されるか、共通のリンクを通じてロボット108に結合された2つのブレードを持つ。
【0024】
[0024] 一実施形態において、移送用ロボット108は、(フロックレッグ型)リンク132によりロボット108に結合された単一ブレード130を持つ。一般的に、一以上のセンサ116が各々の処理チャンバ104の近傍に配置され、ロボットの位置を決定する際に利用される計量またはロボットの動作上パラメータのデータ取得を始動させる。データは、別個に使用可能であり、また、ロボットパラメータと協調させて使用可能であり、ブレード130上に維持された基板112の基準位置を決定する。
【0025】
[0025] 一般的に、センサ列116は、ロードロック106及び処理用チャンバ104に移送用チャンバ102を結合する通路近傍にある移送用チャンバ102の上または内部に配置されている。センサ列116は、一以上のセンサから構成可能であり、これらのセンサは、ロボット計量及び/又は基板位置的情報のデータ取得を始動する為に利用される。
【0026】
[0026] 前述したシステム100の制御を容易にするため、コントローラ120は、システム100に結合されている。コントローラ120は、一般的に、CPU122、メモリ124、サポート回路126を含む。CPU122は、いろいろなチャンバやサブプロセッサを制御する為に工業用設定で使用できるコンピュータプロセッサの形式の一つでもよい。メモリ124は、CPU122に結合されている。メモリ124、又はコンピュータで読取り可能な媒体は、一以上の容易に利用可能なメモリ(例えば、ランダムアクセスメモリー(RAM)、読取り専用記憶装置(ROM)、フロッピーディスク、ハードディスク、デバイスバッファ、他形式のデジタル記録装置、ローカルまたは遠隔式媒体)でもよい。サポート回路126は、CPU122に結合され、従来方式でプロセッサを支援する。これらの回路126は、キャッシュ、電源装置、クロック回路、入出力回路、サブシステム等、を含んでもよい。
【0027】
[0027] 図2は、移送用チャンバ102、それらに結合された一以上の処理用チャンバ104を例示するシステム100の一部断面図を示す。実例となる基板移送は、処理用チャンバ104と移送用チャンバ102との間で説明されているが、以下に説明された移送方法は、ロードロック・チャンバ106や他のチャンバを用いて、移送用チャンバ自体の内部で、ロボット・リンク132の長さの熱的変化に関する情報が望まれるときにはいつでも、移送における有用性を見つける。
【0028】
[0028] 実例となる処理用チャンバ104は、処理容積244を囲む、底部242、側壁240、リッド238を一般的に含む。一実施形態において、処理用チャンバ104は、PVD用チャンバでもよい。ペデスタル246は、処理容積244内に配置され、処理中に基板112を一般的に支持する。ターゲット248は、リッド238に結合され、電源250によりバイアスされている。ガス供給部252は、処理用チャンバ104に結合され、処理ガス及び他のガスを処理容積244に供給する。供給部252は、アルゴンのような処理ガスを提供し、アルゴンからプラズマが形成される。プラズマからのイオンは、ターゲット248と衝突し、材料を除去し、この材料は、その後、基板112上に堆積される。本発明から利益を得るPVDや他の処理用チャンバは、カリフォルニア州サンタクララ市のアプライドマテリアルズ社から入手可能である。
【0029】
[0029] 一般的に、移送用チャンバ102は、底部236、側壁234、リッド232を有する。移送用ロボット108は、一般的に、移送用チャンバ102の底部236上に配置されている。移送用チャンバ102の一側壁234は、一般的に、ポート202を含み、このポート202を通して、移送用ロボット108により基板が処理用チャンバ104の内部に送られる。ポート202は、スリット・バルブ226によって選択的に密閉され、移送用チャンバ102を処理用チャンバ104から隔離する。スリット・バルブ226は、チャンバ間の基板移送を許容する為に、図2に示されるように、一般的に、開放位置に移動される。利益を得る為に使用可能な一つのスリット・バルブは、Tepman氏等に、1993年7月13日に発行された米国特許第5226632号に記載され、その全体が参考の為に本願に組み込まれる。
【0030】
[0030] 移送用チャンバ102のリッド232は、一般的に、ポート202の近傍に配置されたウインドウ228を含む。センサ116は、一般的に、ウインドウ228上またはその近くに配置され、基板がポート202を通過するとき、センサ116はロボット108と基板112の一部を見ることができる。ウインドウ228は、石英または他の材料で製造され、これらの材料は、センサ116の検知機構(例えば、ウインドウ228を通して放射され反射してセンサに戻る光線)を実質的に妨害しない。他の実施形態において、センサ116は、ウインドウ228を通してビームを、チャンバ102の底部236内に配置された第2ウインドウの外側に配置された第2センサに放射してもよい。
【0031】
[0031] センサ116は、一般的に、ウインドウ228の外部上に配置されているので、センサ116は移送用チャンバ102の環境から隔離されている。また、チャンバ102内の位置を含む、センサ116の他の位置が利用可能であるが、これは、そこを通るロボット108や基板112の運動によって周期的にセンサ116が妨害される場合に限られる。センサ116は、コントローラ120に結合され、一以上のロボットや基板の、センサ状態の各変化における計量を記録するように構成されている。センサ116は、別個の放射及び受信ユニットを含んでもよく、「スルービーム」や「レフレクティブ」センサのような自己内蔵型でもよい。センサ116は、光学センサ、近接センサ、機械式リミットスイッチ、ホール効果、リードスイッチ、ロボット108や基板の存在を検知する為に適した他のタイプの検知機構でもよい。
【0032】
[0032] 一実施形態において、センサ116は、移送用チャンバの外に配置された光放射及びレシーバを備える。使用に適した一つのセンサは、ミネソタ州ミネアポリス市に所在するバナーエンジニアリング社から入手可能である。センサからの信号(例えば、光のビーム204)をロボット108や基板112が妨害するように、センサ116が位置決めされている。ビーム204の妨害状態及び非妨害状態への復帰は、センサ116の状態変化を引き起こす。例えば、センサ116が非妨害状態にあるときには4mAを出力し、妨害状態で20mAを出力する場合、センサ116は4から20mAの出力を持てばよい。他の出力を持つセンサは、センサの状態の変化を合図する為に利用可能である。
【0033】
[0033] 図3は、移送用ロボット108の一実施形態の平面図である。移送用ロボット108は、一般的に、ロボット本体328を備え、ロボット本体328は、リンク132によりエンドエフェクタ(例えば、基板112を支えるブレード130)に結合されている。エンドエフェクタは、いろいろな方式で上部に基板を維持するように構成され、例えば、静電的なもの、真空チャック、クランピング、エッジ把持などがある。一実施形態において、リンク132は、フロッグ−レッグ型構成を有する。リンク132用の他の構成として、例えば、ポーラ構成が代替え的に利用可能である。本発明から利益を得るポーラロボットの一例は、Ettinger氏などにより、2000年4月11日に出願された米国特許出願第09/547,189号に記載されている。
【0034】
[0034] リンク132は、一般的に、2つのアーム312にエルボー316で結合された2つのウイング310を含む。各々のウイング310は、ロボット本体328の内部で同心上に積み重ねられた電気モータ(図示せず)に追加して結合されている。各アーム312は、ブッシング318により、リスト330に結合されている。リスト330は、リンク132をブレード130に結合する。通常、リンク132は、アルミニウムで製造されているが、十分な強度と、小さな熱膨張係数を持つ材料(例えば、チタン、ステンレス鋼、セラミック(例えば、チタン・ドープ・アルミナ))も同様に利用可能である。
【0035】
[0035] リンク132及び/又はリスト330の材料は、基板移送中、熱的影響を最小限にするように選択可能である。たとえば、リンク132及び/又はリスト330は、約10W/(m×K2)を越える熱伝導率/熱膨張の比を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、約5K−1未満の熱膨張係数を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、1×106Pa×m0.5を越える破壊靱性を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、約50m2.5/(kg0.5 ×s)を越える適したE0.5/ρ(弾性係数の平方根を材料密度で除したもの)の材料を持つ材料を備えてもよい。リンク132及び/又はリスト330は、上記列挙した特性のいかなる組合せを持つ材料を備えてもよい。リンク132及び/又はリスト330の製造に適した材料の例には、アルミニウム/炭化けい素複合物、結晶化ガラス(NEOCERAM(登録商標)、N−0、NEOCERAM(登録商標)、N−11)、アルミニウム/鉄複合物、炭素、炭素マトリクス複合物、キャスト・アルミニウム合金、商用の純粋なクロム、黒鉛、モリブデン・チタン合金、モリブデン・タングステン合金、商業上純粋なモリブデン、ZERODUR(登録商標)INVAR(登録商標)、チタンTi−6Al−4V合金、8090のアルミニウムMMCと金属基複合材料を含むが、これらに限定されるものではない。金属マトリクス複合物は、一般的に、30%までのシリコンカーバイド粒子状物質のような充填材を備えた、アルミニウムや他の軽金属(例えば、マグネシウム、チタン、アルミニウム、マグネシウム合金、チタン合金、アルミニウム合金)を含む。他の充填剤も、前述したような物理特性を一以上得る為に利用可能である。
