JP2004129415A - 公転モータ及び圧縮機 - Google Patents

公転モータ及び圧縮機 Download PDF

Info

Publication number
JP2004129415A
JP2004129415A JP2002291477A JP2002291477A JP2004129415A JP 2004129415 A JP2004129415 A JP 2004129415A JP 2002291477 A JP2002291477 A JP 2002291477A JP 2002291477 A JP2002291477 A JP 2002291477A JP 2004129415 A JP2004129415 A JP 2004129415A
Authority
JP
Japan
Prior art keywords
stator
mover
motor according
revolution
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291477A
Other languages
English (en)
Other versions
JP4352679B2 (ja
Inventor
Yoshinari Asano
浅野 能成
Kazuki Hori
掘 和貴
Hironobu Mizobe
溝部 浩伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002291477A priority Critical patent/JP4352679B2/ja
Publication of JP2004129415A publication Critical patent/JP2004129415A/ja
Application granted granted Critical
Publication of JP4352679B2 publication Critical patent/JP4352679B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Linear Motors (AREA)

Abstract

【課題】簡単な構成で直接公転運動を発生させ、しかも小型化するとともに、機械的損失を低減する。
【解決手段】固定子鉄心1aに巻線1bを施してなり、巻線1bに流れる電流により励磁される固定子1と、永久磁石2aおよび回転子鉄心2bからなり、固定子1の巻線1bに流れる電流との相互作用で固定子1の極に吸引されながら公転する可動子2とを含んでいる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、可動子を所定の軸を基準として公転させる公転モータおよびこの公転モータを駆動源とする圧縮機に関する。
【0002】
【従来の技術】
従来から、圧縮機等、公転運動により機能するような機構を動作させるに当たっては、回転型モータ(一般的なモータ)を駆動源とし、回転型モータの回転運動を何らかの機械的機構によって公転運動に変換していた。ここで、回転型モータは、固定子と回転子との間に働く磁気的な吸引力(および反発力)により回転子を回転させ、運動のための力を取り出しているが、吸引力(および反発力)の大部分は半径力であり、回転には寄与せず、むしろ、固定子を変形させたり、回転子を偏心させたりと、悪影響を及ぼし、きわめて小さい接線力のみをトルクとして取り出していた。
【0003】
一方、直接に公転運動を導くようなモータについても、過去に提案されている。
【0004】
特許文献1には、図24に示すように、使用機構を駆動する偏心モータは閉じた表面径路を画定する固定子204、閉じた表面径路上に転動可能に配置された永久磁石からなる電機子240、固定子204内に閉じた表面径路に沿って配置された一連の電磁要素208a,208b,208c,208d、電磁要素208a,208b,208c,208dを順次励起して電機子240を吸引および/もしくは反発させ閉じた表面径路に沿って転動させる回路、および電機子240を使用機構へ連結して電機子240が転動する時にモータの動作により使用機構へ動力が供給されるようにする連結機構を含んでいる偏心運動モータおよび流体ポンプが記載されている。
【0005】
特許文献2には、図25に示すように、可動子301又は固定子302の何れか一方を巻線321と磁性体322で構成し、他方を巻線321または永久磁石311と磁性体312で構成した回転形モータの可動子と固定子を合同な渦巻形としてそれぞれを機械角で180゜ずらし、可動子は固定子との可変空隙力によりモータの軸313を中心として所定の半径で公転を行わせ、この公転運動を軸313に取り出す構造にしている渦巻き形可変空隙モータが記載されている。
【0006】
特許文献3には、図26に示すように、所定半径の公転が自在とされた可動部材403と、自転が拘束されている上記可動部材403に磁気力を作用させて可動部材403の公転駆動を行う複数の巻線441〜448と、励磁する巻線もしくは巻線の励磁方向を切り換える通電制御部とを備え、通電制御部を、ブラシと該ブラシが接触する整流子407とからなるとともに公転運動を行う可動部材403にて上記切り換え駆動がなされる整流子機構としてなる公転式アクチュエータが記載されている。
【0007】
【特許文献1】
特開平6−141527号公報
【0008】
【特許文献2】
特開平6−78514号公報
【0009】
【特許文献3】
特開2002−78316号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1では、電機子(すなわち、可動子)全てが永久磁石となっているので、軸方向にきわめて長い割には、断面積が小さいため永久磁石の磁束量が小さく、また、吸引力のみを用いる場合は、永久磁石の磁束のうち、吸引させるべく通電した固定子極に対向した部分のみを用いることになる。一方、反発力を用いる場合は、永久磁石が、直接固定子が発生する逆磁界にさらされることになり、電流を大きくできない、保磁力の高い永久磁石を使用しなければならない等の制限があった。
【0011】
また、特許文献2では、可動子301に永久磁石を用いる場合、精密なスクロール形状を永久磁石の加工で実現するのは困難であり、強度の確保も困難である。さらに、着磁も困難であり、多極着磁となれば、さらに困難となる。また、可動子、固定子とも電磁石を用いた場合、可動子巻線に電源を供給する手段が必要となり、ブラシ、整流子といった機械的接点を持つか、直流であっても、可動子内部に電源を設ける必要があり、寿命等の面で不都合であった。また、特許文献2においては、公転運動を自転運動に変換し、回転運動として力を取り出しているといえる。そして、特許文献2を用い、そのまま冷媒圧縮用のスクロールとして構成しようとした場合、強度、加工精度面から、永久磁石、電磁石、どちらの場合であっても、実現は困難である。
【0012】
特許文献2を特許文献1に応用しても、少なくとも可動スクロールの約半分は固定スクロールの内側にあるため、吸引力を取り出すのは困難である。
【0013】
特許文献3では、可動子が扁平であるから、特許文献1の偏心運動モータおよび流体ポンプ、および特許文献2の渦巻経過辺空隙モータと組み合わせて、扁平な永久磁石の片面に可動スクロールを設け、公転運動を発生させる機構が容易に考えられるが、本構成を用いても、吸引力のみを用いる場合は、永久磁石の磁束のうち、吸引させるべく通電した固定子極に対向した部分のみを用いることになり、一方、反発力を用いる場合、永久磁石が、直接固定子が発生する逆磁界にさらされることになり、電流を大きくできない、保磁力の高い永久磁石を使用しなければならない等の制限がある。
【0014】
この発明は上記の問題点に鑑みてなされたものであり、簡単な構成で直接公転運動を発生させることができ、しかも小型化できるとともに、機械的損失を低減できる公転モータ、および公転モータを駆動源とする圧縮機を提供することを目的としている。
【0015】
【課題を解決するための手段】
請求項1の公転モータは、固定子鉄心に巻線を施してなる固定子と、前記巻線に電流を流すことにより固定子に発生する磁束により吸引されて公転運動する可動子とからなるものであって、固定子は、公転軸方向に磁束が発生し、半径方向に対向する可動子に磁束がわたることで発生する半径力によって可動子を動かすものであり、かつ、可動子は、磁石を可動子鉄心が軸方向に挟み込んでなるものである。
【0016】
請求項2の公転モータは、前記固定子として、円周方向に、略等間隔に3以上の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものを採用するものである。
【0017】
請求項3の公転モータは、前記固定子として、円周方向に、略等間隔に4の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものを採用するものである。
【0018】
請求項4の公転モータは、固定子の各極として、磁気的に絶縁されて存在し、それぞれ独立した磁路を形成するものを採用するものである。
【0019】
請求項5の公転モータは、固定子の各極として、非磁性体にて機械的に接続されたものを採用するものである。
【0020】
請求項6の公転モータは、機械的な接続として、巻線の施されていない固定子鉄心の外周部にリング状の非磁性体を接合することにより達成されるものを採用するものである。
【0021】
請求項7の公転モータは、固定子として、可動子の側に開いたE字形の固定子鉄心と、E字形の固定子の真中の水平な辺に施された巻線とを有するものを採用し、可動子として、軸方向に順次配置された可動子鉄心、永久磁石、可動子鉄心、永久磁石、可動子鉄心を有し、それぞれの可動子鉄心は、少なくとも固定子鉄心の内周部に突出した部分に対向するものであり、2層の永久磁石は、ともに軸方向に、かつ、それぞれ反対方向に磁化されてなるものを採用するものである。
