JP2004130874A - Dimension measuring method for bogie frame for railroad - Google Patents

Dimension measuring method for bogie frame for railroad Download PDF

Info

Publication number
JP2004130874A
JP2004130874A JP2002295664A JP2002295664A JP2004130874A JP 2004130874 A JP2004130874 A JP 2004130874A JP 2002295664 A JP2002295664 A JP 2002295664A JP 2002295664 A JP2002295664 A JP 2002295664A JP 2004130874 A JP2004130874 A JP 2004130874A
Authority
JP
Japan
Prior art keywords
model
bogie frame
molding material
measuring
design model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002295664A
Other languages
Japanese (ja)
Inventor
Tomonori Okada
岡田 智仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002295664A priority Critical patent/JP2004130874A/en
Publication of JP2004130874A publication Critical patent/JP2004130874A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimension measuring method for a bogie frame for railroad as a large-sized structural member to measure a molded work for each bogie frame, whereupon the acceptability is judged through comparison with a design model on a personal computer and the marking-off for the mounting reference point to a machine for mechanical processing is conducted. <P>SOLUTION: The attached illustration shows a measuring model S<SB>1</SB>obtained by plotting on the personal computer the result from measuring the bogie frame three-dimensionally and the design model M<SB>1</SB>of the bogie frame for the railroad. A conversion into a fit model is made by executing the processing to approach the measuring model S<SB>1</SB>to the design model M<SB>1</SB>, and a comparison of the shape accuracy is made in such a way as laying it on the design model, and thereupon a judgement of the acceptability is passed. Marking-off for the mounting reference point to the machine for mechanical processing is conducted for each molded work judged as acceptable. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道用台車枠の寸法測定方法に関する。
【0002】
【従来の技術】
鉄道用台車枠は、鋼板をプレス加工した部材やパイプ部材等を溶接手段により接合して略H字形状の枠体を構成し、必要個所に機械加工を施して製品を作成している。
【0003】
【発明が解決しようとする課題】
この機械加工に先立って、鉄道用台車枠素材を定盤上に載置して、加工個所を指定するためのケガキ作業を行う必要がある。
【0004】
しかしながら、鉄道用台車枠素材は、大型の構造物であって、部材を溶接により組立てているために、部材の歪等も発生しやすく、ケガキ作業によっても、機械加工の削り代の有無や、削り寸法等を確認しにくい素材となっている。
【0005】
そこで本発明は、鉄道用台車枠成形素材を測定装置により測定し、測定結果を鉄道用台車枠の3Dモデルに重ね合わせて最適化を図る。そして、この結果を鉄道用台車枠成形素材のCADモデルに置きかえて、製品の加工形状のCADモデルと比較して、削り代を自動的に確認することで、上述した従来の不具合を解消するものである。
【0006】
【課題を解決するための手段】
鉄道用台車枠の成形素材を3次元方向から測定する工程と、測定結果をプロットして成形素材の測定モデルを作成する工程と、測定モデルを処理して鉄道用台車枠の設計モデルに最も近似するフィットモデルへ変換する工程と、フィットモデルと設計モデルの形状精度を比較する工程と、形状精度が満足されていることに応じて成形素材に機械加工機への取付基準点をケガク工程とを備えるものである。
【0007】
【発明の実施の形態】
図1は、本発明を実施する鉄道用台車枠成形素材の形状を示す斜視図である。
【0008】
全体を符号1で示す成形素材は、平行に配設される2本の部材10,20を2本のパイプ状部30,40で連結した構造を有する。
【0009】
第1の部材10の両端部には、機械加工が施される機械加工部12,14が設けられる。第2の部材20の両端部にも、機械加工が施される機械加工部22,24が設けられる。鉄道用台車枠成形素材は、その他にも機械加工部が設けられている。
【0010】
図2は、本発明の測定方法に使用される測定装置の概要を示す斜視図である。
【0011】
全体を符号100で示す測定装置は、鉄道用台車枠成形素材1を載置する固定テーブル110を有する。固定テーブル110の外側には、対向する1対の門形フレーム120,130が立設され、この門形フレームに案内される走行レール140が取付けられる。走行レール140上には、サドル150が走行自在に搭載され、サドル150に対して昇降自在に測定ヘッド160が取付けられる。
【0012】
この測定ヘッド160は、軸X,Y,Zに沿って3次元に移動自在に制御される。測定ヘッド160は、測定対象の鉄道用台車枠成形素材1に接触、又は非接触で成形素材の各点の座標位置を検出する。
【0013】
図3は、3次元測定装置100により測定された測定結果をプロットした測定モデルSを破線で示したものである。図3の実線で描かれたモデルMは、鉄道用台車枠の設計形状を示すCADモデルである。
【0014】
この測定モデルSは、設計モデルMとは当然にズレて表示される。
【0015】
このズレの原因は、測定モデルの元である成形素材自体の精度誤差と、固定テーブル110上へ載置したときの姿勢による誤差が合成されることにある。
【0016】
そこで、図4に示すように、この測定モデルSが設計モデルMに最も近づくように、最小2乗法等のデータ処理を施して、ベストフィットやベストマッチと呼ばれるフィットモデルF(点線で示す)を作成する。
【0017】
図5は、このフィットモデルFを設計モデルMに重ね合わせた状態を示す。設計モデルM上の機械加工部12M,14M,22M,24Mはそれぞれ斜線を付した部分である。これらの機械加工部の全てが、フィットモデルF上の対応する機械加工部12F,14F,22F,24Fに包含されていれば、成形素材は機械加工部に削り代が確保されていることとなる。
【0018】
機械加工部以外の部材の形状精度は、予め定めた誤差寸法差以内であることも検査項目となる。
【0019】
これらの検査項目が満足されれば、この鉄道用台車枠成形素材は、合格品として判断される。
【0020】
そして、レーザポインタ等の指示装置を使用して、成形素材の機械加工部に加工機にセットするための基準点等の必要なケガキを施す。
【0021】
機械加工部の削り代が不足したり、部材の形状誤差が所定の値を満足していないときには、成形素材を前工程へ戻し、必要な矯正や手直しを施す。
【0022】
図6は本発明の処理のフロー図である。
【0023】
ステップS10でスタートした処理は、ステップS11で鉄道用台車枠成形素材を測定装置のテーブル上にセットする。ステップS12で成形素材の各点の座標位置を測定し、ステップS13でこれらの測定点をプロットして測定モデルを作成する。ステップS14で測定モデルを設計モデルに最も重なり合うように最小2乗法等により処理して、フィットモデルへ変換する。
【0024】
ステップS15でフィットモデルと設計モデルとを形状比較する。
【0025】
ステップS16で形状精度が所定の誤差以内かをチェックして、満足しなければ、ステップS18へ移り、成形素材に矯正、手直し等を施して、ステップS11へ戻る。
【0026】
ステップS16で測定結果が満足されるものであれば、ステップS17へ移り、レーザポインタ等により、成形素材に機械加工機への取付用基準点等の必要な指示をケガキ、ステップS20で処理を終了し、機械加工等の後工程へ移る。
【0027】
【発明の効果】