【0036】
[0036] 周囲の温度において、各ウイング310は、長さ「A」を持ち、各アーム312は、長さ「B」を持ち、リスト330上の、ブッシング318間の距離の半分は、長さ「C」を持ち、距離「D」はブッシング318とブレード130のブレード中心点320との間で規定されている。ロボットのリーチ「R」は、ブレード130の中心320とライン「T」に沿ったロボットの中心314との間の距離として定義されている。各々のウイング310は、ラインTを持つ角度qをなす。
【0037】
[0037] 各々のウイング310は、同心上に積み重ねられたモータの一つにより独立して制御される。モータが同一方向に回転するとき、ブレード130はロボット本体328の中心314の周りに一定半径で、角度wで回される。モータの両方が反対方向に回転させられるとき、それに応じて、リンク132は、拡張または収縮し、そのため、ロボット108の中心を参照してTに沿って内側または外側に半径方向にブレード130を移動させる。もちろん、ロボット108は、同時に半径方向と回転運動とを組み合わせる結果、ハイブリッド運動が可能である。
【0038】
[0038] 基板112が移送用ロボット108により移動させられるとき、センサ116は、基板又はロボットの一部を検知し、所定位置(例えば、ポート202近傍の位置)に到達する。
【0039】
[0039] 一実施形態において、センサ116は、センサ列(例えば、4つのセンサ)を備え、これらは、基板及び/又はロボットの異なる位置で妨害され、ロボット108の単一通過中、複数のデータ設定を取り込む。たとえば、ビーム204を通過するロボット108のリスト330のエッジ332は、基板が第1センサ302、第2センサ304、第3センサ306、第4センサ308の状態変化を引き起こす間、第1センサ302及び第2センサ304の状態変化を引き起こす。本発明は、リスト330又は基板112がセンサ302,304,306,308を起動させるとして説明されているが、センサは、ロボット108の他の構成要素によって起動されてもよい。
【0040】
[0040] 図4は、ロボットのリスト330の一実施形態を表す。ロボットのリスト330は、平坦な上面402、側部404を持つように構成され、これらは、互いに直角に概して配置されている。側部404と上面402の間の接合部は、角度が付けられたエッジ又は面取部406を概して持ち、センサ116のビーム204により散乱される光量を減少させている。上面402と側部404の間の鋭いエッジや面取りされた移行部406は、センサ状態の明確な変化を提供し、これが、以下に説明されるデータ取得の精度を高めている。
【0041】
[0041] 図3に戻ると、リスト330は、1以上のセンサ116を通過するとき、センサは遮断状態から非遮断状態へと、或いは、非遮断状態から遮断状態へと変化する。センサ状態の変化は、センサ116に関して所定位置にあるロボット108(又は、基板112)に概して対応する。ロボット108が、これらの所定位置の一つを通過する各々の時間、その事象の時間におけるロボットの計量は、コントローラ120のメモリ124内に記録される。一般に各々の事象で記録されるロボット計量にはセンサ番号、センサ状態(遮断または非遮断)、2つのロボット用モータの、各々の現在の位置、2つのロボット用モータの速度、タイムスタンプを一般的に含む。2つの事象において、ロボットの計量を利用することにより、コントローラ120は、熱的変化によるロボット・リンクの膨張又は収縮による、予定された位置Reに対するロボット108の、実際の位置Raの変化を分析することができる。コントローラ120は、ロボット108の他の膨張におけるブレード130の位置(又は、ロボットの他の基準位置)を分析する為に、熱膨張データを利用する。
【0042】
[0042] オプションとして、センサ116は、基板112の位置的データを取得し、基板の中心位置を決定する為に使用されてもよい。基板の中心位置は、ブレードの位置情報に沿って、或いは、協調させて使用されてもよい。
【0043】
[0043] ロボットの位置を決定するための方法は、メモリ124内に(通常は、ソフトウェア及びソフトウェア・ルーチンとして)記憶されている。ソフトウェア・ルーチンは、システムから遠くに配置またはCPUにより制御される第2のCPU(図示せず)により記憶及び/又は実行されてもよい。
【0044】
[0044] 図5は、ロボットの位置を決定する為の方法に係る一実施形態のブロック図を表す。当該方法500は、第1セットのロボット計量を取得することによりステップ502で開始する。一般的に、第1セットのロボット計量は、基板112を処理用チャンバ104の一つに運ぶ間にロボット108のリスト330がセンサ116を通過するとき、センサ116の一つの状態変化(トリップ動作)に応答して記録される。あるいは、基板112が処理用チャンバ104又は他の場所から後退されるとき、センサ116が妨害される。
【0045】
[0045] ステップ504では、第2セットのロボット計量が取得される。通常、第2セットのロボット計量は、リスト330がセンサ116の一つを通過するとき、センサ116の一つのトリップ動作(妨害)に応答して記録される。通常、センサ504において妨害されるセンサ116は、ステップ502において、基板112が処理用(或いは他の)チャンバ104内に運ばれるときに妨害される同一センサである。あるいは、ステップ502及びステップ504において、異なるセンサが妨害されてもよい。
【0046】
[0046] ステップ506では、ロボットの熱膨張によるロボットの実際の位置が、第1ロボット計量および第2ロボット計量を用いて分析される。一実施形態において、ロボットの熱膨張は、特定qに対しコントローラにより予定された距離Reと、センサ116をリスト330が通過するときのRaとの距離Rの変化を決定することにより分析されてもよい。この情報から、Reでロボットのブレード130を配置するために必要な角度として、q’がステップ508で計算されてもよい。オプションとして、ブレード130上に配置された基板112の中心位置を決定し訂正する為に、ステップ510が含められてもよい。
【0047】
[0047] たとえば、ロボットが伸びると、qは小さくなる。リーチRは、以下のように表現される:
【0048】
【数式1】
[0048] ロボット・リンク132(すなわち、ウイング、アーム、リスト)は、全て、同一材料で形成され、膨張率は、関連するリンク要素の温度上昇の比になろう。ロボット・リンク132が異なる材料で形成される場合、それぞれのリンク要素の各材料に対し、比は熱膨張係数により規準化される必要がある。いずれにせよ、EABとEBCは、リンク132の材料に依存した、およそ定数である。定数EABとEACから、各要素の相対的成長が以下のように表わされる。
【0049】
【数式2】
[0049] 各々のセンサの推移で、ロボットの位置qは手に入る。各々のリストの推移に対し、リーチRの変化は、以下のように表される:
dR=(センサ位置+リストエッジに対するブレード中心)−R(θ)
[0050] ロボットの構成要素の変化に対する拡張の変化は、以下の通りである:
【0050】
【数式3】
[0051] 各々の事象に対し、dBは以下のように計算される:
【0051】
【数式4】
[0052] センサ列を通ってロボットの単一通過中、複数のセンサがロボット計量を取得する為に使用される場合、この数値は平均化される。dAとdCは、それから計算される:
【0052】
【数式5】
[0053] このように、どんなqでもロボットの実際の位置が表される:
【0053】
【数式6】
[0054] ここで
A’=A+dA
B’=B+dB
C’=C+dC
[0055] このように、ブレード130をReに配置する為のqの修正は、以下のように表される:
【0054】
【数式7】
ここで、RCHは、周囲条件におけるR;
θ’は、R(θ’) = Reとするロボットの回転角である。
【0055】
[0056] 基板112の中心は、基板がセンサ列を通過するときに基板のエッジがセンサ116を妨害するときに記録されたロボット計量から付随的に計算可能である。基板112の周囲からのデータ位置は、基板の中心位置を三角測量するのに用いられる。
【0056】
[0057] 一実施形態において、手に入れられた基板エッジ位置の各々をXY座標システムに変換することにより実行されるが、ここで、0,0は、ブレード130の中心、Yは、ロボットの中心から外に離れて伸びる。次に、(手に入れられたエッジ位置からの)点のリストは、審査され、他の点と著しく同一円でない点は考慮されない。抜けた点は、例えば、一部の基板112で存在するノッチやフラット部がセンサ116の一つを通過するときに手に入れられる正当な点かもしれない。残りの点の各々は、三角形または円を規定する為に、3つの点の組合せにグループ分けされる。三角形の領域が非常に小さい場合、点の組合せは、円の計算の為に要注意の、かなりの誤差になるので、それ以上には考慮されない。次に、中心と半径は、3点の残りの、組合せの各々により規定される円の為に計算される。許容可能な範囲内の半径を持つ円の全てに対するXおよび座標は、その後、平均化され、X−Y中心の基板オフセットを得る。このXとYのオフセットを訂正する為に、dx =−x、dy=−yがロボットに適用され、基板を中心におく。