【0022】
請求項8の公転モータは、固定子内周面として、略同一円周上にあるものを採用するものである。
【0023】
請求項9の公転モータは、2または2以上の極に通電する電流として、吸引力の大きさが、常に略一定になるように制御されるものを採用するものである。
【0024】
請求項10の公転モータは、2または2以上の極に通電する電流として、吸引力の大きさが、必要とされる軸負荷に合わせて変化するように制御されるものを採用するものである。
【0025】
請求項11の公転モータは、可動子位置を検出する位置検出手段をさらに有するものである。
【0026】
請求項12の公転モータは、位置検出手段としてサーチ巻線を含むものを採用するものである。
【0027】
請求項13の公転モータは、固定子極として、互いに180°対称位置から外れた少なくとも2つの無通電極を有するものを採用し、位置検出手段として2つの無通電極の巻線を用いてインダクタンスを測定することにより可動子位置を検知するものを採用するものである。
【0028】
請求項14の公転モータは、位置検出手段として、電圧、電流より磁束位置を推定するものを採用するものである。
【0029】
請求項15の公転モータは、固定子鉄心の巻線として、平角線またはシート巻線を採用するものである。
【0030】
請求項16の公転モータは、互いに吸引力を発生しあうように、固定子鉄心と可動子鉄心とが対向しているものである。
【0031】
請求項17の公転モータは、固定子に施された巻線に流れる電流を、可動子内部の永久磁石の磁束を強める方向に設定したものである。
【0032】
請求項18の公転モータは、互いに180°の位置にある固定子極の巻線として、共通の正弦波電源に並列に接続され、互いに逆向きに巻回され、かつ互いに逆向きのダイオードと直列に接続されているものを採用するものである。
【0033】
請求項19の公転モータは、可動子の公転軌道を規制する公転軌道規制手段をさらに有するものである。
【0034】
請求項20の公転モータは、公転軌道規制手段として、偏心クランクを採用するものである。
【0035】
請求項21の公転モータは、公転軌道規制手段として、偏心ベアリングを採用するものである。
【0036】
請求項22の公転モータは、公転軌道規制手段として、可動子と固定子との接触を採用するものである。
【0037】
請求項23の公転モータは、可動子の自転を防止する自転防止手段をさらに有するものである。
【0038】
請求項24の公転モータは、自転防止手段として、オルダム継ぎ手を採用するものである。
【0039】
請求項25の公転モータは、自転防止手段として、ボール継ぎ手を採用するものである。
【0040】
請求項26の公転モータは、自転防止手段として、固定子鉄心と可動子鉄心の対向部をそれぞれ突極としてなるものを採用するものである。
【0041】
請求項27の公転モータは、可動子の、固定子と対向する部分の外径を、固定子と対向しない部分の外径より大きく設定したものである。
【0042】
請求項28の公転モータは、可動子の軽量化を図るべく、可動子鉄心として、貫通穴、溝、凹部の少なくとも一種が設けられたものを採用するものである。
【0043】
請求項29のスクロール圧縮機は、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるものである。
【0044】
請求項30のロータリ圧縮機は、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるものである。
【0045】
請求項31のスイング圧縮機は、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるものである。
【0046】
請求項32の圧縮機は、圧縮機の可動部分と公転モータの可動子鉄心とが一体化されたものである。
【0047】
請求項33の圧縮機は、圧縮室を形成すべく、固定子内周を機密性のある円筒で覆い、可動子を可動ピストンとしたものである。
【0048】
請求項34の圧縮機は、可動ピストンに直結したスイングピンと、スイングピンを保持するスイングブッシュとが自転防止手段を兼ねているものである。
【0049】
請求項35の圧縮機は、可動子の軸方向の両端に圧縮機構を設けたものである。
【0050】
請求項36の圧縮機は、可動子の軸方向の両端に設けられた圧縮機構が、ロータリ圧縮機またはスイング圧縮機であって、それぞれの圧縮機構の吸入および吐出のタイミングを半位相ずらすべく、一方の圧縮機構はピストンが可動子に直結され、他方の圧縮機構はシリンダが可動子に直結されているものである。
【0051】
【作用】
請求項1の公転モータであれば、固定子鉄心に巻線を施してなる固定子と、前記巻線に電流を流すことにより固定子に発生する磁束により吸引されて公転運動する可動子とからなるものであって、固定子は、公転軸方向に磁束が発生し、半径方向に対向する可動子に磁束がわたることで発生する半径力によって可動子を動かすものであり、かつ、可動子は、磁石を可動子鉄心が軸方向に挟み込んでなるものであるから、発生する力の成分としては最も大きい半径力をそのまま動作させて、公転運動を発生させることができる。その際、1枚の平板状の永久磁石を用いるだけでよく、永久磁石の全ての磁束を吸引力に用いることができる。また、鉄心形状が単純であり、巻線を容易にでき、小型化することができる。さらに、回転運動を公転運動に変換する機構が不必要で、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減できる。
【0052】
請求項2の公転モータであれば、前記固定子として、円周方向に、略等間隔に3以上の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものを採用するのであるから、ベクトル制御により、任意の方向に吸引力を発生することができるほか、請求項1と同様の作用を達成することができる。
【0053】
請求項3の公転モータであれば、前記固定子として、円周方向に、略等間隔に4の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものを採用するのであるから、正弦波のプラス側のみ、各極90°ずつ位相をずらせた電流を与えるだけで、容易に、ほぼ一定の吸引力を発生させることができ、安定した公転運動を実現できるほか、請求項1と同様の作用を達成することができる。
【0054】
請求項4の公転モータであれば、固定子の各極として、磁気的に絶縁されて存在し、それぞれ独立した磁路を形成するものを採用するのであるから、永久磁石や巻線電流により発生した磁束を無駄なく有効に吸引力として働かせることができ、小型で、強い力を発生させることができるほか、請求項2または請求項3と同様の作用を達成することができる。
【0055】
請求項5の公転モータであれば、固定子の各極として、非磁性体にて機械的に接続されたものを採用するのであるから、固定子の各極の位置決めおよび固定が可能で、磁束の不要な漏れを防止できるので、特性の低下を最小限に押さえることができるほか、請求項4と同様の作用を達成することができる。
【0056】
請求項6の公転モータであれば、機械的な接続として、巻線の施されていない固定子鉄心の外周部にリング状の非磁性体を接合することにより達成されるものを採用するのであるから、圧縮機等、シェル状の枠の内側に焼き嵌め固定等による保持が容易となるほか、請求項5と同様の作用を達成することができる。
【0057】
請求項7の公転モータであれば、固定子として、可動子の側に開いたE字形の固定子鉄心と、E字形の固定子の真中の水平な辺に施された巻線とを有するものを採用し、可動子として、軸方向に順次配置された可動子鉄心、永久磁石、可動子鉄心、永久磁石、可動子鉄心を有し、それぞれの可動子鉄心は、少なくとも固定子鉄心の内周部に突出した部分に対向するものであり、2層の永久磁石は、ともに軸方向に、かつ、それぞれ反対方向に磁化されてなるものを採用するのであるから、巻線を固定子内部に施すことにより、固定子の外周保持を容易にでき、また、巻枠に巻線してから固定子に挿入することも可能であるため、高密度巻線が可能であるほか、請求項1から請求項6の何れかと同様の作用を達成することができる。
【0058】
請求項8の公転モータであれば、固定子内周面として、略同一円周上にあるものを採用するのであるから、公転運動による最小エアギャップを、可動子の位置によらずほぼ一定にでき、安定した吸引力を発生させることができるほか、請求項2から請求項7の何れかと同様の作用を達成することができる。
【0059】
請求項9の公転モータであれば、2または2以上の極に通電する電流として、吸引力の大きさが、常に略一定になるように制御されるものを採用するのであるから、公転運動にむらがなく、一定力、一定速度で運動させることができるほか、請求項2から請求項8の何れかと同様の作用を達成することができる。
【0060】
請求項10の公転モータであれば、2または2以上の極に通電する電流として、吸引力の大きさが、必要とされる軸負荷に合わせて変化するように制御されるものを採用するのであるから、圧縮機等、軸負荷変動がある場合、軸負荷にあわせて必要な吸引力が発生するようにでき、最小の入力にて、必要な公転運動に必要な力を発生させることができるほか、請求項2から請求項8の何れかと同様の作用を達成することができる。特に、ロータリ圧縮機やスイング圧縮機等のように、負荷変動の激しい負荷に適する。
【0061】
請求項11の公転モータであれば、可動子位置を検出する位置検出手段をさらに有するのであるから、可動子位置を電流または電圧制御にフィードバックすることにより、必要最小限な電流で、安定した吸引力を発生させることができるほか、請求項1から請求項10の何れかと同様の作用を達成することができる。
【0062】