本発明は以上のように、大型の部材をプレス加工と溶接により組立ててつくられる鉄道用台車枠の成形素材を3次元測定し、測定結果から得られる測定モデルを処理して、鉄道用台車枠の設計モデルに最も近似するフィットモデルを作成する。そして、このフィットモデルと設計モデルの形状精度を比較して、成形モデルの良否を判断する。測定モデルの作成から良否の判断はパソコン上で実行される。
【0028】
その後に、成形素材に機械加工機の取付用基準点をケガクので、後処理である機械加工の生産性が向上する。
【図面の簡単な説明】
【図1】本発明を適用する鉄道用台車枠の斜視図。
【図2】鉄道用車両枠成形素材の測定を示す斜視図。
【図3】成形素材の測定モデルの平面図。
【図4】測定モデルをフィットモデルへ変換する説明図。
【図5】フィットモデルと設計モデルを比較する説明図。
【図6】本発明による処理のフロー図。
【符号の説明】
1 鉄道用車両枠
10 第1の部材
12、14 機械加工部
20 第2の部材
22,24 機械加工部
 測定モデル
 フィットモデル
 設計モデル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring dimensions of a bogie frame for a railway.
[0002]
[Prior art]
The rail bogie frame is formed by joining a member or a pipe member obtained by pressing a steel plate by welding means to form a substantially H-shaped frame body, and machining the necessary portions to produce a product.
[0003]
[Problems to be solved by the invention]
Prior to this machining, it is necessary to place the rail bogie frame material on a surface plate and perform a marking operation for designating a processing location.
[0004]
However, the bogie frame material for railways is a large-sized structure, and since the members are assembled by welding, distortion and the like of the members are likely to occur, and even if the marking work is performed, whether there is a machining allowance or not, It is a material that is difficult to check the cutting size etc.
[0005]
Therefore, the present invention measures a railway bogie frame forming material with a measuring device, and superimposes the measurement results on a 3D model of the railway bogie frame to achieve optimization. Then, by replacing the result with a CAD model of a railway bogie frame forming material, comparing with a CAD model of a processed shape of a product, and automatically checking a cutting allowance, the above-described conventional problem is solved. It is.
[0006]
[Means for Solving the Problems]
The process of measuring the molding material of the railway bogie frame from the three-dimensional direction, the process of plotting the measurement results to create a measurement model of the molding material, and processing the measurement model to best approximate the design model of the railway bogie frame The process of converting the fit model to the fit model, the process of comparing the shape accuracy of the fit model and the design model, and the process of marking the mounting reference point of the molding material on the machine in accordance with the satisfaction of the shape accuracy It is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing a shape of a railway bogie frame forming material for implementing the present invention.
[0008]
The molding material indicated by reference numeral 1 has a structure in which two members 10 and 20 arranged in parallel are connected by two pipe-shaped portions 30 and 40.
[0009]
Machined parts 12 and 14 to be machined are provided at both ends of the first member 10. Machined parts 22 and 24 to be machined are also provided at both ends of the second member 20. The railway bogie frame molding material is further provided with a machined part.
[0010]
FIG. 2 is a perspective view showing an outline of a measuring device used in the measuring method of the present invention.
[0011]
The measuring device indicated by the reference numeral 100 in its entirety has a fixed table 110 on which the railway bogie frame molding material 1 is placed. Outside the fixed table 110, a pair of opposed gate-shaped frames 120 and 130 are erected, and a traveling rail 140 guided by the portal-shaped frame is attached. A saddle 150 is mounted on the traveling rail 140 so as to be able to travel, and a measuring head 160 is attached to the saddle 150 so as to be able to move up and down.
[0012]
The measuring head 160 is controlled to be movable three-dimensionally along the axes X, Y, and Z. The measuring head 160 detects the coordinate position of each point of the molding material with or without contact with the railway bogie frame molding material 1 to be measured.
[0013]
Figure 3 is a graph showing the measurement model S 1 a plot of the measurement results measured by the three-dimensional measuring apparatus 100 in broken lines. Model M 1 drawn with solid lines in FIG. 3 is a CAD model showing the design shape of the railway bogie frame.
[0014]
The measurement model S 1 is displayed naturally deviated from the design model M 1.