【0057】
[0058] チャンバ内の基板交換は、ロボットの回転と延長を備えて較正され、これがロボットブレード130を周囲温度でチャンバ内に適切にロボットブレードを位置決めする。延長はRCHと対応し、これは、処理用(他の)チャンバ104内のリーチである。dY値を加えることによって、基板オフセットを修正する為に、チャンバ内のリーチ量を計算することができる:
R=RCH+dY
[0059] 延長角(ウイング位置とチャンバ位置との間の角度)は、その後、ロボット108のリンク132の熱膨張に基づき、この延長に達するように計算される:
【0058】
【数式8】
[0060] ロボットの回転も同様にdXに基づき修正される。
【0059】
[0061] 当該方法は、コントローラのメモリ124に記憶された中心発見情報を用いて基板の中心位置を修正するステップを含んでもよい。基板の中心位置は、いろいろな方法を通じて見い出すことができる。ある方法は、ブレード上で基板を機械的に中心におく為に、基板の周囲に沿った多くの点に沿ってロボットのブレード上で基板を把持するステップを含む。他の方法は、ブレードに関する基板のエッジ位置を決める一以上のセンサを通じて、基板を直線で通過させるステップを含む。また更なる方法は、基板の周囲を見るセンサの近傍で基板を回転させるステップを含む。基板の周囲に沿って多くの点を記録することにより、基板の中心が三角測量されてもよい。
【0060】
[0062] 一旦基板の中心が決定され、メモリ内に記憶されるならば、基板中心位置は、熱的影響の為に位置の変化に関して更新されてもよい。さらに、ロボットが基板をチャンバからチャンバに移送し、ロボット(又は基板)が各センサを通るときにロボットの位置が再決定されるとき、反復的に中心位置が更新されてもよい。したがって、ロボットの位置における熱的影響は、基板の移送の各々に対し決定されるので、コントローラは、各移送に対する基板の位置を調整することができ、精度の良い、損傷の無い基板配置を確実にする。
【0061】
[0063] 本発明の処理は、ソフトウェア・ルーチンとして実行されるように検討されているが、本願で開示された方法のステップの幾つかは、それ自体又はコントローラによるハードウェアで実行されてもよい。このように、本発明は、ハードウェアにおけるコンピュータシステム上で実行されるソフトウェアで実行可能であるが、特定の集積回路や他のタイプのハードウェア実行あるいはソフトウェア及びハードウェアの組合せで実行されてもよい。
【0062】
[0064] 前述のことは、本発明の好適実施形態に向けられているが、本発明の他の、更なる実施形態は、本発明の基本的範囲を逸脱することなく考案可能であり、その範囲は請求の範囲によって決められる。
【図面の簡単な説明】
【0063】
【図1】図1は、ロボットの位置を決定するための方法が実行される半導体処理システムの一実施形態の平面図である。
【図2】図2は、図1の処理システムの一部断面図である。
【図3】図3は、半導体移送ロボットの一実施形態の平面図である。
【図4】図4は、図3のロボットの、リストの一実施形態を表わす。
【図5】図5は、ロボットの位置を決定する為の方法の、一実施形態のブロック図である。
【符号の説明】
【0064】
100…処理システム、102…移送用チャンバ、104…処理チャンバ、106…ロードロック・チャンバ、108…ロボット、110…ファクトリ・インターフェース、112…基板、114…基板貯蔵用カセット、116…センサ列、120…コントローラ、122…CPU、124…メモリ、126…サポート回路。
【0001】
[0001] 本願は、2001年7月12日に出願された米国特許出願第09/905091の一部継続出願および2001年7月12日に出願された同時係属出願であり、両方とも参考として全体が組み込まれている。
【発明の背景】
【0002】
発明の分野
[0002] 本発明の実施形態は、全体的に高温半導体処理システムで利用されるロボットコンポーネントに関する。
【0003】
関連技術の背景
[0003] 半導体基板処理は、基板上にデバイス、導体、絶縁体を作製する為に、通常、基板に複数の連続処理を受けさせることにより実行される。これらの処理は、生産処理の単一ステップを実行するように構成された処理チャンバ内で一般的に実行される。全体の連続処理を効率よく完了するために、多くの処理チャンバは、通常、中央移送用チャンバに結合され、この中央移送用チャンバは、ロボットを収容し、周囲の処理用チャンバ間の基板移送を容易にしている。この構成を有する半導体処理用プラットフォームは、クラスタツールとして一般的に知られており、これらの一例は、PRODUCER(登録商標)、 CENTURA(登録商標), ENDURA(登録商標)処理用プラットフォームのファミリーである。
【0004】
[0004] 通常、クラスタツールは、内部にロボットを配置させた中央移送用チャンバから成る。移送用チャンバは、一般的に、一以上の処理用チャンバにより囲まれている。処理用チャンバは、一般的に基板を処理する為に利用され、例えば、いろいろな処理ステップ(エッチング、物理蒸着、イオン注入、リソグラフィ等)を実行する。移送用チャンバは、それぞれが複数の基板を収容する複数の取り外し可能なカセットや基板貯蔵庫を収容するファクトリ・インターフェースに結合されることがある。移送用チャンバの真空環境とファクトリ・インターフェースの一般的な周囲環境との間の移送を容易にするため、ロードロック・チャンバが、移送用チャンバとファクトリ・インターフェースとの間に配置されている。
【0005】
[0005] 基板上に形成されるデバイスの特徴サイズやライン幅が減少するにつれて、低い欠陥率で繰り返しのデバイス製造を確実にする為に、移送用チャンバを囲む様々なチャンバ内の基板の位置的精度は最高になってきた。さらに、増加されたデバイス密度と大規模基板径のため、基板上に形成されるデバイス量は増えており、各基板の価値は大いに増加した。したがって、基板の不整列を理由とする非協調の為、基板に対する損傷や歩どまり損失は、非常に望ましくない。
【0006】
[0006] 処理システムを通して基板の位置精度を高める為に、多くの策が実施されてきた。たとえば、インターフェースは、しばしばセンサで装備され、センサは基板の不整列を基板貯蔵用カセット内で検知する。Chokshi氏などによって2000年5月2日に出願された米国特許第09/562252を参照されたい。ロボットの位置の較正は、より複雑化した。Chokshi氏などによって2000年10月30日に出願された米国特許第09/703061号を参照されたい。さらに、ロボットのブレード上の基板不整列を補償する為に、複数の方法が考案されてきた。Freerks氏等に対し発行された米国特許出願第5980194号、T. Matsumoto氏に1990年7月31日に発行された特許第4944650号を参照されたい。
【0007】
[0007] しかし、ロボットの精度を高める、これらの方法論は、熱が高温ウエハ及び処理チャンバ内の高温表面からロボットに伝達されるときにロボットが受ける熱膨張熱や収縮を一般的に補償するものではない。処理技術を進化させるにつれて、多くの処理の為に高い動作温度になり、移送用ロボットは、ますます高温に晒される。移送用ロボットの熱的露出、ロボット・リンク長や到達(リーチ)距離の増加のため、ロボットの熱膨張が実質的に基板の不整列の一因となっていることが明らかになった。
【0008】
[0008] たとえば、物理蒸着(PVD)を実行する処理チャンバ内で、処理温度は、200℃になる可能性がある。さらに、一部のCVDの温度は、400℃に達する。チャンバ内の処理が完了すると、ロボットの一部(一般的にはブレード及びリンクの一部)がチャンバ内に入り、熱い基板を取り出さなければならない。ロボットによって基板が保持されている間、基板および周囲領域からの熱エネルギがロボット・リンクに伝達される。熱エネルギの増加は、一般的に、リンクの膨張の原因になり、そのため、ロボットのコントローラに対するフィードバックがなければブレードの中央基準位置はずれる。これは、コントローラにより予期された位置とは異なる位置にブレード(及び基板)が置かれる原因になる。ロボット・リンクの冷却は、これらが冷やされるにつれてリンクが短くなることにより、同様の問題を生じさせる。このように、ブレードの中央基準位置の熱的ずれの為、後続する移送の間、他のチャンバ内で誤った位置決めがロボットによりなされる可能性がある。
【0009】
[0009] さらに、中心発見方法や装置を備えたシステムであっても、ロボットに対する熱的変化によって導入される誤差を解消することはできない。たとえば、中心発見センサが基板エッジに沿って場所を記録する一方、ある基板中央発見方法が基板を回転させる。
回転中心に関する基板中心が見つかる。基板の中心位置が知られると、ロボットは基板中心位置まで送られる。この技術や、それと同様な他の技術は、基板位置におけるオフセットを見つけるが、ロボット位置決めにおける誤差を見つけるものではない。ロボットは、リンク長が異なるため、予期された位置とは異なる位置に進むと、基板移送中、正しく位置決めされず、これは、基板損傷や欠陥処理になる可能性がある。