請求項12の公転モータであれば、位置検出手段としてサーチ巻線を含むものを採用するのであるから、巻線がセンサとなることに起因して、冷媒にも強く、駆動用の巻線に拘束されること無く、任意の場所、大きさとすることができるため、より細かい位置検出が可能であるほか、請求項11と同様の作用を達成することができる。
【0063】
請求項13の公転モータであれば、固定子極として、互いに180°対称位置から外れた少なくとも2つの無通電極を有するものを採用し、位置検出手段として2つの無通電極の巻線を用いてインダクタンスを測定することにより可動子位置を検知するものを採用するのであるから、特別にモータにセンサを設けることなく、駆動用の巻線を用いて位置検出を行うことが可能であるほか、請求項11と同様の作用を達成することができる。
【0064】
請求項14の公転モータであれば、位置検出手段として、電圧、電流より磁束位置を推定するものを採用するのであるから、特別にモータにセンサを設けることなく、駆動用の巻線を用いて位置検出を行うことが可能であるほか、請求項11と同様の作用を達成することができる。
【0065】
請求項15の公転モータであれば、固定子鉄心の巻線として、平角線またはシート巻線を採用するのであるから、整列巻線が可能であり、高密度巻線により、銅損、鉄損の最小化が可能であるほか、請求項1から請求項14の何れかと同様の作用を達成することができる。
【0066】
請求項16の公転モータであれば、互いに吸引力を発生しあうように、固定子鉄心と可動子鉄心とが対向しているのであるから、パーミアンスを高くでき、動作点磁束密度が高くでき、永久磁石量を最小化でき、または、永久磁石量を変化させない場合には吸引力を大きくできるほか、請求項1から請求項15の何れかと同様の作用を達成することができる。
【0067】
請求項17の公転モータであれば、固定子に施された巻線に流れる電流を、可動子内部の永久磁石の磁束を強める方向に設定したのであるから、永久磁石に減磁界がかかることがないことに起因して、残留磁束密度が高く、保磁力の低い磁石を用いることができ、磁束量を増加させることにより吸引力を大きくでき、または、磁石の厚みを小さくすることも可能となり、コストダウン、小型化も可能となり、また、安価なフェライト磁石やボンド磁石等も使用できるほか、請求項1から請求項16の何れかと同様の作用を達成することができる。
【0068】
請求項18の公転モータであれば、互いに180°の位置にある固定子極の巻線として、共通の正弦波電源に並列に接続され、互いに逆向きに巻回され、かつ互いに逆向きのダイオードと直列に接続されているものを採用するのであるから、電流指令のためのスイッチング素子を半減できるほか、請求項17と同様の作用を達成することができる。
【0069】
請求項19の公転モータであれば、可動子の公転軌道を規制する公転軌道規制手段をさらに有するのであるから、公転軌道を規制することにより、常に、何れかの固定子の極に最小エアギャップで近接させることができ、可動子位置にかかわらず、起動時に大きな吸引力を発生することができるとともに、圧縮機の場合、冷媒の漏れを最小限とすることができるほか、請求項1から請求項18の何れかと同様の作用を達成することができる。
【0070】
請求項20の公転モータであれば、公転軌道規制手段として、偏心クランクを採用するのであるから、公転軌道規制が強固であり、確実に公転軌道を維持することができ、また、軸方向の保持も容易にできるほか、請求項19と同様の作用を達成することができる。
【0071】
請求項21の公転モータであれば、公転軌道規制手段として、偏心ベアリングを採用するのであるから、軸受を小形化でき、保持機構も小形化できるほか、請求項19と同様の作用を達成することができる。
【0072】
請求項22の公転モータであれば、公転軌道規制手段として、可動子と固定子との接触を採用するのであるから、軸受機能を持つ別部品を不要にでき、また、エアギャップは0に近いので、きわめて大きい吸引力を発生させることができるほか、請求項19と同様の作用を達成することができる。ただし、固定子と可動子の接触部分の加工精度が求められ、可動子の外径が大きい場合、軸受損が増加する可能性があるので、可動子の外径が小さい場合に有効である。
【0073】
請求項23の公転モータであれば、可動子の自転を防止する自転防止手段をさらに有するのであるから、例えば圧縮機の場合等、自転による圧縮機構の冷媒漏れを防止することができ、また、風損が低減できるほか、請求項1から請求項18の何れかと同様の作用を達成することができる。
【0074】
請求項24の公転モータであれば、自転防止手段として、オルダム継ぎ手を採用するのであるから、信頼性が高く高寿命化できるほか、請求項23と同様の作用を達成することができる。
【0075】
請求項25の公転モータであれば、自転防止手段として、ボール継ぎ手を採用するのであるから、小型化でき、同時に公転軌道を規制でき、しかも機械損失を低減できるほか、請求項23と同様の作用を達成することができる。
【0076】
請求項26の公転モータであれば、自転防止手段として、固定子鉄心と可動子鉄心の対向部をそれぞれ突極としてなるものを採用するのであるから、可動子鉄心の形状だけで自転防止が可能であるほか、請求項23と同様の作用を達成することができる。
【0077】
請求項27の公転モータであれば、可動子の、固定子と対向する部分の外径を、固定子と対向しない部分の外径より大きく設定したのであるから、可動子を軽量化し、イナーシャを小さくすることにより振動を低減するとともに、固定子鉄心と対向しない部分の可動子鉄心内部に、巻線に流れる電流により無効磁束や渦電流が発生するのを防止でき、また、風損も低減できるほか、請求項1から請求項26の何れかと同様の作用を達成することができる。
【0078】
請求項28の公転モータであれば、可動子の軽量化を図るべく、可動子鉄心として、貫通穴、溝、凹部の少なくとも一種が設けられたものを採用するのであるから、可動子を軽量化し、イナーシャを小さくすることにより振動を低減することができるほか、請求項1から請求項27の何れかと同様の作用を達成することができる。
【0079】
請求項29のスクロール圧縮機であれば、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるのであるから、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、負荷変動が小さいため、振動、騒音を低減できる。
【0080】
請求項30のロータリ圧縮機であれば、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるのであるから、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、自転は必ずしも阻止しなくてもいいため、機械的接点が減少し、機械損失を低減できる。
【0081】
請求項31のスイング圧縮機であれば、請求項1から請求項28の何れかに記載の公転モータを駆動源として用いるのであるから、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、スイングピンとスイングブッシュが自転防止機能を併せ持つため、機械的接点が減少し、機械損失を低減でき、また、ロータリ圧縮機に比べ、摺動損失や冷媒漏れによるロスを低減できる。
【0082】
請求項32の圧縮機であれば、圧縮機の可動部分と公転モータの可動子鉄心とが一体化されたのであるから、製造が容易で小型化が可能であり、軸がないため、軸を介したねじり振動が発生せず、振動、騒音を低減できるほか、請求項29から請求項31の何れかと同様の作用を達成することができる。
【0083】
請求項33の圧縮機であれば、圧縮室を形成すべく、固定子内周を機密性のある円筒で覆い、可動子を可動ピストンとしたのであるから、圧縮機を小形化でき、部品点数を低減できるほか、請求項30または請求項31と同様の作用を達成することができる。
【0084】
請求項34の圧縮機であれば、可動ピストンに直結したスイングピンと、スイングピンを保持するスイングブッシュとが自転防止手段を兼ねているのであるから、スイングピンとスイングブッシュが自転防止機能を併せ持つことに起因して、機械的接点が減少し、機械損失を低減できるほか、請求項31と同様の作用を達成することができる。
【0085】
請求項35の圧縮機であれば、可動子の軸方向の両端に圧縮機構を設けたのであるから、圧縮機そのものが可動子の保持機構を兼ね備えることができるとともに、容量の大きい圧縮機を提供することができるほか、請求項29から請求項32の何れか、または請求項34と同様の作用を達成することができる。
【0086】
請求項36の圧縮機であれば、可動子の軸方向の両端に設けられた圧縮機構が、ロータリ圧縮機またはスイング圧縮機であって、それぞれの圧縮機構の吸入および吐出のタイミングを半位相ずらすべく、一方の圧縮機構はピストンが可動子に直結され、他方の圧縮機構はシリンダが可動子に直結されているのであるから、両端の圧縮機構の負荷変動の位相を180°ずらすことが容易であり、1回転の負荷変動が小さくなり、振動、騒音を低減できるほか、請求項35と同様の作用を達成することができる。
【0087】
【発明の実施の形態】
【0088】
【実施形態1】
図1〜図3においては、簡単のため、固定子および可動子のみを描き、軸受、圧縮機構等は図示を省略している。
【0089】
本発明の一実施形態の公転モータは、固定子鉄心1aに巻線1bを施してなり、巻線1bに流れる電流により励磁される固定子1と、永久磁石2aおよび回転子鉄心2bからなり、固定子1の巻線1bに流れる電流との相互作用で固定子1の極に吸引されながら公転する可動子2とを含んでいる。
【0090】