[0015]
The cause of the deviation is that the accuracy error of the molding material itself, which is the basis of the measurement model, and the error due to the posture when the material is placed on the fixed table 110 are combined.
[0016]
Therefore, as shown in FIG. 4, data processing such as the least squares method is performed so that the measurement model S 1 comes closest to the design model M 1 , and a fit model F 1 called a best fit or a best match (dotted line) Shown).
[0017]
Figure 5 shows a state in which superimposed the fit model F 1 in the design model M 1. Machining unit 12M 1 on design model M 1, 14M 1, 22M 1 , 24M 1 is a portion hatched respectively. If all of these machined parts are included in the corresponding machined parts 12F 1 , 14F 1 , 22F 1 , 24F 1 on the fit model F 1 , the shaving allowance is secured in the machined part of the molding material. It will be.
[0018]
Inspection items include that the shape accuracy of members other than the machined portion is within a predetermined error dimension difference.
[0019]
If these inspection items are satisfied, the railway bogie frame molding material is determined to be a passed product.
[0020]
Then, using a pointing device such as a laser pointer, a required marking such as a reference point for setting the machined portion of the molding material on the processing machine is performed.
[0021]
When the machining allowance of the machined portion is insufficient or the shape error of the member does not satisfy the predetermined value, the molding material is returned to the previous process, and necessary correction and rework are performed.
[0022]
FIG. 6 is a flowchart of the process of the present invention.
[0023]
The process started in step S10 sets the rail bogie frame molding material on the table of the measuring device in step S11. In step S12, the coordinate position of each point of the molding material is measured, and in step S13, these measurement points are plotted to create a measurement model. In step S14, the measurement model is processed by the least square method or the like so as to overlap the design model most, and is converted into a fit model.
[0024]
In step S15, the shapes of the fit model and the design model are compared.
[0025]
In step S16, it is checked whether or not the shape accuracy is within a predetermined error. If not satisfied, the process proceeds to step S18, where the molding material is corrected, reworked, and the like, and the process returns to step S11.
[0026]
If the measurement result is satisfied in step S16, the process proceeds to step S17, where necessary instructions such as a reference point for attachment to the machining machine are marked on the molding material by a laser pointer or the like, and the process ends in step S20. Then, it moves to a post-process such as machining.
[0027]
【The invention's effect】
As described above, the present invention three-dimensionally measures a molding material of a railway bogie frame formed by assembling a large member by press working and welding, processes a measurement model obtained from the measurement result, and processes the railway bogie frame. Create a fitted model that best approximates the design model of. Then, the shape accuracy of the formed model is determined by comparing the shape accuracy of the fit model with the shape accuracy of the design model. From the creation of the measurement model, the quality judgment is executed on the personal computer.
[0028]
Thereafter, the reference point for attaching the machining machine to the molding material is injured, so that the productivity of machining, which is post-processing, is improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a railway bogie frame to which the present invention is applied.
FIG. 2 is a perspective view showing measurement of a railcar frame forming material.
FIG. 3 is a plan view of a measurement model of a molding material.
FIG. 4 is an explanatory diagram for converting a measurement model into a fit model.
FIG. 5 is an explanatory diagram for comparing a fit model and a design model.
FIG. 6 is a flowchart of a process according to the present invention.
[Explanation of symbols]
1 railway vehicle frame 10 first member 12, 14 machined portion 20 and the second members 22, 24 machined portion S 1 measurement model F 1 fit model M 1 design model