【0010】
[0010] 基板がブレード上にある間(特に、ロボットが後退位置にあるとき)、基板エッジのデータを集めることにより中心の発見を実行する装置では、誤差は一層、劇的かもしれない。これは、ロボットの位置誤差の大きさが、伸ばされた位置と比較して、後退位置では非常に異なるからである。
【0011】
[0011] さらに、熱的変化、或いは、ロボットの温度が多くの基板にわたって変化する長期影響のため、ロボット・リンクは、チャンバ間の移動中に長さが変化するかもしれない。このように、一つのチャンバで決定された基板中心のデータは、基板がその目的地(例えば、第2チャンバ)に達する時点では、多くの場合、正しくない。
【0012】
[0012] したがって、低い熱膨張を持ち、ロボット位置決めにおける熱的影響を最小限にするロボット構成要素が必要である。
【発明の概要】
【0013】
[0013] 全体的に基板を移送する為のロボットが提供される。一実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部に基板を維持するように適合されている。エンドエフェクタ及び/又はリンクは、5×10−6K−1未満の熱膨張係数を持つ材料から構成されている。
【0014】
[0014] 他の実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部で基板を維持するように適合されている。リンク及び/又はエンドエフェクタは、エンドエフェクタを持つか、或いは、リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張の比を持つ材料から構成される。
【0015】
[0015] 他の実施形態において、基板を移送する為のロボットは、リンクによりエンドエフェクタに結合された本体を含み、エンドエフェクタは、上部で基板を維持するように適合されている。リンク及び/又はエンドエフェクタは、約10W/(m×K2)を越える熱導電率/熱膨張の比と、約1×106Pa×m0.5を越える破壊靱性を持つ材料から構成される。
【0016】
[0016] 本発明の上記列挙の特徴が達成され、詳細に理解される方式で、本発明の具体的な説明は、上記に簡単に要約されたが、添付図面に示された実施形態を参照する。
【0017】
[0017] しかし、添付図面は、単に典型的な本発明の実施形態を示すにすぎず、そのため、本発明の範囲が限定されると考えられるべきではなく、他の有効な実施形態も同様に許容されてもよいことに留意すべきである。
【好適実施形態の詳細な説明】
【0018】
[0018] 図1は、ロボット108の位置を決定する為の方法が実行される半導体処理システム100の一実施形態を表す。典型的な処理システム100は、一般的に移送用チャンバ102を含み、移送用チャンバ102は一以上の処理チャンバ104とファクトリ・インターフェース110と、一以上のロードロック・チャンバ106とにより外接されている。ロードロック・チャンバ106は、移送用チャンバ102とファクトリ・インターフェース110との間に概して配置され、移送用チャンバ102内で維持された真空環境と、ファクトリ・インターフェース110内で維持された周囲環境との間で基板移送を容易にする。本発明から利益を得るのに適している処理システムの一例は、カリフォルニア州サンタクララ市のアプライドマテリアルズ社から入手可能なCENTURA(登録商標)処理プラットフォームである。ロボットの位置を決定する為の方法は、例示的処理システム100を参照して説明されるが、この説明は、一例であり、したがって、当該方法は、ロボットまたはロボットの構成要素が温度変化あるいはロボットにより移送される基板の基準位置が望まれる適用例において、ロボットの位置や決定が望まれるときにはいつでも、実行可能である。
【0019】
[0019] ファクトリ・インターフェース110は、一般的に一以上の基板貯蔵用カセット114を収容する。各カセット114は、内部に複数の基板を貯蔵するように構成されている。ファクトリ・インターフェース110は、大気圧またはそれに近い圧力で一般的に保たれている。一実施形態において、濾過された空気は、ファクトリ・インターフェース110に供給され、ファクトリ・インターフェース内部の粒子の濃度、対応する基板のクリーン度を最小にする。本発明から利益を得るのに適したファクトリ・インターフェースの一例は、Kroeker氏により、1998年9月28日に出願された米国特許出願第09/161970号に記載されており、その全体が参考の為に本願に組み込まれている。
【0020】
[0020] 移送用チャンバ102は、アルミニウムのような材料の単体から一般的に製造される。移送用チャンバ102は、排気可能な内部容積128を画成し、それを通じて、基板は処理用チャンバ104間で移送され、処理用チャンバ104は移送用チャンバ102の外側に結合されている。ポンピング・システム(図示せず)は、チャンバ・フロア上に配置されたポートを通じて移送用チャンバ102に結合され、移送用チャンバ102内部の真空を保つ。一実施形態において、ポンピング・システムは、タンデム内でターボ分子ポンプまたは低温ポンプに結合された大雑把なポンプを含む。
【0021】
[0021] 処理チャンバ104は、通常、移送用チャンバ102の外部にボルトで締められている。利用可能な処理用チャンバ104の例は、エッチング用チャンバ、物理蒸着用チャンバ、化学蒸着用チャンバ、イオン注入用チャンバ、オリエンテーション用チャンバ、リソグラフィ用チャンバなどを含む。異なる処理用チャンバ104は、移送用チャンバ102に結合可能であり、予め規定された基板表面上の構造または特徴を形成するのに必要な処理シーケンスを提供する。
【0022】
[0022] ロードロック・チャンバ106は、一般的に、ファクトリ・インターフェース110と移送用チャンバ102との間に結合されている。ロードロック・チャンバ106は、移送用チャンバ102の内部で、真空損失を有することなく、移送用チャンバ102の真空環境と、ファクトリ・インターフェース110の実質的に周囲環境との間で、基板の移送を容易にするために一般的に使用されている。各ロードロック・チャンバ106は、スリット・バルブ226(図2参照)の使用を介して、選択的に移送用チャンバ106とファクトリ・インターフェース110から選択的に分離される。
【0023】
[0023] 基板移送用ロボット108は、移送用チャンバ102の内部容積128内に概して配置され、移送用チャンバ102に外接するいろいろなチャンバ間で基板112の移送を容易にする。ロボット108は、移送中に基板を支える為に利用される一以上のブレードを含んでもよい。ロボット108は、2以上のブレードを持ち、各ブレードは、独立して制御可能な(デュアルブレードロボットとして知られる)モータに結合されるか、共通のリンクを通じてロボット108に結合された2つのブレードを持つ。
【0024】
[0024] 一実施形態において、移送用ロボット108は、(フロックレッグ型)リンク132によりロボット108に結合された単一ブレード130を持つ。一般的に、一以上のセンサ116が各々の処理チャンバ104の近傍に配置され、ロボットの位置を決定する際に利用される計量またはロボットの動作上パラメータのデータ取得を始動させる。データは、別個に使用可能であり、また、ロボットパラメータと協調させて使用可能であり、ブレード130上に維持された基板112の基準位置を決定する。
【0025】
[0025] 一般的に、センサ列116は、ロードロック106及び処理用チャンバ104に移送用チャンバ102を結合する通路近傍にある移送用チャンバ102の上または内部に配置されている。センサ列116は、一以上のセンサから構成可能であり、これらのセンサは、ロボット計量及び/又は基板位置的情報のデータ取得を始動する為に利用される。
【0026】
[0026] 前述したシステム100の制御を容易にするため、コントローラ120は、システム100に結合されている。コントローラ120は、一般的に、CPU122、メモリ124、サポート回路126を含む。CPU122は、いろいろなチャンバやサブプロセッサを制御する為に工業用設定で使用できるコンピュータプロセッサの形式の一つでもよい。メモリ124は、CPU122に結合されている。メモリ124、又はコンピュータで読取り可能な媒体は、一以上の容易に利用可能なメモリ(例えば、ランダムアクセスメモリー(RAM)、読取り専用記憶装置(ROM)、フロッピーディスク、ハードディスク、デバイスバッファ、他形式のデジタル記録装置、ローカルまたは遠隔式媒体)でもよい。サポート回路126は、CPU122に結合され、従来方式でプロセッサを支援する。これらの回路126は、キャッシュ、電源装置、クロック回路、入出力回路、サブシステム等、を含んでもよい。
【0027】
[0027] 図2は、移送用チャンバ102、それらに結合された一以上の処理用チャンバ104を例示するシステム100の一部断面図を示す。実例となる基板移送は、処理用チャンバ104と移送用チャンバ102との間で説明されているが、以下に説明された移送方法は、ロードロック・チャンバ106や他のチャンバを用いて、移送用チャンバ自体の内部で、ロボット・リンク132の長さの熱的変化に関する情報が望まれるときにはいつでも、移送における有用性を見つける。
【0028】