固定子鉄心1aは、可動子2の側に開いた「コ」の字型をしており、「コ」の字型の鉛直の辺に巻線1bが施されることにより、固定子1は、公転軸方向に磁束を発生し、半径方向に対向する可動子2にエアギャップを介して磁束がわたることで発生する半径力によって公転運動をする。一方、可動子2は、軸方向に磁化された磁石2aを可動子鉄心2bが磁化方向両側から挟み込んでなる。そして、固定子鉄心1aと可動子鉄心2bとが対向し、互いに吸引力を発生しあうようにし、永久磁石2aは、固定子鉄心1aから所定の距離をもって設けられている。
【0091】
固定子1がそれぞれ独立であるため、固定子鉄心1aを回転させながら巻線を行うことも可能である。この場合、平角線(図6参照)やシート巻線(図7参照)を巻くことも可能であり、巻線1bの占積率を極めて高くすることができる。通常の円断面の巻線であっても、十分制御して巻線すれば、線のねじれがない分、整列巻が容易であり、占積率を高くすることは可能である。
【0092】
固定子1は、円周方向に、略等間隔に4の極(実際は、上下2つの極が対になっているので、全部で8極となるが、本明細書においては、上下2つで1つの極と表現する。したがって、多少難儀ではあるが、極の数が奇数の場合もあり得る)を有し、隣接する2極に同時に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させることができる。ここで、図8に示すように、正弦波のプラス側のみ、各極90°ずつ位相をずらせた電流を各巻線1bに与えれば、電流ベクトルの大きさは一定となり、電流ベクトルは等速で回転する。磁気飽和領域や、きわめて低い磁束密度でなく、透磁率がほぼ一定であれば、吸引力の大きさは一定となり、吸引力の方向が等速で回転することにより、安定した公転運動が得られる。ここで、電流の方向が一方向であるのは、吸引力のみを発生させることにより、永久磁石に減磁界が発生しないようにするためであるが、電流を逆方向にも流すことが可能であり、この場合には、反発力をも利用可能である。
【0093】
なお、固定子1の極数は、必ずしも4である必要は無く、3以上であればよい。そして、極数が多ければ多いほど公転が滑らかになるが、吸引力発生に使える巻線の割合が小さくなるため、2より多くの隣接する極に通電するか、反発力をも利用する等の工夫が必要となる。したがって、固定子の極数が4であることが最も好ましく、電流ベクトルを滑らかに移動させ、かつ、位置検出のための2つの無通電極の確保を達成することができ、しかも極数を最小として構成を簡単化できる。
【0094】
ここで、例えばロータリ圧縮機やスイング圧縮機等は、公転1周期の中で、負荷が大きく変動する。したがって、そのなかで最大の負荷にあわせた設計が必要となる。そこで、負荷が最大となる点でのみ、モータ出力が最大となるような設計とすれば、不必要に定格負荷の大きい設計としなくてもよい。ここで、モータ出力を負荷にあわせて変動させる方法としては、電流を変化させる方法、巻数を変化させる方法、磁束量を変化させる方法等が例示できる。そして、電流を変化させる方法として、図9に示すように、各極ごとに電流値を変えるようにすれば、結果として発生する吸引力も変動することになる。この際、固定子極と、圧縮機構の可動部との位置あわせが重要となる。また、PWM制御を行うほか、巻き線抵抗を変えることによっても電流値を変えることが可能である。マイコンによる電流制御を行う場合は、可動子位置を検出し、電流指令を出すことで出力制御が可能である。また、抵抗は一定として、巻数を変更すれば、各極に発生するアンペアターンを変えることができる。磁束量を変える方法としては、固定子極の幅を変えることで、飽和、非飽和によって、磁束量を変えることが可能である。すなわち、固定子極幅を狭くし、磁気飽和を発生させれば、磁気飽和がない場合に比べ、磁束量が低下し、その極が通電された場合のモータ出力は、他の場合に比べ小さくなる。
【0095】
また、固定子1の各極は、磁気的に絶縁されて存在し、それぞれ独立した磁路を形成する。しかし、それだけでは、固定子1の各極の位置が決まらないので、独立した固定子1の各極は、非磁性体にて機械的に保持している。機械的な接続構成として、巻線の施されていない固定子鉄心1aの外周部にリング状の非磁性体1cを接続すればよく、圧縮機の場合であれば、シェルの中に、焼き嵌めすればよい。また、固定子1の上下をリング状の非磁性体で挟んでもよい。
【0096】
固定子1に施された巻線1bに流れる電流は、先に述べたように、一方向のみに流し、しかもその方向を可動子内部の永久磁石2aの磁束を強める方向とすれば、減磁のおそれがなくなる。また、保磁力が小さい磁石を使うことができるため、より大きい残留磁化の磁石を使うことができ、磁石量を低減できる。
【0097】
なお、可動子2がどこにいても、固定子1との最小エアギャップを同一とできるように、固定子内周面は、略同一円周上にある形状となっている。ただし、公転軌道が真円でない場合は、同様に、固定子1との最小エアギャップを同一とできるように、固定子内周面の形状を設定すればよい。なお、固定子内周面、および可動子外周面は、円形である必要はなく、磁気回路上、または、加工上の都合にあわせて変形させても構わない。
【0098】
さらに、可動子2の、固定子1と対向する部分の外径を、固定子1と対向しない部分の外径より大きく設定している。上下の可動子鉄心2bおよび永久磁石2aは、外径の大きい可動子鉄心2bに設けられた貫通穴にボルト2cを通し、上下の可動子鉄心間にはスペーサ2dを設け、固定している。貫通穴の位置は、外径の小さい可動子鉄心2bよりは外側であるが、できるだけ内側にした方が好ましく、表面積を小さくできるため、風損を低減できる。
【0099】
また、ボルト2cやスペーサ2dは可能であれば非磁性体製であることが好ましいが、磁束の漏れが十分に小さい場合には、磁性体製であっても特性に大きな影響はない。
【0100】
もし、可動子鉄心2bが圧粉鉄心であれば、永久磁石2aを完全に可動子鉄心内部に埋め込んでも良い。永久磁石2aのラジアル方向の表面を覆う鉄心の厚みは、磁束が漏れない程度に薄ければよい。
【0101】
次にこの実施の形態の公転モータの動作を説明する。
【0102】
1つ、または隣接する2つの固定子極に施された巻線1bに電流を流すことにより、図1に破線矢印で示す方向に励磁される。永久磁石2aは、図1の上部に向かって磁化されているので、永久磁石2aの磁束は、可動子2の外径が大きくなった部分で、励磁された固定子極の方に向かい、エアギャップを介して固定子鉄心1aにわたることにより、半径方向の吸引力が発生する。
【0103】
ある固定子極に流れる電流が最大のときは、その1極のみが励磁され、図2のような可動子位置となるが、次第にその固定子極の電流は小さくなり、公転方向に隣接する固定子極の電流が次第に大きくなる。このときの可動子2の位置は図3のようになる。
【0104】
ここで、可動子2の磁束の方向は、定常運転をしている場合は、一定の公転軸成分と、半径方向成分は電流ベクトルに沿って移動することになる。したがって、可動子鉄心2bに積層鋼板を用いる場合であれば、図4に示すように、公転軸方向に積層することが好ましく、製造を容易にでき、渦電流も低減できる。
【0105】
一方、固定子1の磁束の方向は、「コ」の字型の鉄心において、まさに「コ」の字を描くように一方向に流れ、その量が単に増減するだけである。したがって、固定子鉄心1aに積層鋼板を用いる場合であれば、「コ」の字に鋼板を打ち抜き、円周方向に積層すればよい。または、図5のように、可動子2に対向する部分は公転軸方向に積層し、巻線1bを施した部分は半径方向に積層してもよい。いずれにしても、磁束の流れに直交する方向に積層すれば、渦電流損を低減できる。なお、固定子1については、磁束の流れに平行な方向にL方向(磁気特性が優れる方向)を持った方向性電磁鋼板を用いることが好ましく、さらに優れたBH特性や鉄損特性を得ることができ、さらなる銅損および鉄損の低減を図ることができる。また、図5のような分割を行う場合には、可動子2に対向する鉄心はL方向を固定子内周面に対して垂直方向、巻線を施した鉄心はL方向を公転軸方向とするとよい。
【0106】
何れにしても、固定子鉄心1aを圧粉鉄心にて成形すれば、積層方向を気にする必要はない。
【0107】
可動子2は公転運動するため、風損が発生する。そこで、可動子形状は、極力、軸対称である方がよい。ただし、後述するように、可動子に突極を設ける場合はこの限りではない。
【0108】
また、イナーシャを極力小さくすることにより振動、騒音を低減できるので、特に、磁路とならない部分や、磁束密度が十分低い部分に、穴、溝、凹部2eを設け、質量を小さくすることが好ましい。
【0109】
可動子位置を検出し、電流制御にフィードバックできれば、より安定し、高速かつ高効率な運転が可能となる。そこで、可動子2の位置検出について考える。幸い、4つの固定子極を設けた場合は、同時に2つの固定子極のみしか通電しないため、残余の2つの固定子極が無通電状態となる。さらに良いことには、無通電の2つの固定子極は互いに隣接しているため、無通電の2つの固定子極を用いれば、可動子2の位置が推定できる。例えば、無通電の固定子極に微小なパルス電流を流すことにより、インダクタンスを求めることができ、2つの固定子極のインダクタンスを演算することにより、一義的に可動子位置を推定できる。これは、モータ側に一切の位置検出機構を追加することなく実現できるので、好適である。
【0110】
他の方法として、サーチ巻線を用いる方法、モータ電圧、電流より磁束位置を推定する方法等があり、その利点は、共に、特別なセンサが不要な点であり、同様に、高温の冷媒中に晒されるような圧縮機のための駆動源に適している。
【0111】