Claims (1)

鉄道用台車枠の成形素材を3次元方向から測定する工程と、測定結果をプロットして成形素材の測定モデルを作成する工程と、測定モデルを処理して鉄道用台車枠の設計モデルに最も近似するフィットモデルへ変換する工程と、フィットモデルと設計モデルの形状精度を比較する工程と、形状精度が満足されていることに応じて成形素材に機械加工機への取付基準点をケガク工程とを備える鉄道用台車枠の寸法測定方法。The process of measuring the molding material of the railway bogie frame from the three-dimensional direction, the process of plotting the measurement results to create a measurement model of the molding material, and processing the measurement model to best approximate the design model of the railway bogie frame The process of converting the fit model to the fit model, the process of comparing the shape accuracy of the fit model and the design model, and the process of marking the molding material mounting reference point on the molding material in accordance with the satisfaction of the shape accuracy A method of measuring the dimensions of the bogie frame for railways.
JP2002295664A 2002-10-09 2002-10-09 Dimension measuring method for bogie frame for railroad Pending JP2004130874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295664A JP2004130874A (en) 2002-10-09 2002-10-09 Dimension measuring method for bogie frame for railroad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295664A JP2004130874A (en) 2002-10-09 2002-10-09 Dimension measuring method for bogie frame for railroad