[0028] 実例となる処理用チャンバ104は、処理容積244を囲む、底部242、側壁240、リッド238を一般的に含む。一実施形態において、処理用チャンバ104は、PVD用チャンバでもよい。ペデスタル246は、処理容積244内に配置され、処理中に基板112を一般的に支持する。ターゲット248は、リッド238に結合され、電源250によりバイアスされている。ガス供給部252は、処理用チャンバ104に結合され、処理ガス及び他のガスを処理容積244に供給する。供給部252は、アルゴンのような処理ガスを提供し、アルゴンからプラズマが形成される。プラズマからのイオンは、ターゲット248と衝突し、材料を除去し、この材料は、その後、基板112上に堆積される。本発明から利益を得るPVDや他の処理用チャンバは、カリフォルニア州サンタクララ市のアプライドマテリアルズ社から入手可能である。
【0029】
[0029] 一般的に、移送用チャンバ102は、底部236、側壁234、リッド232を有する。移送用ロボット108は、一般的に、移送用チャンバ102の底部236上に配置されている。移送用チャンバ102の一側壁234は、一般的に、ポート202を含み、このポート202を通して、移送用ロボット108により基板が処理用チャンバ104の内部に送られる。ポート202は、スリット・バルブ226によって選択的に密閉され、移送用チャンバ102を処理用チャンバ104から隔離する。スリット・バルブ226は、チャンバ間の基板移送を許容する為に、図2に示されるように、一般的に、開放位置に移動される。利益を得る為に使用可能な一つのスリット・バルブは、Tepman氏等に、1993年7月13日に発行された米国特許第5226632号に記載され、その全体が参考の為に本願に組み込まれる。
【0030】
[0030] 移送用チャンバ102のリッド232は、一般的に、ポート202の近傍に配置されたウインドウ228を含む。センサ116は、一般的に、ウインドウ228上またはその近くに配置され、基板がポート202を通過するとき、センサ116はロボット108と基板112の一部を見ることができる。ウインドウ228は、石英または他の材料で製造され、これらの材料は、センサ116の検知機構(例えば、ウインドウ228を通して放射され反射してセンサに戻る光線)を実質的に妨害しない。他の実施形態において、センサ116は、ウインドウ228を通してビームを、チャンバ102の底部236内に配置された第2ウインドウの外側に配置された第2センサに放射してもよい。
【0031】
[0031] センサ116は、一般的に、ウインドウ228の外部上に配置されているので、センサ116は移送用チャンバ102の環境から隔離されている。また、チャンバ102内の位置を含む、センサ116の他の位置が利用可能であるが、これは、そこを通るロボット108や基板112の運動によって周期的にセンサ116が妨害される場合に限られる。センサ116は、コントローラ120に結合され、一以上のロボットや基板の、センサ状態の各変化における計量を記録するように構成されている。センサ116は、別個の放射及び受信ユニットを含んでもよく、「スルービーム」や「レフレクティブ」センサのような自己内蔵型でもよい。センサ116は、光学センサ、近接センサ、機械式リミットスイッチ、ホール効果、リードスイッチ、ロボット108や基板の存在を検知する為に適した他のタイプの検知機構でもよい。
【0032】
[0032] 一実施形態において、センサ116は、移送用チャンバの外に配置された光放射及びレシーバを備える。使用に適した一つのセンサは、ミネソタ州ミネアポリス市に所在するバナーエンジニアリング社から入手可能である。センサからの信号(例えば、光のビーム204)をロボット108や基板112が妨害するように、センサ116が位置決めされている。ビーム204の妨害状態及び非妨害状態への復帰は、センサ116の状態変化を引き起こす。例えば、センサ116が非妨害状態にあるときには4mAを出力し、妨害状態で20mAを出力する場合、センサ116は4から20mAの出力を持てばよい。他の出力を持つセンサは、センサの状態の変化を合図する為に利用可能である。
【0033】
[0033] 図3は、移送用ロボット108の一実施形態の平面図である。移送用ロボット108は、一般的に、ロボット本体328を備え、ロボット本体328は、リンク132によりエンドエフェクタ(例えば、基板112を支えるブレード130)に結合されている。エンドエフェクタは、いろいろな方式で上部に基板を維持するように構成され、例えば、静電的なもの、真空チャック、クランピング、エッジ把持などがある。一実施形態において、リンク132は、フロッグ−レッグ型構成を有する。リンク132用の他の構成として、例えば、ポーラ構成が代替え的に利用可能である。本発明から利益を得るポーラロボットの一例は、Ettinger氏などにより、2000年4月11日に出願された米国特許出願第09/547,189号に記載されている。
【0034】
[0034] リンク132は、一般的に、2つのアーム312にエルボー316で結合された2つのウイング310を含む。各々のウイング310は、ロボット本体328の内部で同心上に積み重ねられた電気モータ(図示せず)に追加して結合されている。各アーム312は、ブッシング318により、リスト330に結合されている。リスト330は、リンク132をブレード130に結合する。通常、リンク132は、アルミニウムで製造されているが、十分な強度と、小さな熱膨張係数を持つ材料(例えば、チタン、ステンレス鋼、セラミック(例えば、チタン・ドープ・アルミナ))も同様に利用可能である。
【0035】
[0035] リンク132及び/又はリスト330の材料は、基板移送中、熱的影響を最小限にするように選択可能である。たとえば、リンク132及び/又はリスト330は、約10W/(m×K2)を越える熱伝導率/熱膨張の比を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、約5K−1未満の熱膨張係数を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、1×106Pa×m0.5を越える破壊靱性を持つ材料を備えてもよい。あるいは、リンク132及び/又はリスト330は、約50m2.5/(kg0.5 ×s)を越える適したE0.5/ρ(弾性係数の平方根を材料密度で除したもの)の材料を持つ材料を備えてもよい。リンク132及び/又はリスト330は、上記列挙した特性のいかなる組合せを持つ材料を備えてもよい。リンク132及び/又はリスト330の製造に適した材料の例には、アルミニウム/炭化けい素複合物、結晶化ガラス(NEOCERAM(登録商標)、N−0、NEOCERAM(登録商標)、N−11)、アルミニウム/鉄複合物、炭素、炭素マトリクス複合物、キャスト・アルミニウム合金、商用の純粋なクロム、黒鉛、モリブデン・チタン合金、モリブデン・タングステン合金、商業上純粋なモリブデン、ZERODUR(登録商標)INVAR(登録商標)、チタンTi−6Al−4V合金、8090のアルミニウムMMCと金属基複合材料を含むが、これらに限定されるものではない。金属マトリクス複合物は、一般的に、30%までのシリコンカーバイド粒子状物質のような充填材を備えた、アルミニウムや他の軽金属(例えば、マグネシウム、チタン、アルミニウム、マグネシウム合金、チタン合金、アルミニウム合金)を含む。他の充填剤も、前述したような物理特性を一以上得る為に利用可能である。
【0036】
[0036] 周囲の温度において、各ウイング310は、長さ「A」を持ち、各アーム312は、長さ「B」を持ち、リスト330上の、ブッシング318間の距離の半分は、長さ「C」を持ち、距離「D」はブッシング318とブレード130のブレード中心点320との間で規定されている。ロボットのリーチ「R」は、ブレード130の中心320とライン「T」に沿ったロボットの中心314との間の距離として定義されている。各々のウイング310は、ラインTを持つ角度qをなす。
【0037】
[0037] 各々のウイング310は、同心上に積み重ねられたモータの一つにより独立して制御される。モータが同一方向に回転するとき、ブレード130はロボット本体328の中心314の周りに一定半径で、角度wで回される。モータの両方が反対方向に回転させられるとき、それに応じて、リンク132は、拡張または収縮し、そのため、ロボット108の中心を参照してTに沿って内側または外側に半径方向にブレード130を移動させる。もちろん、ロボット108は、同時に半径方向と回転運動とを組み合わせる結果、ハイブリッド運動が可能である。
【0038】
[0038] 基板112が移送用ロボット108により移動させられるとき、センサ116は、基板又はロボットの一部を検知し、所定位置(例えば、ポート202近傍の位置)に到達する。
【0039】
[0039] 一実施形態において、センサ116は、センサ列(例えば、4つのセンサ)を備え、これらは、基板及び/又はロボットの異なる位置で妨害され、ロボット108の単一通過中、複数のデータ設定を取り込む。たとえば、ビーム204を通過するロボット108のリスト330のエッジ332は、基板が第1センサ302、第2センサ304、第3センサ306、第4センサ308の状態変化を引き起こす間、第1センサ302及び第2センサ304の状態変化を引き起こす。本発明は、リスト330又は基板112がセンサ302,304,306,308を起動させるとして説明されているが、センサは、ロボット108の他の構成要素によって起動されてもよい。
【0040】
[0040] 図4は、ロボットのリスト330の一実施形態を表す。ロボットのリスト330は、平坦な上面402、側部404を持つように構成され、これらは、互いに直角に概して配置されている。側部404と上面402の間の接合部は、角度が付けられたエッジ又は面取部406を概して持ち、センサ116のビーム204により散乱される光量を減少させている。上面402と側部404の間の鋭いエッジや面取りされた移行部406は、センサ状態の明確な変化を提供し、これが、以下に説明されるデータ取得の精度を高めている。
【0041】
[0041] 図3に戻ると、リスト330は、1以上のセンサ116を通過するとき、センサは遮断状態から非遮断状態へと、或いは、非遮断状態から遮断状態へと変化する。センサ状態の変化は、センサ116に関して所定位置にあるロボット108(又は、基板112)に概して対応する。ロボット108が、これらの所定位置の一つを通過する各々の時間、その事象の時間におけるロボットの計量は、コントローラ120のメモリ124内に記録される。一般に各々の事象で記録されるロボット計量にはセンサ番号、センサ状態(遮断または非遮断)、2つのロボット用モータの、各々の現在の位置、2つのロボット用モータの速度、タイムスタンプを一般的に含む。2つの事象において、ロボットの計量を利用することにより、コントローラ120は、熱的変化によるロボット・リンクの膨張又は収縮による、予定された位置Reに対するロボット108の、実際の位置Raの変化を分析することができる。コントローラ120は、ロボット108の他の膨張におけるブレード130の位置(又は、ロボットの他の基準位置)を分析する為に、熱膨張データを利用する。
【0042】
[0042] オプションとして、センサ116は、基板112の位置的データを取得し、基板の中心位置を決定する為に使用されてもよい。基板の中心位置は、ブレードの位置情報に沿って、或いは、協調させて使用されてもよい。
【0043】
[0043] ロボットの位置を決定するための方法は、メモリ124内に(通常は、ソフトウェア及びソフトウェア・ルーチンとして)記憶されている。ソフトウェア・ルーチンは、システムから遠くに配置またはCPUにより制御される第2のCPU(図示せず)により記憶及び/又は実行されてもよい。
【0044】
[0044] 図5は、ロボットの位置を決定する為の方法に係る一実施形態のブロック図を表す。当該方法500は、第1セットのロボット計量を取得することによりステップ502で開始する。一般的に、第1セットのロボット計量は、基板112を処理用チャンバ104の一つに運ぶ間にロボット108のリスト330がセンサ116を通過するとき、センサ116の一つの状態変化(トリップ動作)に応答して記録される。あるいは、基板112が処理用チャンバ104又は他の場所から後退されるとき、センサ116が妨害される。
【0045】
[0045] ステップ504では、第2セットのロボット計量が取得される。通常、第2セットのロボット計量は、リスト330がセンサ116の一つを通過するとき、センサ116の一つのトリップ動作(妨害)に応答して記録される。通常、センサ504において妨害されるセンサ116は、ステップ502において、基板112が処理用(或いは他の)チャンバ104内に運ばれるときに妨害される同一センサである。あるいは、ステップ502及びステップ504において、異なるセンサが妨害されてもよい。
【0046】
[0046] ステップ506では、ロボットの熱膨張によるロボットの実際の位置が、第1ロボット計量および第2ロボット計量を用いて分析される。一実施形態において、ロボットの熱膨張は、特定qに対しコントローラにより予定された距離Reと、センサ116をリスト330が通過するときのRaとの距離Rの変化を決定することにより分析されてもよい。この情報から、Reでロボットのブレード130を配置するために必要な角度として、q’がステップ508で計算されてもよい。オプションとして、ブレード130上に配置された基板112の中心位置を決定し訂正する為に、ステップ510が含められてもよい。
【0047】
[0047] たとえば、ロボットが伸びると、qは小さくなる。リーチRは、以下のように表現される:
【0048】
【数式1】
[0048] ロボット・リンク132(すなわち、ウイング、アーム、リスト)は、全て、同一材料で形成され、膨張率は、関連するリンク要素の温度上昇の比になろう。ロボット・リンク132が異なる材料で形成される場合、それぞれのリンク要素の各材料に対し、比は熱膨張係数により規準化される必要がある。いずれにせよ、EABとEBCは、リンク132の材料に依存した、およそ定数である。定数EABとEACから、各要素の相対的成長が以下のように表わされる。
【0049】
【数式2】
[0049] 各々のセンサの推移で、ロボットの位置qは手に入る。各々のリストの推移に対し、リーチRの変化は、以下のように表される:
dR=(センサ位置+リストエッジに対するブレード中心)−R(θ)
[0050] ロボットの構成要素の変化に対する拡張の変化は、以下の通りである:
【0050】
【数式3】
[0051] 各々の事象に対し、dBは以下のように計算される:
【0051】
【数式4】
[0052] センサ列を通ってロボットの単一通過中、複数のセンサがロボット計量を取得する為に使用される場合、この数値は平均化される。dAとdCは、それから計算される:
【0052】
【数式5】
[0053] このように、どんなqでもロボットの実際の位置が表される:
【0053】
【数式6】
[0054] ここで
A’=A+dA
B’=B+dB
C’=C+dC
[0055] このように、ブレード130をReに配置する為のqの修正は、以下のように表される:
【0054】
【数式7】
ここで、RCHは、周囲条件におけるR;
θ’は、R(θ’) = Reとするロボットの回転角である。
【0055】
[0056] 基板112の中心は、基板がセンサ列を通過するときに基板のエッジがセンサ116を妨害するときに記録されたロボット計量から付随的に計算可能である。基板112の周囲からのデータ位置は、基板の中心位置を三角測量するのに用いられる。
【0056】
[0057] 一実施形態において、手に入れられた基板エッジ位置の各々をXY座標システムに変換することにより実行されるが、ここで、0,0は、ブレード130の中心、Yは、ロボットの中心から外に離れて伸びる。次に、(手に入れられたエッジ位置からの)点のリストは、審査され、他の点と著しく同一円でない点は考慮されない。抜けた点は、例えば、一部の基板112で存在するノッチやフラット部がセンサ116の一つを通過するときに手に入れられる正当な点かもしれない。残りの点の各々は、三角形または円を規定する為に、3つの点の組合せにグループ分けされる。三角形の領域が非常に小さい場合、点の組合せは、円の計算の為に要注意の、かなりの誤差になるので、それ以上には考慮されない。次に、中心と半径は、3点の残りの、組合せの各々により規定される円の為に計算される。許容可能な範囲内の半径を持つ円の全てに対するXおよび座標は、その後、平均化され、X−Y中心の基板オフセットを得る。このXとYのオフセットを訂正する為に、dx =−x、dy=−yがロボットに適用され、基板を中心におく。
【0057】
[0058] チャンバ内の基板交換は、ロボットの回転と延長を備えて較正され、これがロボットブレード130を周囲温度でチャンバ内に適切にロボットブレードを位置決めする。延長はRCHと対応し、これは、処理用(他の)チャンバ104内のリーチである。dY値を加えることによって、基板オフセットを修正する為に、チャンバ内のリーチ量を計算することができる:
R=RCH+dY
[0059] 延長角(ウイング位置とチャンバ位置との間の角度)は、その後、ロボット108のリンク132の熱膨張に基づき、この延長に達するように計算される:
【0058】
【数式8】
[0060] ロボットの回転も同様にdXに基づき修正される。
【0059】
[0061] 当該方法は、コントローラのメモリ124に記憶された中心発見情報を用いて基板の中心位置を修正するステップを含んでもよい。基板の中心位置は、いろいろな方法を通じて見い出すことができる。ある方法は、ブレード上で基板を機械的に中心におく為に、基板の周囲に沿った多くの点に沿ってロボットのブレード上で基板を把持するステップを含む。他の方法は、ブレードに関する基板のエッジ位置を決める一以上のセンサを通じて、基板を直線で通過させるステップを含む。また更なる方法は、基板の周囲を見るセンサの近傍で基板を回転させるステップを含む。基板の周囲に沿って多くの点を記録することにより、基板の中心が三角測量されてもよい。
【0060】
[0062] 一旦基板の中心が決定され、メモリ内に記憶されるならば、基板中心位置は、熱的影響の為に位置の変化に関して更新されてもよい。さらに、ロボットが基板をチャンバからチャンバに移送し、ロボット(又は基板)が各センサを通るときにロボットの位置が再決定されるとき、反復的に中心位置が更新されてもよい。したがって、ロボットの位置における熱的影響は、基板の移送の各々に対し決定されるので、コントローラは、各移送に対する基板の位置を調整することができ、精度の良い、損傷の無い基板配置を確実にする。
【0061】
[0063] 本発明の処理は、ソフトウェア・ルーチンとして実行されるように検討されているが、本願で開示された方法のステップの幾つかは、それ自体又はコントローラによるハードウェアで実行されてもよい。このように、本発明は、ハードウェアにおけるコンピュータシステム上で実行されるソフトウェアで実行可能であるが、特定の集積回路や他のタイプのハードウェア実行あるいはソフトウェア及びハードウェアの組合せで実行されてもよい。
【0062】
[0064] 前述のことは、本発明の好適実施形態に向けられているが、本発明の他の、更なる実施形態は、本発明の基本的範囲を逸脱することなく考案可能であり、その範囲は請求の範囲によって決められる。
【図面の簡単な説明】
【0063】
【図1】図1は、ロボットの位置を決定するための方法が実行される半導体処理システムの一実施形態の平面図である。
【図2】図2は、図1の処理システムの一部断面図である。
【図3】図3は、半導体移送ロボットの一実施形態の平面図である。
【図4】図4は、図3のロボットの、リストの一実施形態を表わす。
【図5】図5は、ロボットの位置を決定する為の方法の、一実施形態のブロック図である。
【符号の説明】
【0064】
100…処理システム、102…移送用チャンバ、104…処理チャンバ、106…ロードロック・チャンバ、108…ロボット、110…ファクトリ・インターフェース、112…基板、114…基板貯蔵用カセット、116…センサ列、120…コントローラ、122…CPU、124…メモリ、126…サポート回路。
Claims (14)
- 処理チャンバ内で基板を移送する為のロボットであって:
本体と;
上部に前記基板を維持するように適合されたエンドエフェクタと;
前記エンドエフェクタを前記本体に結合するリンクと;を備え、前記エンドエフェクタ及び/又は前記リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比を持つ材料から構成される、前記ロボット。 - 前記エンドエフェクタ及び/又はリンクを構成する材料は、約5×10−6K−1未満の熱膨張係数を更に有する、請求項1記載のロボット。
- 前記エンドエフェクタ及び/又は前記リンクを構成する材料は、約1×106Pa×m0.5を越える破壊靱性を更に有する、請求項1記載のロボット。
- 前記エンドエフェクタ及び/又は前記リンクを構成する材料は、約50m2.5/(kg0.5×s)を越える材料特性を更に有する、請求項1記載のロボット。
- 前記エンドエフェクタ及び/又は前記リンクを構成する材料は、アルミニウム/炭化けい素複合物、結晶化ガラス、アルミニウム/鉄複合物、炭素、炭素マトリクス複合物、アルミニウム合金、商用の純粋なクロム、黒鉛、モリブデン・チタン合金、モリブデン・タングステン合金、商業上純粋なモリブデン、ZERODUR(登録商標)、INVAR(登録商標)、チタンTi−6Al−4V合金、8090アルミニウムMMC、金属基複合材料からなる群から選ばれる、請求項1記載のロボット。
- 前記エンドエフェクタ及び/又は前記リンクを構成する材料は、約1×10−6K
−1未満の熱膨張係数を有する材料を更に備える、請求項1記載のロボット。 - 前記リンクは、フロッグレッグ型構成を有する、請求項1記載のロボット。
- 前記リンクは、ポーラ構成を有する、請求項1記載のロボット。
- 処理システム内で基板を移送する為のロボットであって:
本体と;
上部に前記基板を維持するように適合されたエンドエフェクタと;
前記エンドエフェクタを前記本体に結合するリンクと;を備え、前記エンドエフェクタ及び/又は前記リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比と、約1×106Pa×m0.5を越える破壊靱性を持つ材料から構成される、前記ロボット。 - 処理システム内で基板を移送する為のロボットであって:
本体と:
上部に前記基板を維持するように適合されたエンドエフェクタと;
前記エンドエフェクタを前記本体に結合するリンクと;を備え、前記エンドエフェクタ及び/又は前記リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比と、約50m2.5/(kg0.5 ×s)を越える材料特性を持つ材料から構成される、前記ロボット。 - 前記エンドエフェクタ及び/又はリンクを構成する材料は、約1×106Pa×m0.5を越える破壊靱性を更に備える、請求項10記載のロボット。
- 前記エンドエフェクタ及び/又はリンクを構成する材料は、約5×10−6K−2未満の熱膨張係数を持つ材料を更に備える、請求項11記載のロボット。
- 処理システム内で基板を移送する為のロボットであって:
本体と;
上部に前記基板を維持するように適合されたエンドエフェクタと;
前記エンドエフェクタを前記本体に結合するリンクと;を備え、前記エンドエフェクタ及び/又は前記リンクは、約10W/(m×K2)を越える熱伝導率/熱膨張率の比と、約50m2.5/(kg0.5 ×s)を越える材料特性と、約1×106Pa×m0.5を越える破壊靱性とを持つ材料から構成される、前記ロボット。 - 前記エンドエフェクタ及び/又はリンクを構成する材料は、約5×10−6K−2未満の熱膨張係数を持つ材料を更に備える、請求項13記載のロボット。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/201,490 US20030014155A1 (en) | 2001-07-12 | 2002-07-22 | High temperature substrate transfer robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004134747A true JP2004134747A (ja) | 2004-04-30 |
Family
ID=32296759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003200100A Withdrawn JP2004134747A (ja) | 2002-07-22 | 2003-07-22 | 高温基板移送用ロボット |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2004134747A (ja) |
KR (1) | KR20040010280A (ja) |
CN (1) | CN1504306A (ja) |
TW (1) | TW200403797A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136292A1 (ja) * | 2007-04-27 | 2008-11-13 | Nabtesco Corporation | ロボットアーム |
JP2009545172A (ja) * | 2006-07-24 | 2009-12-17 | アプライド マテリアルズ インコーポレイテッド | 小設置面積のモジュラー処理システム |
JP2013042112A (ja) * | 2011-07-15 | 2013-02-28 | Tokyo Electron Ltd | 基板搬送装置、基板処理システムおよび基板搬送方法、ならびに記憶媒体 |
JP2014197713A (ja) * | 2014-07-16 | 2014-10-16 | 東京エレクトロン株式会社 | 基板搬送装置、基板搬送方法及び記憶媒体 |
KR20180030171A (ko) * | 2015-07-13 | 2018-03-21 | 브룩스 오토메이션 인코퍼레이티드 | 온 더 플라이 자동 웨이퍼 센터링 방법 및 장치 |
CN108027718A (zh) * | 2015-07-13 | 2018-05-11 | 布鲁克斯自动化公司 | 在传输中自动晶圆定中方法及设备 |
WO2019022258A1 (ja) * | 2017-07-28 | 2019-01-31 | 京セラ株式会社 | 基板保持部材および半導体製造装置 |
JP2019523143A (ja) * | 2016-06-29 | 2019-08-22 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | ロボットの位置ずれ補正を提供する方法及びシステム |
KR20190099104A (ko) * | 2011-03-11 | 2019-08-23 | 브룩스 오토메이션 인코퍼레이티드 | 기판 처리 툴 |
JP7553191B2 (ja) | 2020-08-31 | 2024-09-18 | 東京エレクトロン株式会社 | 基板搬送システムの制御方法及び基板搬送システム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009500869A (ja) * | 2005-07-11 | 2009-01-08 | ブルックス オートメーション インコーポレイテッド | オンザフライ(onthefly)ワークピースセンタリングを備えた装置 |
US8557682B2 (en) * | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-layer mask for substrate dicing by laser and plasma etch |
CN118387389B (zh) * | 2024-06-28 | 2024-08-23 | 新乡医学院 | 一种玻璃制品智能化转运设备及其操作工艺 |
-
2003
- 2003-07-21 KR KR1020030049660A patent/KR20040010280A/ko not_active Application Discontinuation
- 2003-07-21 TW TW092119884A patent/TW200403797A/zh unknown
- 2003-07-22 CN CNA031331017A patent/CN1504306A/zh active Pending
- 2003-07-22 JP JP2003200100A patent/JP2004134747A/ja not_active Withdrawn
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009545172A (ja) * | 2006-07-24 | 2009-12-17 | アプライド マテリアルズ インコーポレイテッド | 小設置面積のモジュラー処理システム |
US8677853B2 (en) | 2007-04-27 | 2014-03-25 | Nabtesco Corporation | Robot arm with temperature compensation |
WO2008136292A1 (ja) * | 2007-04-27 | 2008-11-13 | Nabtesco Corporation | ロボットアーム |
US10600665B2 (en) | 2011-03-11 | 2020-03-24 | Brooks Automation, Inc. | Substrate processing apparatus |
US11978649B2 (en) | 2011-03-11 | 2024-05-07 | Brooks Automation Us, Llc | Substrate processing apparatus |
KR102618895B1 (ko) * | 2011-03-11 | 2023-12-28 | 브룩스 오토메이션 인코퍼레이티드 | 기판 처리 툴 |
KR102436038B1 (ko) * | 2011-03-11 | 2022-08-24 | 브룩스 오토메이션 인코퍼레이티드 | 기판 처리 툴 |
KR20220058659A (ko) * | 2011-03-11 | 2022-05-09 | 브룩스 오토메이션 인코퍼레이티드 | 기판 처리 툴 |
KR20190099104A (ko) * | 2011-03-11 | 2019-08-23 | 브룩스 오토메이션 인코퍼레이티드 | 기판 처리 툴 |
JP2013042112A (ja) * | 2011-07-15 | 2013-02-28 | Tokyo Electron Ltd | 基板搬送装置、基板処理システムおよび基板搬送方法、ならびに記憶媒体 |
JP2014197713A (ja) * | 2014-07-16 | 2014-10-16 | 東京エレクトロン株式会社 | 基板搬送装置、基板搬送方法及び記憶媒体 |
CN108027718A (zh) * | 2015-07-13 | 2018-05-11 | 布鲁克斯自动化公司 | 在传输中自动晶圆定中方法及设备 |
JP2018523307A (ja) * | 2015-07-13 | 2018-08-16 | ブルックス オートメーション インコーポレイテッド | オンザフライ方式の自動ウェハセンタリング方法および装置 |
US10978330B2 (en) | 2015-07-13 | 2021-04-13 | Brooks Automation, Inc. | On the fly automatic wafer centering method and apparatus |
JP2021170667A (ja) * | 2015-07-13 | 2021-10-28 | ブルックス オートメーション インコーポレイテッド | オンザフライ方式の自動ウェハセンタリング方法および装置 |
TWI752910B (zh) * | 2015-07-13 | 2022-01-21 | 美商布魯克斯自動機械公司 | 同步自動晶圓定心方法及設備 |
CN108027718B (zh) * | 2015-07-13 | 2022-04-08 | 博鲁可斯自动化美国有限责任公司 | 在传输中自动晶圆定中方法及设备 |
KR20180030171A (ko) * | 2015-07-13 | 2018-03-21 | 브룩스 오토메이션 인코퍼레이티드 | 온 더 플라이 자동 웨이퍼 센터링 방법 및 장치 |
JP7430668B2 (ja) | 2015-07-13 | 2024-02-13 | ブルックス オートメーション ユーエス、エルエルシー | オンザフライ方式の自動ウェハセンタリング方法および装置 |
US11776834B2 (en) | 2015-07-13 | 2023-10-03 | Brooks Automation Us, Llc | On the fly automatic wafer centering method and apparatus |
KR102587203B1 (ko) | 2015-07-13 | 2023-10-10 | 브룩스 오토메이션 인코퍼레이티드 | 온 더 플라이 자동 웨이퍼 센터링 방법 및 장치 |
TWI832130B (zh) * | 2015-07-13 | 2024-02-11 | 美商布魯克斯自動機械美國公司 | 同步自動晶圓定心方法及設備 |
JP2019523143A (ja) * | 2016-06-29 | 2019-08-22 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | ロボットの位置ずれ補正を提供する方法及びシステム |
JPWO2019022258A1 (ja) * | 2017-07-28 | 2020-07-16 | 京セラ株式会社 | 基板保持部材および半導体製造装置 |
WO2019022258A1 (ja) * | 2017-07-28 | 2019-01-31 | 京セラ株式会社 | 基板保持部材および半導体製造装置 |
JP7553191B2 (ja) | 2020-08-31 | 2024-09-18 | 東京エレクトロン株式会社 | 基板搬送システムの制御方法及び基板搬送システム |
Also Published As
Publication number | Publication date |
---|---|
CN1504306A (zh) | 2004-06-16 |
TW200403797A (en) | 2004-03-01 |
KR20040010280A (ko) | 2004-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6556887B2 (en) | Method for determining a position of a robot | |
US20030012631A1 (en) | High temperature substrate transfer robot | |
JP7430668B2 (ja) | オンザフライ方式の自動ウェハセンタリング方法および装置 | |
US20030014155A1 (en) | High temperature substrate transfer robot | |
US7717481B2 (en) | High temperature robot end effector | |
JP2004134747A (ja) | 高温基板移送用ロボット | |
US7107125B2 (en) | Method and apparatus for monitoring the position of a semiconductor processing robot | |
JP7412534B2 (ja) | 処理システムのアライナステーションの較正 | |
CN108027718B (zh) | 在传输中自动晶圆定中方法及设备 | |
US12115683B2 (en) | Calibration of an electronics processing system | |
CN114730728A (zh) | 具有重力场传感器的晶片搬运机械手 | |
TW202234562A (zh) | 基板搬送裝置、基板搬送方法、及基板處理系統 | |
US7505832B2 (en) | Method and apparatus for determining a substrate exchange position in a processing system | |
KR20220086598A (ko) | 반도체 제조 장비에 기판들을 배치하는 시스템들 및 방법들 | |
US20220270899A1 (en) | Methods and apparatus for measuring temperature using centerfind systems | |
JP7236934B2 (ja) | 基板処理システム及び基板処理システムの制御方法 | |
WO2022174919A1 (en) | Substrate support, method of processing a substrate, and processing system | |
JP2023067386A (ja) | 測定方法及び測定システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061003 |