本モータの駆動方式としては、PWMインバータで、所定の波形の電流が流れるように制御する方法が例示できるが、ここでは、他の例について考えてみる。例えば、単相の正弦波電源があると仮定して、回路構成を考える。図10のように、単相の正弦波電源(波高値および周波数が可変の正弦波電源が望ましいが、商用電源でもよい)PSから、互いに並列な主巻線B、Dと、コンデンサCCを通した互いに並列な補助巻線A、Cとを並列に接続する。主巻線B、D、および、補助巻線A、Cのそれぞれは、図11に示すように、逆向きに固定子鉄心1aに巻回され、互いに逆向きのダイオードDB、DD、互いに逆向きのダイオードDA、DCとそれぞれ直列に接続される。図11の実線矢印は、巻線の巻回方向を示す。まず補助巻線A、Cには、主巻線B、Dより90°位相の進んだ正弦波電流が流れる。また、ダイオードの働きにより、永久磁石2aの磁束を強める方向にのみ磁束が流れ、図8中(A)のような電流を流すことができる。
【0112】
また、三相電源3PSである場合は、図13のように、固定子を6極とし、互いに180°ずれた位置にある固定子極の巻線は、共通の相から電源を取り、それぞれの巻方向は逆とし、それぞれ逆向きのダイオードを直列に接続する。また、公転方向に、R相CCW巻、T相CW巻、S相CCW巻、R相CW巻、T相CCW巻、S相CW巻、とすれば、60°ずつずれた正弦波の+成分のみが順次現れ、CCW(反時計方向)に公転するような磁界を発生させることができる。結線は、図12のようにすればよい。
【0113】
ここで、例えば公転モータをスクロール圧縮機の駆動源として採用する場合、固定スクロールと可動スクロールの間に隙間が生じシール不良を招くことがないよう、公転軌道を規制し、自転を防止する必要がある。以下、機構部分も含めた構成について説明する。
【0114】
図14は、この実施の形態の公転モータを駆動源として搭載したスクロール圧縮機の断面図である。
【0115】
公転モータの可動子2は可動スクロール3に直結されており、軸方向および公転軌道を規制する軸受4で保持されている。軸受4は、例えば、図15に示すように、それぞれの摺動部が偏心している内外二重のすべり軸受4a、4bであってもよく、または、図16に示すようなクランク軸4cを用いる軸受であってもよい。クランク軸4cは、軸受4dの中心を回転軸として回転(自転)する。軸受4eによって、クランク軸4cの偏心部の公転運動のみを可動子2に伝える。
【0116】
この軸受4により、公転軌道が規制される。
【0117】
なお、5は固定スクロール、6はオルダム継ぎ手、7は保護サーミスタ、8は吐出弁、9はハウジングである。
【0118】
また、オルダム継ぎ手6は、図17中(B)に示すように、可動スクロール3に設けられた窪み3a{図17中(A)参照}と嵌合すべく、上部(図14中左側)に突出したx軸方向の凸部6aと、ハウジング9に設けられた穴9a{図17中(C)参照}と嵌合すべく、下部(図14中右側)に突出したy方向の凸部6bとを有しており、x軸方向の凸部6aと可動スクロール3に設けられた窪み3aとが嵌合することにより、x軸方向のみの移動を可能とし、y方向の凸部6bとハウジング9に設けられた穴9aが嵌合することにより、y軸方向のみの移動を可能とする{図17中(D)(E)(F)参照}。これにより、可動子2に直結された可動スクロール3の自転が規制される。
【0119】
自転を規制することにより、可動子2の表面の移動速度が小さくなるため、風損が大幅に低減できる。特に、風損の大きくなる10000r/min以上の高速にも適している。
【0120】
また、ボールカップリング{図18中(A)参照}またはEMカップリング{図18中(B)参照}を用いれば、自転を防止し、同時に公転軌道を規制することができる{NTN TECHNICAL REVIEW No.68(2000)「スクロールコンプレッサ用EMカップリングについて」参照}。
【0121】
具体的には、ボールカップリングは、図18中(A)に示すように、可動スクロールの背面に可動リング16a、フロントハウジング端面に固定リング16bを設け、各リング16a、16bの複数のポケットに鋼球16cを入れて可動・固定レース16d、16eで挟んだ構造になっている。そして、鋼球16cが、リング16a、16bのポケット内周に沿って移動して可動スクロールの自転を防止し、可動スクロールを旋回運動させる。尚、ボールカップリングは、圧縮室中の圧力を可動・固定レース16d、16eによって受けるころがり軸受で支持し、機械効率の改善を図ることができる。
【0122】
また、EMカップリングは、図18(B)に示すように、レースとリングを一体プレス成形した2枚のプレート17a、17bと鋼球17cから構成され、部品点数の削減を図ることができる。また、接触面圧を低減するためプレート17a、17bのアキシャル荷重を負荷する部分(レース)の形状を曲面にすることで、小形化でき、レース中央を凸曲面形状とすることで、低騒音化も図ることができる。
【0123】
なお、ロータリ圧縮機やスイング圧縮機の場合には、必ずしも自転を防止する必要はない。これらの場合、可動子をそのまま可動ピストンとして用い、固定子の内周を機密性のある円筒で覆い、シリンダとすればよく、可動子が公転運動すれば、そのままシリンダ内部で冷媒を圧縮することができる。図19に、ロータリ圧縮機の例を示す。図19において、11aは圧縮機ケーシング、11bは固定子、11cはシリンダ、11dは公転ロータ&ピストン、11eはベーンである。
【0124】
図20は、スイング圧縮機の例である。スイング圧縮機の場合、公転ロータ&ピストン12dにスイングピン12eが固定されているため、スイングピン12eをスイングブッシュ12fで固定すれば、自転を防止することができる。スイング圧縮機は、ロータリ圧縮機におけるベーンと公転ロータ&ピストンとの摺動による摩擦やガス漏れをなくすることができ、特に低速領域での効率を向上させることができる。
【0125】
圧縮機構が1つしかない圧縮機の場合、特にロータリ圧縮機やスイング圧縮機においては、1回転中の負荷変動が大きく、振動、騒音が大きくなる場合があった。可動子そのものが可動ピストンとならない場合は、図21に示すように、可動子13の軸方向の両端部に圧縮機構14、15を設け、それぞれの負荷変動の位相を180°ずらせれば、1回転中の負荷変動を小さくすることができる。そのためには、吸入、吐出のタイミングを180°ずらせばよいが、その1例として、上部の圧縮機構14は可動シリンダ14aに固定ピストン14b、下部の圧縮機構15は可動ピストン15aに固定シリンダ15bとすれば、シリンダに対するピストンの相対的位置を180°ずらすことができる。
【0126】
【実施形態2】
図22は、本発明の他の実施形態の公転モータを示す概略図である。
【0127】
この公転モータの固定子21は、可動子22の側に開いた「E」の字型の固定子鉄心21aを有しており、「E」の字型の固定子鉄心21aの真中の水平な辺に巻線21bが施されている。したがって、巻線21bは、真中の水平な辺の上下の空間に収納されるため、固定子鉄心21aの外部に巻線21bが無く、枠への固定等が容易になる。また、可動子22は、可動子鉄心22a、永久磁石22b、可動子鉄心22c、永久磁石22d、可動子鉄心22eを軸方向にこの順に配置し、それぞれの可動子鉄心22a、22c、22eは、少なくとも固定子鉄心21aの内周部に突出した部分に対向している。また、2層の永久磁石22b、22dは、共に軸方向に、かつ、互いに反対方向に磁化されている。仮に、巻線21bに対して所定の方向に電流を流したとき、「E」の字型の固定子鉄心21aの真中の水平な辺から磁束が発生し、可動子22の2枚の永久磁石22b、22dに挟まれた可動子鉄心22cに磁束がわたる。そして、上部の永久磁石22bが紙面上向きに、下部の永久磁石22dが紙面下向きに磁化されている場合、可動子22に対して吸引力を発生させる。永久磁石22b、22dの磁束を強める方向の磁束は、再び「E」の字型の固定子鉄心21aの上下の水平な辺にわたる。磁束の流れは、図22中に、破線の矢印で示したとおりである。
【0128】
本実施形態の利点は、巻線21bがほぼ固定子鉄心21aに囲まれているため、巻線21bに流れる電流により、磁束が有効に固定子鉄心21aに流れることであり、例えば、固定子21を固定する枠が磁性体であっても磁束の漏れが発生することなく、少ない電流で可能な限り大きい磁化力を得ることができる。なお、「E」の字型の固定子鉄心21aの鉛直な辺、および、上下の水平な辺の幅(図22において、かつ、紙面上において、磁束の流れと直交する方向のサイズ)は、固定子鉄心21aに流れる磁束量を考えると、「E」の字型の固定子鉄心21aの真中の水平な辺の約半分あればよい。
【0129】
固定子21がそれぞれ独立であるため、固定子鉄心21aを回転させながら巻線を行うことも可能である。この場合、平角線やシート巻線を巻くことも可能であり、巻線21bの占積率が極めて高くなる。通常の円断面の巻線であっても、十分制御して巻線すれば、線のねじれがない分、整列巻が容易であり、占積率を高くすることは可能である。また、あらかじめ、巻枠に整列巻した巻線を固定子鉄心21aに挿入しても良い。
【0130】
なお、永久磁石22b、22dは、円板形状であることを想定して説明したが、必要な磁束量に応じて、非円形の平板でもよく、複数の非円形の平板形状の永久磁石を並べてもよい。
【0131】
【実施形態3】
図23は、本発明のさらに他の実施形態の公転モータを示す概略図である。
【0132】
この公転モータが実施形態1の公転モータと異なる点は、可動子32の、固定子極に対向する部分に突極を設けた点である。
【0133】
この実施形態では、可動子32の突極と固定子極とが対向するため、自転の防止が可能である。
【0134】
【発明の効果】
請求項1の発明は、発生する力の成分としては最も大きい半径力をそのまま動作させて、公転運動を発生させることができ、その際、1枚の平板状の永久磁石を用いるだけでよく、永久磁石の全ての磁束を吸引力に用いることができ、また、鉄心形状が単純であり、巻線を容易にでき、小型化することができ、回転運動を公転運動に変換する機構が不必要で、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減できるという特有の効果を奏する。
【0135】