Publications (1)

Publication Number Publication Date
JP2004130874A true JP2004130874A (en) 2004-04-30

Family

ID=32285843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295664A Pending JP2004130874A (en) 2002-10-09 2002-10-09 Dimension measuring method for bogie frame for railroad

Country Status (1)

Country Link
JP (1) JP2004130874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015820A (en) * 2004-06-30 2006-01-19 Sumitomo Metal Ind Ltd Truck frame for railway vehicle and truck for railway vehicle
KR100896952B1 (en) 2007-12-21 2009-05-14 한국기계연구원 A load-testing apparatus for a train bogie frame
JP2016205909A (en) * 2015-04-20 2016-12-08 株式会社日立製作所 Railway vehicle manufacturing method, measurement device, and measurement method
JP2020082764A (en) * 2018-11-15 2020-06-04 川崎重工業株式会社 Structure manufacturing method
WO2023089764A1 (en) * 2021-11-19 2023-05-25 株式会社日立製作所 Weld inspection method and weld inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015820A (en) * 2004-06-30 2006-01-19 Sumitomo Metal Ind Ltd Truck frame for railway vehicle and truck for railway vehicle
KR100896952B1 (en) 2007-12-21 2009-05-14 한국기계연구원 A load-testing apparatus for a train bogie frame
JP2016205909A (en) * 2015-04-20 2016-12-08 株式会社日立製作所 Railway vehicle manufacturing method, measurement device, and measurement method
JP2020082764A (en) * 2018-11-15 2020-06-04 川崎重工業株式会社 Structure manufacturing method
JP7169168B2 (en) 2018-11-15 2022-11-10 川崎車両株式会社 Structure manufacturing method
WO2023089764A1 (en) * 2021-11-19 2023-05-25 株式会社日立製作所 Weld inspection method and weld inspection device
JP7332821B1 (en) 2021-11-19 2023-08-23 株式会社日立製作所 WELD INSPECTION METHOD AND INSPECTION DEVICE

Similar Documents

Publication Publication Date Title
JP4444881B2 (en) Dimension measuring method and apparatus
CN108031844B (en) Material increasing and decreasing composite manufacturing method for online layer-by-layer detection
CN107052950A (en) A kind of complex-curved sanding and polishing system and method
CN104175014B (en) A kind of for large thin-wall component accurate welding shaped device and precision machining method
JP2014133248A (en) Three dimensional laser beam machine
WO2020116308A1 (en) Stress assessing method for as-welded part of railway vehicle bogie frame
CN103465246A (en) Rough casting marking-off method and marking-off device
JP2009264956A (en) Three-dimensional shape-position quality evaluation system and its method
JP2004130874A (en) Dimension measuring method for bogie frame for railroad
US20160346892A1 (en) Use of photogrammetry for machining of parts
CN116551048A (en) Geometric self-adaptive machining equipment and method
CN112339930A (en) Three-dimensional modeling and precision control method for ship stem steel casting
CN113798511A (en) Double-laser lap joint calibration method based on SLM additive manufacturing technology
JP4899690B2 (en) Ruler
Wang et al. Surface error decomposition for fixture development
JP2012093268A (en) Circularity measurement system and pipe-making device with the same
CN212806936U (en) Welding bead detection device
JP4525605B2 (en) Finishing apparatus and finishing method
JPH03110018A (en) Method and apparatus for positioning work in bending device
JP4397535B2 (en) Measuring method of railcar bogie
CN116413053A (en) On-line consistency detection and analysis method for production line tooling equipment
JP7169168B2 (en) Structure manufacturing method
CN115647438A (en) Alignment method for adaptive compensation machining of integral box bottom with super-large diameter-thickness ratio
JP4017123B1 (en) Method and apparatus for inspecting the thickness and shape of cast products
EP3406383A1 (en) Method of cutting openings in flat, concave, converging, and convex surfaces, and welding flat, concave, converging, and convex surfaces of a workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040322

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320