請求項2の発明は、ベクトル制御により、任意の方向に吸引力を発生することができるほか、請求項1と同様の効果を奏する。
【0136】
請求項3の発明は、正弦波のプラス側のみ、各極90°ずつ位相をずらせた電流を与えるだけで、容易に、ほぼ一定の吸引力を発生させることができ、安定した公転運動を実現できるほか、請求項1と同様の効果を奏する。
【0137】
請求項4の発明は、永久磁石や巻線電流により発生した磁束を無駄なく有効に吸引力として働かせることができ、小型で、強い力を発生させることができるほか、請求項2または請求項3と同様の効果を奏する。
【0138】
請求項5の発明は、固定子の各極の位置決めおよび固定が可能で、磁束の不要な漏れを防止できるので、特性の低下を最小限に押さえることができるほか、請求項4と同様の効果を奏する。
【0139】
請求項6の発明は、圧縮機等、シェル状の枠の内側に焼き嵌め固定等による保持が容易となるほか、請求項5と同様の効果を奏する。
【0140】
請求項7の発明は、巻線を固定子内部に施すことにより、固定子の外周保持を容易にでき、また、巻枠に巻線してから固定子に挿入することも可能であるため、高密度巻線が可能であるほか、請求項1から請求項6の何れかと同様の効果を奏する。
【0141】
請求項8の発明は、公転運動による最小エアギャップを、可動子の位置によらずほぼ一定にでき、安定した吸引力を発生させることができるほか、請求項2から請求項7の何れかと同様の効果を奏する。
【0142】
請求項9の発明は、公転運動にむらがなく、一定力、一定速度で運動させることができるほか、請求項2から請求項8の何れかと同様の効果を奏する。
【0143】
請求項10の発明は、圧縮機等、軸負荷変動がある場合、軸負荷にあわせて必要な吸引力が発生するようにでき、最小の入力にて、必要な公転運動に必要な力を発生させることができるほか、請求項2から請求項8の何れかと同様の効果を奏する。
【0144】
請求項11の発明は、可動子位置を電流または電圧制御にフィードバックすることにより、必要最小限な電流で、安定した吸引力を発生させることができるほか、請求項1から請求項10の何れかと同様の効果を奏する。
【0145】
請求項12の発明は、巻線がセンサとなることに起因して、冷媒にも強く、駆動用の巻線に拘束されること無く、任意の場所、大きさとすることができるため、より細かい位置検出が可能であるほか、請求項11と同様の効果を奏する。
【0146】
請求項13の発明は、特別にモータにセンサを設けることなく、駆動用の巻線を用いて位置検出を行うことが可能であるほか、請求項11と同様の効果を奏する。
【0147】
請求項14の発明は、特別にモータにセンサを設けることなく、駆動用の巻線を用いて位置検出を行うことが可能であるほか、請求項11と同様の効果を奏する。
【0148】
請求項15の発明は、整列巻線が可能であり、高密度巻線により、銅損、鉄損の最小化が可能であるほか、請求項1から請求項14の何れかと同様の効果を奏する。
【0149】
請求項16の発明は、パーミアンスを高くでき、動作点磁束密度が高くでき、永久磁石量を最小化でき、または、永久磁石量を変化させない場合には吸引力を大きくできるほか、請求項1から請求項15の何れかと同様の効果を奏する。
【0150】
請求項17の発明は、永久磁石に減磁界がかかることがないことに起因して、残留磁束密度が高く、保磁力の低い磁石を用いることができ、磁束量を増加させることにより吸引力を大きくでき、または、磁石の厚みを小さくすることも可能となり、コストダウン、小型化も可能となり、また、安価なフェライト磁石やボンド磁石等も使用できるほか、請求項1から請求項16の何れかと同様の効果を奏する。
【0151】
請求項18の発明は、電流指令のためのスイッチング素子を半減できるほか、請求項17と同様の効果を奏する。
【0152】
請求項19の発明は、公転軌道を規制することにより、常に、何れかの固定子の極に最小エアギャップで近接させることができ、可動子位置にかかわらず、起動時に大きな吸引力を発生することができるとともに、圧縮機の場合、冷媒の漏れを最小限とすることができるほか、請求項1から請求項18の何れかと同様の効果を奏する。
【0153】
請求項20の発明は、公転軌道規制が強固であり、確実に公転軌道を維持することができ、また、軸方向の保持も容易にできるほか、請求項19と同様の効果を奏する。
【0154】
請求項21の発明は、軸受を小形化でき、保持機構も小形化できるほか、請求項19と同様の効果を奏する。
【0155】
請求項22の発明は、軸受機能を持つ別部品を不要にでき、また、エアギャップは0に近いので、きわめて大きい吸引力を発生させることができるほか、請求項19と同様の効果を奏する。
【0156】
請求項23の発明は、例えば圧縮機の場合等に、自転による圧縮機構の冷媒漏れを防止することができ、また、風損が低減できるほか、請求項1から請求項18の何れかと同様の効果を奏する。
【0157】
請求項24の発明は、信頼性が高く高寿命化できるほか、請求項23と同様の効果を奏する。
【0158】
請求項25の発明は、小型化でき、同時に公転軌道を規制でき、しかも機械損失を低減できるほか、請求項23と同様の効果を奏する。
【0159】
請求項26の発明は、可動子鉄心の形状だけで自転防止が可能であるほか、請求項23と同様の効果を奏する。
【0160】
請求項27の発明は、可動子を軽量化し、イナーシャを小さくすることにより振動を低減するとともに、固定子鉄心と対向しない部分の可動子鉄心内部に、巻線に流れる電流により無効磁束や渦電流が発生するのを防止でき、また、風損も低減できるほか、請求項1から請求項26の何れかと同様の効果を奏する。
【0161】
請求項28の発明は、可動子を軽量化し、イナーシャを小さくすることにより振動を低減することができるほか、請求項1から請求項27の何れかと同様の効果を奏する。
【0162】
請求項29の発明は、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、負荷変動が小さいため、振動、騒音を低減できるという特有の効果を奏する。
【0163】
請求項30の発明は、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、自転は必ずしも阻止しなくてもいいため、機械的接点が減少し、機械損失を低減できるという特有の効果を奏する。
【0164】
請求項31の発明は、回転運動を公転運動に変換する機構が不必要で、ダイレクトに公転運動を発生させるため、機構を簡素化でき、材料も低減できるとともに、機械的損失も低減でき、また、スイングピンとスイングブッシュが自転防止機能を併せ持つため、機械的接点が減少し、機械損失を低減でき、また、ロータリ圧縮機に比べ、摺動損失や冷媒漏れによるロスを低減できるという特有の効果を奏する。
【0165】
請求項32の発明は、製造が容易で小型化が可能であり、軸がないため、軸を介したねじり振動が発生せず、振動、騒音を低減できるほか、請求項29から請求項31の何れかと同様の効果を奏する。
【0166】
請求項33の発明は、圧縮機を小形化でき、部品点数を低減できるほか、請求項30または請求項31と同様の効果を奏する。
【0167】
請求項34の発明は、スイングピンとスイングブッシュが自転防止機能を併せ持つことに起因して、機械的接点が減少し、機械損失を低減できるほか、請求項31と同様の効果を奏する。
【0168】
請求項35の発明は、圧縮機そのものが可動子の保持機構を兼ね備えることができるとともに、容量の大きい圧縮機を提供することができるほか、請求項29から請求項32の何れか、または請求項34と同様の効果を奏する。
【0169】
請求項36の発明は、両端の圧縮機構の負荷変動の位相を180°ずらすことが容易であり、1回転の負荷変動が小さくなり、振動、騒音を低減できるほか、請求項35と同様の効果を奏する。
【図面の簡単な説明】
【図1】この発明の公転モータの一実施形態の概略縦断面図である。
【図2】図1の公転モータの平面図である。
【図3】図2の状態を基準として可動子が公転した状態を示す平面図である。
【図4】可動子の積層構造の一例を示す概略図である。
【図5】固定子の積層構造の一例を示す斜視図である。
【図6】平角線を巻回した状態を示す概略図である。
【図7】シートコイルを巻回した状態を示す概略図である。
【図8】4つの固定子の巻線への通電状態および吸引力の一例を示す図である。
【図9】4つの固定子の巻線への通電状態および吸引力の他の例を示す図である。
【図10】単相電源から4つの固定子の巻線への通電を制御するための構成を示す電気回路図である。
【図11】4つの固定子の巻線の巻回方向を示す概略図である。
【図12】3相電源から6つの固定子の巻線への通電を制御するための構成を示す電気回路図である。
【図13】6つの固定子の巻線の巻回方向を示す概略図である。
【図14】スクロール圧縮機の構成を示す概略縦断面図である。
【図15】軸受の一例を示す平面図である。
【図16】軸受の他の例を示す斜視図である。
【図17】オルダム継ぎ手の構成および作用を示す概略図である。
【図18】ボールカップリング、およびEMカップリングの構成を示す概略図である。
【図19】ロータリー圧縮機の構成を示す概略図である。
【図20】スイング圧縮機の構成を示す概略図である。
【図21】可動子の両端部に圧縮機構を設けた圧縮機の構成を示す概略図である。
【図22】この発明の公転モータの他の実施形態の概略縦断面図である。
【図23】この発明の公転モータのさらに他の実施形態の平面図である。
【図24】従来の偏心運動モータの構成を示す概略図である。
【図25】従来の渦巻き形可変空隙モータの構成を示す概略図である。
【図26】従来の公転式アクチュエータの構成を示す概略図である。
【符号の説明】
1、21 固定子  1a、21a 固定子鉄心
1b、21b 巻線  1c 非磁性体
2、22 可動子  2a、22b、22d 永久磁石
2b、22a、22c、22e 可動子鉄心

Claims (36)

  1. 固定子鉄心(1a)に巻線(1b)を施してなる固定子(1)と、前記巻線(1b)に電流を流すことにより固定子(1)に発生する磁束により吸引されて公転運動する可動子(2)とからなる公転モータにおいて、
    固定子(1)は、公転軸方向に磁束が発生し、半径方向に対向する可動子(2)に磁束がわたることで発生する半径力によって可動子(2)を動かすものであり、かつ、可動子(2)は、磁石(2a)を可動子鉄心(2b)が軸方向に挟み込んでなるものであることを特徴とする公転モータ。
  2. 固定子(1)は、円周方向に、略等間隔に3以上の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものである、請求項1記載の公転モータ。
  3. 固定子(1)は、円周方向に、略等間隔に4の極を有し、同時に2または2以上の極に通電する電流を制御することにより、吸引力の方向を滑らかに、かつ連続的に変化させるものである、請求項1記載の公転モータ。
  4. 固定子(1)の各極は、磁気的に絶縁されて存在し、それぞれ独立した磁路を形成するものである、請求項2または請求項3記載の公転モータ。
  5. 固定子(1)の各極は、非磁性体にて機械的に接続されたものである、請求項4記載の公転モータ。
  6. 機械的な接続が、巻線の施されていない固定子鉄心(1a)の外周部にリング状の非磁性体(1c)を接合することにより達成されている、請求項5記載の公転モータ。
  7. 固定子(21)は、可動子(22)の側に開いたE字形の固定子鉄心(21a)と、E字形の固定子の真中の水平な辺に施された巻線(21b)とを有するものであり、可動子(22)は、軸方向に順次配置された可動子鉄心(22a)、永久磁石(22b)、可動子鉄心(22c)、永久磁石(22d)、可動子鉄心(22e)を有し、それぞれの可動子鉄心(22a)(22c)(22e)は、少なくとも固定子鉄心(21a)の内周部に突出した部分に対向するものであり、2層の永久磁石(22b)(22d)は、ともに軸方向に、かつ、互いに反対方向に磁化されてなるものである、請求項1から請求項6の何れかに記載の公転モータ。
  8. 固定子内周面は、略同一円周上にあるものである、請求項2から請求項7の何れかに記載の公転モータ。
  9. 2または2以上の極に通電する電流は、吸引力の大きさが、常に略一定になるように制御される、請求項2から請求項8の何れかに記載の公転モータ。
  10. 2または2以上の極に通電する電流は、吸引力の大きさが、必要とされる軸負荷に合わせて変化するように制御される、請求項2から請求項8の何れかに記載の公転モータ。
  11. 可動子位置を検出する位置検出手段をさらに有する請求項1から請求項10の何れかに記載の公転モータ。
  12. 位置検出手段はサーチ巻線を含む、請求項11記載の公転モータ。
  13. 固定子極は、互いに180°対称位置から外れた少なくとも2つの無通電極を有するものであり、位置検出手段は2つの無通電極の巻線を用いてインダクタンスを測定することにより可動子位置を検知するものである、請求項11記載の公転モータ。
  14. 位置検出手段は、電圧、電流より磁束位置を推定するものである、請求項11記載の公転モータ。
  15. 固定子鉄心の巻線は、平角線またはシート巻線である、請求項1から請求項14の何れかに記載の公転モータ。
  16. 互いに吸引力を発生しあうように、固定子鉄心と可動子鉄心とが対向している、請求項1から請求項15の何れかに記載の公転モータ。
  17. 固定子に施された巻線に流れる電流は、可動子内部の永久磁石の磁束を強める方向である、請求項1から請求項16の何れかに記載の公転モータ。
  18. 互いに180°の位置にある固定子極の巻線は、共通の正弦波電源に並列に接続され、互いに逆向きに巻回され、かつ互いに逆向きのダイオードと直列に接続されている、請求項17記載の公転モータ。
  19. 可動子の公転軌道を規制する公転軌道規制手段をさらに有する、請求項1から請求項18の何れかに記載の公転モータ。
  20. 公転軌道規制手段は、偏心クランクである請求項19記載の公転モータ。
  21. 公転軌道規制手段は、偏心ベアリングである請求項19記載の公転モータ。
  22. 公転軌道規制手段は、可動子と固定子との接触である請求項19記載の公転モータ。
  23. 可動子の自転を防止する自転防止手段をさらに有する、請求項1から請求項18の何れかに記載の公転モータ。
  24. 自転防止手段は、オルダム継ぎ手である、請求項23記載の公転モータ。
  25. 自転防止手段は、ボール継ぎ手である、請求項23記載の公転モータ。
  26. 自転防止手段は、固定子鉄心と可動子鉄心の対向部をそれぞれ突極としてなるものである、請求項23記載の公転モータ。
  27. 可動子の、固定子と対向する部分の外径が、固定子と対向しない部分の外径より大きい、請求項1から請求項26の何れかに記載の公転モータ。
  28. 可動子の軽量化を図るべく、可動子鉄心は、貫通穴、溝、凹部の少なくとも一種が設けられたものである、請求項1から請求項27の何れかに記載の公転モータ。
  29. 請求項1から請求項28の何れかに記載の公転モータを駆動源として用いたことを特徴とするスクロール圧縮機。
  30. 請求項1から請求項28の何れかに記載の公転モータを駆動源として用いたことを特徴とするロータリ圧縮機。
  31. 請求項1から請求項28の何れかに記載の公転モータを駆動源として用いたことを特徴とするスイング圧縮機。
  32. 圧縮機の可動部分と公転モータの可動子鉄心とが一体化された、請求項29から請求項31の何れかに記載の圧縮機。
  33. 圧縮室を形成すべく、固定子内周を機密性のある円筒で覆い、可動子を可動ピストンとした、請求項30または請求項31記載の圧縮機。
  34. 可動ピストンに直結したスイングピンと、スイングピンを保持するスイングブッシュが自転防止手段を兼ねている請求項31記載の圧縮機。
  35. 可動子の軸方向の両端に圧縮機構を設けた、請求項29から請求項32の何れか、または、請求項34に記載の圧縮機。
  36. 可動子の軸方向の両端に設けられた圧縮機構が、ロータリ圧縮機またはスイング圧縮機であって、それぞれの圧縮機構の吸入および吐出のタイミングを半位相ずらすべく、一方の圧縮機構はピストンが可動子に直結され、他方の圧縮機構はシリンダが可動子に直結されている、請求項35記載の圧縮機。
JP2002291477A 2002-10-03 2002-10-03 公転モータ及び圧縮機 Expired - Fee Related JP4352679B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291477A JP4352679B2 (ja) 2002-10-03 2002-10-03 公転モータ及び圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291477A JP4352679B2 (ja) 2002-10-03 2002-10-03 公転モータ及び圧縮機

Publications (2)

Publication Number Publication Date
JP2004129415A true JP2004129415A (ja) 2004-04-22
JP4352679B2 JP4352679B2 (ja) 2009-10-28

Family

ID=32283064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291477A Expired - Fee Related JP4352679B2 (ja) 2002-10-03 2002-10-03 公転モータ及び圧縮機

Country Status (1)

Country Link
JP (1) JP4352679B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033845A (ja) * 2007-07-26 2009-02-12 Sadayuki Amiya ギャプレスモータ
JP2014512790A (ja) * 2011-03-16 2014-05-22 コンセプト アンド デザイン リミテッド 遊星プッシュプル電気モーター
JP2014217089A (ja) * 2013-04-22 2014-11-17 日立金属株式会社 リニアモータ用固定子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033845A (ja) * 2007-07-26 2009-02-12 Sadayuki Amiya ギャプレスモータ
JP2014512790A (ja) * 2011-03-16 2014-05-22 コンセプト アンド デザイン リミテッド 遊星プッシュプル電気モーター
JP2014217089A (ja) * 2013-04-22 2014-11-17 日立金属株式会社 リニアモータ用固定子

Also Published As

Publication number Publication date
JP4352679B2 (ja) 2009-10-28

Similar Documents

Publication Publication Date Title
US7863797B2 (en) Electrical devices using electromagnetic rotors
EP1689067B1 (en) Induction motor having reverse-rotation preventing function
JP4586599B2 (ja) 圧縮機
JPH03991A (ja) スクロール流体機械
AU2008298262A1 (en) Axial-gap rotary electric machine and rotary drive
KR20080002972A (ko) 고-토크 스위치드 릴럭턴스 모터
CN109842255B (zh) 带有磁通可变机构的旋转电机
JP2002199695A (ja) 公転式アクチュエータ
JP4285137B2 (ja) 流体機械
US5929548A (en) High inertia inductor-alternator
JP5359112B2 (ja) アキシャルギャップ型回転電機及びそれを用いた圧縮機
Kurita et al. Analysis and design of a bearingless axial-force/torque motor with flex-PCB windings
JP4276268B2 (ja) 単一磁界回転子モータ
US7977827B2 (en) Stepper motor device
JP2004129415A (ja) 公転モータ及び圧縮機
JP2009089581A (ja) アキシャルギャップ型回転電機
JP4124621B2 (ja) 回転電機
JP3757733B2 (ja) 公転式アクチュエータ
JP2017158333A (ja) 電動機
JP2008220128A (ja) アキシャルギャップ型回転電機及び圧縮機
JP2004084511A (ja) 圧縮機
JP2007330048A (ja) アキシャルギャップ型モータおよび圧縮機
JP7359738B2 (ja) シングルアキシャルギャップ型回転機
JP2001169484A (ja) 圧縮機用電動機の回転子
JP2001161041A (ja) 圧縮機用電動機の回転子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees