JP2004129405A - Method for controlling voltage-type inverter - Google Patents

Method for controlling voltage-type inverter Download PDF

Info

Publication number
JP2004129405A
JP2004129405A JP2002290879A JP2002290879A JP2004129405A JP 2004129405 A JP2004129405 A JP 2004129405A JP 2002290879 A JP2002290879 A JP 2002290879A JP 2002290879 A JP2002290879 A JP 2002290879A JP 2004129405 A JP2004129405 A JP 2004129405A
Authority
JP
Japan
Prior art keywords
voltage
phase
command value
pulse width
control block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290879A
Other languages
Japanese (ja)
Other versions
JP4284585B2 (en
Inventor
Masaki Hirakata
平形 政樹
Yukio Kato
加藤 行夫
Shinichi Higuchi
樋口 新一
Osamu Mizuno
水野 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002290879A priority Critical patent/JP4284585B2/en
Publication of JP2004129405A publication Critical patent/JP2004129405A/en
Application granted granted Critical
Publication of JP4284585B2 publication Critical patent/JP4284585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a surge voltage generated from the load end of a voltage-type inverter in the inverter for performing a pulse width modulation calculation of a command value to set an output voltage to a predetermined value. <P>SOLUTION: When a pulse width of a collapsed pulse of the output voltage is narrowed near the peak value of a phase voltage by a carrier oscillator 16a of the voltage-type inverter 2, voltage pattern generating means 21-23, a U-phase PWM control block 24, a V-phase PWM control block 25 and a W-phase PWM control block 26, this pulse width is limited so as to become wider; and further in order to set a change of the output voltage, even in the limited pulse width to the same as a prior art, an operation for turning on during one period of the PWM calculation at an upper arm or a lower arm of the corresponding phase is used in combination. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、基本的には各相の相電圧指令値それぞれをPWM演算して得られる駆動信号に基づき該各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、入力される直流電圧を所望の交流電圧に変換して出力する電圧形インバータの制御方法に関し、特に、前記半導体スイッチ回路それぞれのスイッチングに伴って前記電圧形インバータの負荷端に誘起されるサージ電圧を低減する電圧形インバータの制御方法に関する。
【0002】
【従来の技術】
電圧形インバータの各相の上,下アームを形成する半導体スイッチ回路には、IGBTに代表される高速でスイッチングできるバルブデバイスを用いたものが広く普及しているが、スイッチング速度の高速化とPWM演算での高キャリア周波数化により、この電圧形インバータの負荷としての交流電動機などにサージ電圧が印加されることが知られており、このサージ電圧に起因した前記交流電動機の巻線の絶縁劣化などを防止するために、該サージ電圧を低減する必要がある(例えば、非特許文献1参照)。
【0003】
上述の非特許文献1を含む従来の技術とその問題点について、図8,図9を参照しつつ、以下に説明する。
【0004】
図8は、この種の電圧形インバータを示す回路構成図(主要部分図)であり、1は電圧形インバータ、5は電圧形インバータ1により可変速駆動される交流電動機である。この電圧形インバータ1は整流電源などの直流電源11と、半導体スイッチ回路としてのIGBTとダイオードの逆並列回路をU相,V相,W相それぞれの上,下アームとし、図示の如く、これらの上,下アームをブリッジ接続してなるインバータ主回路12と、U相の相電圧指令値v とキャリア発振器16からのキャリア信号とに基づくPWM演算を行うPWM演算器13と、V相の相電圧指令値v とキャリア発振器16からのキャリア信号とに基づくPWM演算を行うPWM演算器14と、W相の相電圧指令値v とキャリア発振器16からのキャリア信号とに基づくPWM演算を行うPWM演算器15と、PWM演算器13〜15それぞれの出力(PWMu* ,PWMv* ,PWMw* )を対応する上,下アームのIGBTへの駆動信号に変換するゲート駆動回路17とから構成されている。
【0005】
図9は、図8に示した電圧形インバータ1の負荷としての交流電動機5に印加されるサージ電圧を説明する回路図および波形図である。この図において、直流電源11の電圧をEdとした電圧形インバータ1の出力端子U−V間の線間電圧をvUVとすると、電圧形インバータ1の出力端では太実線の波形となり、負荷端では細実線の波形となることが知られており、この細実線波形の波高値は電圧形インバータ1と交流電動機5との間のケーブルインピーダンスとIGBTの立ち上がり時間に大きく依存し、共振状態になると直流電圧Edの2倍のサージ電圧が発生する。
【0006】
【非特許文献1】
電気学会・半導体電力変換システム調査専門委員会編「パワーエレクトロニクス回路」オーム社、平成12年11月30日、P.208−210
【0007】
【発明が解決しようとする課題】
図10は、図8に示した電圧形インバータ1の回路構成におけるU相の相電圧指令値v とV相の相電圧指令値v との位相関係および相電圧指令値v と相電圧指令値v とから導出される線間電圧指令値vUV * の位相関係を示す波形図であり、図中にハッチングを施した相電圧指令値の波高値近傍および線間電圧指令値の零クロス近傍でのPWM演算と、この演算結果に基づいて負荷端に発生するサージ電圧について、図11〜図14を参照しつつ、以下に説明する。
【0008】
図11は、波高値近傍にあるU相の相電圧指令値v (太実線)と、V相の相電圧指令値v (破線)と、キャリア発振器16からの三角波状のキャリア信号Fc(細実線)とに基づくPWM演算器13,14による演算結果PWMu* ,PWMv* およびその線間電圧VUVを示し、この図ではU相の相電圧指令値v の正の波高値近傍でのPWM演算で得られるPWMu* によりU相の上アームの半導体スイッチ回路をオフさせる駆動信号のパルス幅が狭くなることを示している。その結果、図12に示す如く、線間電圧vUVにはパルス状の電圧陥没が発生し、この電圧陥没に起因し、前記パルス状電圧の立ち下がりに基づく負荷端のサージ電圧(上述の如く、直流電圧Edの2倍)に対して、該パルス状電圧の立ち上がりに基づく負荷端のサージ電圧(上述の如く、直流電圧Edの2倍)が位相的に加算されるパルス幅の電圧陥没のときには、負荷端に直流電圧Edの4倍のサージ電圧が発生する恐れがある。
【0009】
また図13は、線間電圧指令値vUV * が零クロス近傍にあるU相の相電圧指令値v (太実線)と、V相の相電圧指令値v (破線)と、キャリア発振器16からの三角波状のキャリア信号Fc(細実線)とよるPWM演算器13,14による演算結果PWMu* ,PWMv* および線間電圧VUVを示し、この図ではPWMu* とPWMv* とにより線間電圧指令値vUV * の零クロス点近傍での線間電圧vUVのパルス幅が狭くなることを示している。その結果、図14に示すように線間電圧vUVにパルス状の電圧が発生し、この電圧に起因して、前記パルス状電圧の立ち上がりに基づく負荷端のサージ電圧(上述の如く、直流電圧Edの2倍)に対して、該パルス状電圧の立ち下がりに基づく負荷端のサージ電圧(上述の如く、直流電圧Edの2倍)が位相的に加算されるパルス幅のパルス電圧のときには、負荷端に直流電圧Edの4倍のサージ電圧が発生する恐れがある。
【0010】
この発明の目的は上記問題点を解消し、各相の上,下アームを形成する半導体スイッチ回路それぞれのスイッチングに伴って電圧形インバータの負荷端に誘起されるサージ電圧を、2倍以下に低減できる電圧形インバータの制御方法を提供することにある。
【0011】
【課題を解決するための手段】
この第1の発明の電圧形インバータの制御方法では、各相の相電圧指令値それぞれをPWM演算して得られる駆動信号に基づき該各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、入力される直流電圧を所望の交流電圧に変換して出力する電圧形インバータにおいて、
前記各相の相電圧指令値の正または負の波高値近傍での前記PWM演算で得られる前記上アーム又は下アームの半導体スイッチ回路をオフさせる駆動信号のパルス幅が予め定めた値twより狭くなるときには、前記駆動信号に代わる新たな駆動信号として、前記上アーム又は下アームの半導体スイッチ回路をオフさせるための予め定めたパルス幅TLIM (tw<TLIM )を有する駆動信号と前記上アームの半導体スイッチ回路をオンさせる駆動信号と前記下アームの半導体スイッチ回路をオンさせる駆動信号とを生成し、これらの新たな駆動信号に基づき前記各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を前記電圧形インバータの当該する各相から出力させることを特徴とする。
【0012】
また第2の発明の電圧形インバータの制御方法では、前記電圧形インバータにおいて、前記各相の相電圧指令値から導出される各相の線間電圧指令値の零クロス点近傍での当該する二相の相電圧指令値それぞれに基づく前記駆動信号から生成される各相の線間電圧のパルス幅が予め定めた値twより狭くなるときには、前記駆動信号に代わる新たな駆動信号として、前記線間電圧のパルス幅が予め定めたパルス幅TLIM (tw<TLIM )になる駆動信号と前記線間電圧を零にする駆動信号とを生成し、これらの新たな駆動信号に基づき前記各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を前記電圧形インバータの当該する各相から出力させることを特徴とする。
【0013】
この発明によれば、電圧形インバータの負荷端に過大なサージ電圧が発生するパルス幅tw以下になるスイッチングに対して、このパルス幅を前記サージ電圧が過大にならない所定値TLIM (tw<TLIM )でスイッチングすることにより、後述の如く、該電圧形インバータの出力端に発生するサージ電圧を低減しつつ、このときの前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を出力することができる。
【0014】
【発明の実施の形態】
図1は、この発明の電圧形インバータの制御方法の第1の実施例を示す回路構成図(主要部分図)であり、図8に示した従来例構成と同一機能を有するものには同一符号を付している。
【0015】
すなわち、図1に示した電圧形インバータ2には直流電源11,インバータ主回路12,ゲート駆動回路17の他に、図8に示す従来のキャリア発振器16にキャリア信号の同期信号を出力する機能を追加したキャリア発振器16aと、電圧パターン生成手段21〜23と、PWM演算器13を含むU相PWM制御ブロック24と、PWM演算器14を含むV相PWM制御ブロック25と、PWM演算器15を含むW相PWM制御ブロック26とを備えている。
【0016】
この電圧形インバータ2は、図11に基づいて説明したU相,V相,W相の相電圧指令値v ,v ,v それぞれの正または負の波高値近傍でのPWM演算で得られる当該する相の上アームまたは下アームの半導体スイッチ回路をオフさせる駆動信号のパルス幅twが狭くなると、線間電圧vUV,vVW,vWUのいずれかにパルス状の電圧陥没が発生し、この電圧陥没に起因し、負荷端に直流電圧Edの4倍のサージ電圧が発生するのを防止する機能を有している。以下に、電圧形インバータ2の動作を、図2,図3を参照しつつ、説明する。
【0017】
図2は、電圧パターン生成手段21(22,23)とU相PWM制御ブロック24(V相PWM制御ブロック25,W相PWM制御ブロック26)の動作を説明する特性図であり、相電圧指令値が正の波高値近傍でその値が大きい方から順に電圧パターン1〜5と段階的に分割し、同様に、相電圧指令値が負の波高値近傍でのその絶対値が小さい方から順に電圧パターン6〜10と段階的に分割し、例えば、U相の相電圧指令値v が正の波高値近傍のときには新たなU相の相電圧指令値v ** として、インバータ主回路12のU相上アームをオフさせるパルス幅が先述のサージ電圧が過大にならない値TLIM (tw<TLIM )を出力するようにしている。
【0018】
図3に示した波形図は、図2に示した電圧パターン3での動作を示すものであり、図において、先ず、一回目のPWM演算周期では電圧パターン生成手段21(22,23)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック24(V相PWM制御ブロック25,W相PWM制御ブロック26)では第3レジスタがin1を選択する指令を発し、この指令により上アームオンパルス生成信号が選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0019】
次に、二回目のPWM演算周期では電圧パターン生成手段21(22,23)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック24(V相PWM制御ブロック25,W相PWM制御ブロック26)では第3レジスタがin3を選択する指令を発し、この指令によりU相上アームをオフさせるパルス幅をTLIM とする相電圧指令値が第1レジスタを介した選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0020】
次に、三回目のPWM演算周期では電圧パターン生成手段21(22,23)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック24(V相PWM制御ブロック25,W相PWM制御ブロック26)では第3レジスタがin1を選択する指令を発し、この指令により上アームオンパルス生成信号が選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0021】
次に、四回目のPWM演算周期では電圧パターン生成手段21(22,23)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック24(V相PWM制御ブロック25,W相PWM制御ブロック26)では第3レジスタがin3を選択する指令を発し、この指令によりU相上アームをオフさせるパルス幅をTLIM とする相電圧指令値が第1レジスタを介した選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0022】
このように、U相,V相,W相の相電圧指令値v ,v ,v それぞれの正または負の波高値近傍ではそのときの値に応じて、例えば、図2の電圧パターンの何れかを判定し、PWM演算の4周期毎に電圧パターンを選択することで、電圧形インバータ2の負荷5端に発生するサージ電圧を直流電圧Edの4倍から2倍以下に低減しつつ、このときの前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を出力することができる。
【0023】
なお、上述の波高値近傍以外の領域では、例えば、電圧パターン生成手段21ではv ** としてv を出力し、U相PWM制御ブロック24では第3レジスタがin3を選択することにより、従来と同様のPWM演算が行われる。
【0024】
図4は、この発明の電圧形インバータの制御方法の第2の実施例を示す回路構成図(主要部分図)であり、図8に示した従来例構成と同一機能を有するものには同一符号を付している。
【0025】
すなわち、図4に示した電圧形インバータ3には直流電源11,インバータ主回路12,ゲート駆動回路17の他に、図8に示す従来のキャリア発振器16にキャリア信号の同期信号を出力する機能を追加したキャリア発振器16aと、電圧パターン生成手段31〜33と、PWM演算器13を含むU相PWM制御ブロック34と、PWM演算器14を含むV相PWM制御ブロック35と、PWM演算器15を含むW相PWM制御ブロック36とを備えている。
【0026】
この電圧形インバータ4は、図13に基づいて説明したU相,V相,W相の相電圧指令値v ,v ,v それぞれから導出される線間電圧指令値vUV * ,vVW * ,vWU * それぞれの零クロス点近傍での前記相電圧指令値のPWM演算で得られるパルス状の線間電圧のパルス幅twが狭くなることに起因し、負荷端に直流電圧Edの4倍のサージ電圧が発生するのを防止する機能を有している。以下に、電圧形インバータ3の動作を、図5,図6を参照しつつ、説明する。
【0027】
図5は、電圧パターン生成手段31(32,33)とU相PWM制御ブロック34(V相PWM制御ブロック35,W相PWM制御ブロック36)の動作を説明する特性図であり、前述の線間指令値が零クロス点近傍でその値が大きい方から順に電圧パターン1〜9と段階的に分割し、例えば、線間電圧指令値vUV * が正の零クロス点近傍のときには新たなU相の相電圧指令値v ** として、インバータ主回路12のU相上アームをオンさせるパルス幅が先述のサージ電圧が過大にならない値(すなわち、PWMu* のパルス幅からPWMv* のパルス幅を減じた値が2TLIM となる新たなPWMu* に対応するv ** )を出力するようにし、同様に、線間電圧指令値vUV * が負の零クロス点近傍のときには新たなU相の相電圧指令値v ** として、インバータ主回路12のU相下アームをオンさせるパルス幅が先述のサージ電圧が過大にならない値(すなわち、PWMv* のパルス幅からPWMu* のパルス幅を減じた値が2TLIM となる新たなPWMu* に対応するv ** )を出力するようにしている。
【0028】
図6に示した波形図は、図5に示した電圧パターン3での動作を示すものであり、図において、先ず、一回目のPWM演算周期では電圧パターン生成手段31(32,33)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック34(V相PWM制御ブロック35,W相PWM制御ブロック36)では第4レジスタがin1を選択する指令を発し、この指令により第1レジスタを介して、例えば、上述のv ** が選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0029】
次に、二回目のPWM演算周期では電圧パターン生成手段31(32,33)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック34(V相PWM制御ブロック35,W相PWM制御ブロック36)では第4レジスタがin2を選択する指令を発し、この指令により第2レジスタを介して、例えば、v が選択器から出力され、その結果、この区間では線間電圧が零(すなわち、PWMu* とPWMv* とが同じタイミングで同じパルス幅)となり、過大なサージ電圧の発生が阻止される。
【0030】
次に、三回目のPWM演算周期では電圧パターン生成手段31(32,33)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック34(V相PWM制御ブロック35,W相PWM制御ブロック36)では第4レジスタがin1を選択する指令を発し、この指令により第1レジスタを介して、例えば、上述のv ** が選択器から出力され、その結果、この区間での過大なサージ電圧の発生が阻止される。
【0031】
次に、四回目のPWM演算周期では電圧パターン生成手段31(32,33)から選択信号と、キャリア発振器16aからの同期信号とによりU相PWM制御ブロック34(V相PWM制御ブロック35,W相PWM制御ブロック36)では第4レジスタがin2を選択する指令を発し、この指令により第2レジスタを介して、例えば、v が選択器から出力され、その結果、この区間では線間電圧が零(すなわち、PWMu* とPWMv* とが同じタイミングで同じパルス幅)となり、過大なサージ電圧の発生が阻止される。
【0032】
このように、U相,V相,W相の相電圧指令値v ,v ,v それぞれから導出される線間電圧指令値の零クロス点近傍ではそのときの値に応じて、例えば、図5の電圧パターンの何れかを判定し、PWM演算の4周期毎に電圧パターンを選択することで、電圧形インバータ2の負荷5端に発生するサージ電圧を直流電圧Edの4倍から2倍以下に低減しつつ、このときの前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を出力することができる。
【0033】
なお、上述の零クロス点近傍以外の領域では、例えば、電圧パターン生成手段31ではv ** としてv を出力し、U相PWM制御ブロック34では第4レジスタがin1を選択することにより、従来と同様のPWM演算が行われる。
【0034】
図7は、この発明の電圧形インバータの制御方法の第3の実施例を示す回路構成図(主要部分図)であり、図8に示した従来例構成と同一機能を有するものには同一符号を付している。
【0035】
すなわち、図7に示した電圧形インバータ4には直流電源11,インバータ主回路12,ゲート駆動回路17の他に、図8に示す従来のキャリア発振器16にキャリア信号の同期信号を出力する機能を追加したキャリア発振器16aと、電圧パターン生成手段41〜43と、PWM演算器13を含むU相PWM制御ブロック44と、PWM演算器14を含むV相PWM制御ブロック45と、PWM演算器15を含むW相PWM制御ブロック46とを備えている。
【0036】
この電圧形インバータ4において、電圧パターン生成手段41(42,43)は上述の電圧パターン生成手段21(22,23)と電圧パターン生成手段31(32,33)の機能を兼ね備えており、U相PWM制御制御ブロック44は上述のU相PWM制御ブロック24とU相PWM制御ブロック34の機能を兼ね備えており、同様に、V相PWM制御制御ブロック45はV相PWM制御ブロック25とV相PWM制御ブロック35の機能を兼ね備えており、W相PWM制御制御ブロック46はW相PWM制御ブロック26とW相PWM制御ブロック36の機能を兼ね備えており、従って、その動作説明を省略する。
【0037】
【発明の効果】
この発明によれば、電圧形インバータの負荷端に過大なサージ電圧が発生するパルス幅以下になるスイッチングに対して、このパルス幅を前記サージ電圧が過大にならない値に設定してスイッチングすることにより、該電圧形インバータの出力端に発生するサージ電圧を2倍以下低減できるので、従来のサージ電圧での取扱いと同じにすることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施例を示す回路構成図
【図2】図1の動作を説明する特性図
【図3】図1の動作を説明する波形図
【図4】この発明の第2の実施例を示す回路構成図
【図5】図4の動作を説明する特性図
【図6】図4の動作を説明する波形図
【図7】この発明の第3の実施例を示す回路構成図
【図8】従来の電圧形インバータを示す回路構成図
【図9】図8のインバータの負荷にかかるサージ電圧を説明するための回路図および波形図
【図10】図8のインバータの相電圧指令値と線間電圧指令値との関係を示す波形図
【図11】図8のインバータの動作を説明するためのPWM演算波形図
【図12】図8のインバータの動作を説明するための回路図および波形図
【図13】図8のインバータの動作を説明するためのPWM演算波形図
【図14】図8のインバータの動作を説明するための波形図
【符号の説明】
1〜4…電圧形インバータ、5…交流電動機、11…直流電源、12…インバータ主回路、13〜15…PWM演算器、16,16a…キャリア発振器、17…ゲート駆動回路、21〜23,31〜33,41〜43…電圧パターン生成手段、24,34,44…U相PWM制御ブロック、25,35,45…V相PWM制御ブロック、26,36,46…W相PWM制御ブロック。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention basically turns on or off each of the semiconductor switch circuits forming the upper and lower arms of each phase based on a drive signal obtained by performing a PWM operation on each phase voltage command value of each phase. The present invention relates to a method of controlling a voltage-source inverter that converts an input DC voltage into a desired AC voltage and outputs the converted voltage, and more particularly, relates to a surge voltage induced at a load terminal of the voltage-type inverter due to switching of each of the semiconductor switch circuits. The present invention relates to a method of controlling a voltage-source inverter to be reduced.
[0002]
[Prior art]
Semiconductor switch circuits that form the upper and lower arms of each phase of a voltage-source inverter, which use valve devices capable of high-speed switching, such as IGBTs, have become widespread. It is known that a surge voltage is applied to an AC motor or the like as a load of this voltage-source inverter due to a higher carrier frequency in the calculation, and insulation deterioration of windings of the AC motor due to the surge voltage is known. In order to prevent this, it is necessary to reduce the surge voltage (for example, see Non-Patent Document 1).
[0003]
The related art including Non-Patent Document 1 described above and its problems will be described below with reference to FIGS.
[0004]
FIG. 8 is a circuit diagram (principal partial view) showing a voltage source inverter of this type. Reference numeral 1 denotes a voltage source inverter, and reference numeral 5 denotes an AC motor driven by the voltage source inverter 1 at a variable speed. In this voltage source inverter 1, a DC power supply 11 such as a rectified power supply, and an anti-parallel circuit of an IGBT and a diode as a semiconductor switch circuit are formed as upper and lower arms of a U-phase, a V-phase, and a W-phase, respectively. An inverter main circuit 12 having upper and lower arms bridge-connected, a PWM calculator 13 for performing a PWM calculation based on a U- phase voltage command value v U * and a carrier signal from a carrier oscillator 16; PWM calculator 14 for performing a PWM operation based on phase voltage command value v V * and a carrier signal from carrier oscillator 16, and PWM based on W-phase phase voltage command value v W * and a carrier signal from carrier oscillator 16 a PWM calculator 15 for calculating, PWM calculator 13 to 15 respectively output (PWMu *, PWMv *, PWMw *) the corresponding upper and lower arms And a gate drive circuit 17 for converting the drive signal to GBT.
[0005]
FIG. 9 is a circuit diagram and a waveform diagram illustrating a surge voltage applied to AC motor 5 as a load of voltage source inverter 1 shown in FIG. In this figure, when the line voltage between the output terminals UV of the voltage source inverter 1 the voltage is Ed of the DC power supply 11 and v UV, become solid line waveform thick at the output terminal of the voltage source inverter 1, the load end It is known that the waveform of the thin solid line waveform greatly depends on the cable impedance between the voltage source inverter 1 and the AC motor 5 and the rise time of the IGBT. A surge voltage twice as large as the DC voltage Ed is generated.
[0006]
[Non-patent document 1]
The Institute of Electrical Engineers of Japan, Special Committee on Investigation of Semiconductor Power Conversion Systems, “Power Electronics Circuit,” Ohmsha, November 30, 2000, p. 208-210
[0007]
[Problems to be solved by the invention]
FIG. 10 shows the phase relationship between the U-phase phase voltage command value v U * and the V-phase phase voltage command value v V * and the phase voltage command value v U * in the circuit configuration of the voltage source inverter 1 shown in FIG. FIG. 4 is a waveform diagram showing a phase relationship between a line voltage command value v UV * derived from a phase voltage command value v V * and a peak value vicinity and a line voltage of a phase voltage command value hatched in the figure. The PWM calculation near the zero crossing of the command value and the surge voltage generated at the load end based on the calculation result will be described below with reference to FIGS.
[0008]
FIG. 11 shows a U-phase voltage command value v U * (thick solid line) near the peak value, a V-phase phase voltage command value v V * (dashed line), and a triangular carrier signal from the carrier oscillator 16. fc (thin solid line) and the operation result by the PWM calculator 13 based on PWMu *, PWMv * and the line shows the voltage V UV, wave height of the phase voltage instruction value v U * positive U-phase in this view The PWMu * obtained by the PWM operation in the vicinity indicates that the pulse width of the drive signal for turning off the semiconductor switch circuit of the upper arm of the U phase is reduced. As a result, as shown in FIG. 12, a pulse-like voltage collapse occurs in the line voltage v UV, as this was caused by voltage depression, surge voltage across the load based on the fall of the pulse voltage (the above , Twice the DC voltage Ed), the surge voltage at the load end based on the rise of the pulsed voltage (two times the DC voltage Ed as described above) is phase-added, and the voltage collapse of the pulse width is reduced. At times, a surge voltage four times the DC voltage Ed may be generated at the load terminal.
[0009]
FIG. 13 shows a U-phase phase voltage command value v U * (thick solid line) and a V-phase phase voltage command value v V * (dashed line) in which the line voltage command value v UV * is near the zero crossing. PWM calculator 13 according to the operation result PWMu by a triangular carrier signal Fc from the carrier oscillator 16 (thin solid line) *, PWMv * and line-to-line shows a voltage V UV, in this figure by the PWMu * and PWMv * the pulse width of the line voltage v UV at line voltage command value v UV * zero crossing point near indicate that becomes narrower. As a result, a pulse-like voltage is generated in the line voltage v UV as shown in FIG. 14, due to this voltage, as a surge voltage across the load based on the rise of the pulse voltage (above, DC voltage When the surge voltage at the load end based on the falling edge of the pulsed voltage (as described above, twice as large as the DC voltage Ed) is a pulse voltage having a pulse width that is added in phase, There is a possibility that a surge voltage four times the DC voltage Ed is generated at the load end.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and reduce the surge voltage induced at the load terminal of a voltage type inverter by switching of a semiconductor switch circuit forming the upper and lower arms of each phase to twice or less. It is an object of the present invention to provide a control method of a voltage type inverter which can be performed.
[0011]
[Means for Solving the Problems]
In the control method of the voltage source inverter according to the first invention, the semiconductor switch circuits forming the upper and lower arms of each phase are turned on based on the drive signal obtained by performing the PWM operation on the phase voltage command value of each phase. Or by turning off, a voltage-type inverter that converts an input DC voltage to a desired AC voltage and outputs the AC voltage.
The pulse width of the drive signal for turning off the semiconductor switch circuit of the upper arm or the lower arm obtained by the PWM operation in the vicinity of the positive or negative peak value of the phase voltage command value of each phase is smaller than a predetermined value tw. And a driving signal having a predetermined pulse width T LIM (tw <T LIM ) for turning off the semiconductor switch circuit of the upper arm or the lower arm as a new driving signal replacing the driving signal. And a drive signal for turning on the semiconductor switch circuit of the lower arm, and a semiconductor switch circuit for forming the upper and lower arms of each phase based on these new drive signals. By turning on or off, an AC voltage that is substantially equivalent to the AC voltage based on the phase voltage command value on the average value is previously set. The voltage is output from each of the corresponding phases of the voltage type inverter.
[0012]
Further, in the voltage type inverter control method according to a second aspect of the present invention, in the voltage type inverter, in the voltage type inverter, the voltage of each phase near the zero cross point of the line voltage command value of each phase derived from the phase voltage command value of each phase. When the pulse width of the line voltage of each phase generated from the drive signal based on the phase voltage command value of each phase becomes narrower than a predetermined value tw, the line drive signal is replaced with the line drive signal as a new drive signal. A drive signal whose voltage pulse width is a predetermined pulse width T LIM (tw <T LIM ) and a drive signal that makes the line voltage zero are generated, and a driving signal for each phase is generated based on these new driving signals. By turning on or off each of the semiconductor switch circuits forming the upper and lower arms, an AC voltage, which is substantially equivalent to the AC voltage based on the phase voltage command value on average, is converted to the voltage type inverter. Are output from the respective phases.
[0013]
According to the present invention, for switching to a pulse width tw or less at which an excessive surge voltage occurs at the load end of the voltage type inverter, the pulse width is changed to the predetermined value T LIM (tw <T LIM ), the surge voltage generated at the output terminal of the voltage-type inverter is reduced and the AC voltage based on the phase voltage command value at this time is substantially equivalent to the AC voltage as described later. An AC voltage can be output.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit configuration diagram (main part diagram) showing a first embodiment of a voltage source inverter control method according to the present invention. Components having the same functions as those of the conventional configuration shown in FIG. Is attached.
[0015]
That is, the voltage source inverter 2 shown in FIG. 1 has a function of outputting a synchronization signal of a carrier signal to the conventional carrier oscillator 16 shown in FIG. 8 in addition to the DC power supply 11, the inverter main circuit 12, and the gate drive circuit 17. Includes an added carrier oscillator 16a, voltage pattern generation means 21 to 23, a U-phase PWM control block 24 including a PWM calculator 13, a V-phase PWM control block 25 including a PWM calculator 14, and a PWM calculator 15. And a W-phase PWM control block 26.
[0016]
The voltage source inverter 2, U-phase described with reference to FIG. 11, V-phase, the phase voltage command value of the W-phase v U *, v V *, v W * respective positive or negative PWM at peak value near If the pulse width tw of the drive signal for turning off the semiconductor switch circuit of the upper arm or the lower arm of the relevant phase obtained by the calculation becomes narrow, a pulse-like voltage depression occurs in any of the line voltages v UV , v VW , and v WU. And a function of preventing a surge voltage four times the DC voltage Ed from being generated at the load terminal due to the voltage depression. Hereinafter, the operation of the voltage source inverter 2 will be described with reference to FIGS.
[0017]
FIG. 2 is a characteristic diagram for explaining the operation of the voltage pattern generating means 21 (22, 23) and the U-phase PWM control block 24 (the V-phase PWM control block 25, the W-phase PWM control block 26). Is divided into voltage patterns 1 to 5 in the order of increasing value near the positive peak value, and similarly, the phase voltage command value is set in the order of decreasing the absolute value near the negative peak value in the order of decreasing absolute value. pattern 6-10 stepwise divided, for example, as a phase voltage command value of a new U-phase v U ** when the phase voltage command value v U * is positive peak value near the U-phase, inverter main circuit 12 The pulse width for turning off the U-phase upper arm is such that a value T LIM (tw <T LIM ) at which the aforementioned surge voltage does not become excessive is output.
[0018]
The waveform diagram shown in FIG. 3 shows the operation in the voltage pattern 3 shown in FIG. 2. In the drawing, first, in the first PWM calculation cycle, the voltage pattern is selected from the voltage pattern generation means 21 (22, 23). In the U-phase PWM control block 24 (V-phase PWM control block 25, W-phase PWM control block 26), the third register issues a command to select in1 by the signal and the synchronization signal from the carrier oscillator 16a. An arm-on pulse generation signal is output from the selector, and as a result, generation of an excessive surge voltage in this section is prevented.
[0019]
Next, in the second PWM calculation cycle, the U-phase PWM control block 24 (the V-phase PWM control block 25, the W-phase PWM control block 25) uses the selection signal from the voltage pattern generation means 21 (22, 23) and the synchronization signal from the carrier oscillator 16a. In the PWM control block 26), the third register issues a command to select in3, and according to this command, a phase voltage command value that sets the pulse width for turning off the U-phase upper arm to T LIM is output from the selector via the first register. As a result, generation of an excessive surge voltage in this section is prevented.
[0020]
Next, in the third PWM operation cycle, the U-phase PWM control block 24 (V-phase PWM control block 25, W-phase PWM control block 25) uses the selection signal from the voltage pattern generation means 21 (22, 23) and the synchronization signal from the carrier oscillator 16a. In the PWM control block 26), the third register issues a command to select in1, and this command outputs an upper arm on-pulse generation signal from the selector. As a result, generation of an excessive surge voltage in this section is prevented. You.
[0021]
Next, in the fourth PWM operation cycle, the U-phase PWM control block 24 (the V-phase PWM control block 25, the W-phase PWM control block 25 and the W-phase PWM control block 25) use the selection signal from the voltage pattern generation unit 21 (22, 23) and the synchronization signal from the carrier oscillator 16a. In the PWM control block 26), the third register issues a command to select in3, and according to this command, a phase voltage command value that sets the pulse width for turning off the U-phase upper arm to T LIM is output from the selector via the first register. As a result, generation of an excessive surge voltage in this section is prevented.
[0022]
Thus, U-phase, V-phase, the phase voltage command value of the W-phase v U *, v V *, v W * is in each positive or negative peak value near according to the value at that time, for example, FIG. 2 Is determined, and the surge voltage generated at the load 5 end of the voltage source inverter 2 is reduced from four times to less than twice the DC voltage Ed by selecting a voltage pattern every four periods of the PWM operation. While reducing, it is possible to output an AC voltage that is substantially equivalent in average to the AC voltage based on the phase voltage command value at this time.
[0023]
In the region other than the peak value near the above, for example, by outputting a v U * as the voltage pattern generating means 21 in v U **, the third register in the U-phase PWM control block 24 selects in3, A PWM operation similar to the conventional one is performed.
[0024]
FIG. 4 is a circuit configuration diagram (main part diagram) showing a second embodiment of the control method of the voltage source inverter according to the present invention, and those having the same functions as those of the conventional configuration shown in FIG. Is attached.
[0025]
That is, the voltage source inverter 3 shown in FIG. 4 has a function of outputting a synchronization signal of a carrier signal to the conventional carrier oscillator 16 shown in FIG. 8 in addition to the DC power supply 11, the inverter main circuit 12, and the gate drive circuit 17. Includes an added carrier oscillator 16a, voltage pattern generating means 31 to 33, a U-phase PWM control block 34 including a PWM calculator 13, a V-phase PWM control block 35 including a PWM calculator 14, and a PWM calculator 15. And a W-phase PWM control block 36.
[0026]
The voltage-source inverter 4, U-phase described with reference to FIG. 13, V-phase, the phase voltage command value of the W-phase v U *, v V *, v W * line voltage command value v UV derived from each * , V VW * , v WU * The DC voltage is applied to the load terminal due to the narrowing of the pulse width tw of the pulse-shaped line voltage obtained by the PWM calculation of the phase voltage command value near the zero cross point. It has a function of preventing a surge voltage four times the voltage Ed from being generated. The operation of the voltage source inverter 3 will be described below with reference to FIGS.
[0027]
FIG. 5 is a characteristic diagram for explaining the operation of the voltage pattern generating means 31 (32, 33) and the U-phase PWM control block 34 (the V-phase PWM control block 35, the W-phase PWM control block 36). When the command value is near the zero crossing point, it is divided stepwise into voltage patterns 1 to 9 in descending order of the value. For example, when the line voltage command value v UV * is near the positive zero crossing point, a new U-phase as the phase voltage instruction value v U **, value the pulse width for turning on the U-phase upper arm of the inverter main circuit 12 does not become excessive surge voltage described above (i.e., the pulse width of PWMv from the pulse width of the PWMu * * v U **) so as to output, as well, a new U-phase when the line voltage command value v UV * negative near zero cross points subtracted value is corresponding to a new PWMu * to be 2T LIM of As phase voltage command value v U **, pulse width for turning on the U-phase lower arm of the inverter main circuit 12 does not become excessive surge voltage foregoing values (i.e., reduce the pulse width of the PWMu * from the pulse width of PWMv * value is to output a v U **) corresponding to the new PWMu * to be 2T LIM.
[0028]
The waveform diagram shown in FIG. 6 shows the operation in the voltage pattern 3 shown in FIG. 5. In the diagram, first, in the first PWM operation cycle, the operation is selected from the voltage pattern generation means 31 (32, 33). In the U-phase PWM control block 34 (the V-phase PWM control block 35 and the W-phase PWM control block 36), the fourth register issues a command to select in1 based on the signal and the synchronization signal from the carrier oscillator 16a. For example, the above-mentioned v U ** is output from the selector via one register, and as a result, generation of an excessive surge voltage in this section is prevented.
[0029]
Next, in the second PWM operation cycle, the U-phase PWM control block 34 (the V-phase PWM control block 35 and the W-phase PWM control block 35) use the selection signal from the voltage pattern generation means 31 (32, 33) and the synchronization signal from the carrier oscillator 16a. issues a command PWM control block 36) in the fourth register selects in2, via a second register by this command, for example, v V * is outputted from the selector, as a result, the line voltage in this interval is It becomes zero (that is, PWMu * and PWMv * have the same pulse width at the same timing), and generation of an excessive surge voltage is prevented.
[0030]
Next, in the third PWM operation cycle, the U-phase PWM control block 34 (the V-phase PWM control block 35, the W-phase PWM control block 35) receives a selection signal from the voltage pattern generating means 31 (32, 33) and a synchronization signal from the carrier oscillator 16a. issues a command PWM control block 36) in the fourth register selects the in1, this command via the first register, for example, is output from the above v U ** is selector, so that in this section The generation of an excessive surge voltage is prevented.
[0031]
Next, in the fourth PWM calculation cycle, the U-phase PWM control block 34 (the V-phase PWM control block 35, the W-phase PWM control block 35) uses the selection signal from the voltage pattern generation means 31 (32, 33) and the synchronization signal from the carrier oscillator 16a. issues a command PWM control block 36) in the fourth register selects in2, via a second register by this command, for example, v V * is outputted from the selector, as a result, the line voltage in this interval is It becomes zero (that is, PWMu * and PWMv * have the same pulse width at the same timing), and generation of an excessive surge voltage is prevented.
[0032]
Thus, U-phase, V-phase, the phase voltage command value of the W-phase v U *, v V *, v W * is in the zero cross point near the line voltage command value derived from each according to the value at that time For example, by determining one of the voltage patterns in FIG. 5 and selecting a voltage pattern every four periods of the PWM operation, the surge voltage generated at the load 5 end of the voltage-source inverter 2 can be reduced by the DC voltage Ed. It is possible to output an AC voltage that is approximately equivalent to the AC voltage based on the phase voltage command value at this time and that is substantially equivalent to the average value, while reducing the frequency from twice to twice or less.
[0033]
In the region other than the vicinity of zero cross point of the above, for example, and outputs the v U * as the voltage pattern generating means 31 in v U **, by the fourth register in the U-phase PWM control block 34 selects the in1 , A PWM operation similar to the conventional one is performed.
[0034]
FIG. 7 is a circuit configuration diagram (main part diagram) showing a third embodiment of the control method of the voltage source inverter according to the present invention. Components having the same functions as those of the conventional configuration shown in FIG. Is attached.
[0035]
That is, the voltage source inverter 4 shown in FIG. 7 has a function of outputting a synchronization signal of a carrier signal to the conventional carrier oscillator 16 shown in FIG. 8 in addition to the DC power supply 11, the inverter main circuit 12, and the gate drive circuit 17. Includes an added carrier oscillator 16a, voltage pattern generation means 41 to 43, a U-phase PWM control block 44 including a PWM calculator 13, a V-phase PWM control block 45 including a PWM calculator 14, and a PWM calculator 15. And a W-phase PWM control block 46.
[0036]
In this voltage source inverter 4, the voltage pattern generation means 41 (42, 43) has the functions of the above-described voltage pattern generation means 21 (22, 23) and the voltage pattern generation means 31 (32, 33), The PWM control control block 44 has the functions of the above-described U-phase PWM control block 24 and U-phase PWM control block 34, and similarly, the V-phase PWM control control block 45 includes the V-phase PWM control block 25 and the V-phase PWM control. The function of the block 35 is also provided, and the W-phase PWM control block 46 also has the function of the W-phase PWM control block 26 and the function of the W-phase PWM control block 36. Therefore, the description of the operation is omitted.
[0037]
【The invention's effect】
According to the present invention, for the switching that becomes equal to or less than the pulse width at which an excessive surge voltage occurs at the load end of the voltage type inverter, the pulse width is set to a value at which the surge voltage does not become excessive, and switching is performed. Since the surge voltage generated at the output terminal of the voltage-source inverter can be reduced by a factor of two or less, it is possible to make the same handling as the conventional surge voltage.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a characteristic diagram for explaining the operation of FIG. 1. FIG. 3 is a waveform diagram for explaining the operation of FIG. FIG. 5 is a characteristic diagram for explaining the operation of FIG. 4; FIG. 6 is a waveform diagram for explaining the operation of FIG. 4; FIG. 7 is a diagram showing a third embodiment of the present invention. FIG. 8 is a circuit diagram showing a conventional voltage source inverter. FIG. 9 is a circuit diagram and a waveform diagram for explaining a surge voltage applied to a load of the inverter shown in FIG. FIG. 11 is a waveform diagram showing a relationship between a phase voltage command value and a line voltage command value. FIG. 11 is a PWM calculation waveform diagram for explaining the operation of the inverter of FIG. 8; FIG. 12 is a diagram for explaining the operation of the inverter of FIG. 13 is a circuit diagram and a waveform diagram of FIG. 13. FIG. 13 is a PWM calculation for explaining the operation of the inverter of FIG. Shape Figure 14 is a waveform diagram for explaining the operation of the inverter of FIG. 8 EXPLANATION OF REFERENCE NUMERALS
1 to 4: voltage-type inverter, 5: AC motor, 11: DC power supply, 12: inverter main circuit, 13 to 15: PWM calculator, 16, 16a: carrier oscillator, 17: gate drive circuit, 21 to 23, 31 ... 33, 41-43 ... voltage pattern generation means, 24, 34, 44 ... U-phase PWM control block, 25, 35, 45 ... V-phase PWM control block, 26, 36, 46 ... W-phase PWM control block.

Claims (2)

各相の相電圧指令値それぞれをPWM演算して得られる駆動信号に基づき該各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、入力される直流電圧を所望の交流電圧に変換して出力する電圧形インバータにおいて、
前記各相の相電圧指令値の正または負の波高値近傍での前記PWM演算で得られる前記上アーム又は下アームの半導体スイッチ回路をオフさせる駆動信号のパルス幅が予め定めた値twより狭くなるときには、前記駆動信号に代わる新たな駆動信号として、前記上アーム又は下アームの半導体スイッチ回路をオフさせるための予め定めたパルス幅TLIM (tw<TLIM )を有する駆動信号と前記上アームの半導体スイッチ回路をオンさせる駆動信号と前記下アームの半導体スイッチ回路をオンさせる駆動信号とを生成し、これらの新たな駆動信号に基づき前記各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を前記電圧形インバータの当該する各相から出力させることを特徴とする電圧形インバータの制御方法。
By turning on or off each of the semiconductor switch circuits forming the upper and lower arms of each phase based on a drive signal obtained by performing a PWM operation on each phase voltage command value of each phase, the input DC voltage can be changed to a desired value. In a voltage-type inverter that converts to AC voltage and outputs it,
The pulse width of the drive signal for turning off the semiconductor switch circuit of the upper arm or the lower arm obtained by the PWM operation in the vicinity of the positive or negative peak value of the phase voltage command value of each phase is smaller than a predetermined value tw. And a driving signal having a predetermined pulse width T LIM (tw <T LIM ) for turning off the semiconductor switch circuit of the upper arm or the lower arm as a new driving signal replacing the driving signal. And a drive signal for turning on the semiconductor switch circuit of the lower arm, and a semiconductor switch circuit for forming the upper and lower arms of each phase based on these new drive signals. By turning on or off, an AC voltage that is substantially equivalent to the AC voltage based on the phase voltage command value on the average value is previously set. A method of controlling a voltage-source inverter, characterized in that the voltage-source inverter outputs an output from each corresponding phase.
各相の相電圧指令値それぞれをPWM演算して得られる駆動信号に基づき該各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、入力される直流電圧を所望の交流電圧に変換して出力する電圧形インバータにおいて、
前記各相の相電圧指令値から導出される各相の線間電圧指令値の零クロス点近傍での当該する二相の相電圧指令値それぞれに基づく前記駆動信号から生成される各相の線間電圧のパルス幅が予め定めた値twより狭くなるときには、前記駆動信号に代わる新たな駆動信号として、前記線間電圧のパルス幅が予め定めたパルス幅TLIM (tw<TLIM )になる駆動信号と前記線間電圧を零にする駆動信号とを生成し、これらの新たな駆動信号に基づき前記各相の上,下アームを形成する半導体スイッチ回路それぞれをオンまたはオフさせることにより、前記相電圧指令値に基づく前記交流電圧と平均値的にほぼ等価な交流電圧を前記電圧形インバータの当該する各相から出力させることを特徴とする電圧形インバータの制御方法。
By turning on or off each of the semiconductor switch circuits forming the upper and lower arms of each phase based on a drive signal obtained by performing a PWM operation on each phase voltage command value of each phase, the input DC voltage can be changed to a desired value. In a voltage-type inverter that converts to AC voltage and outputs it,
Lines of each phase generated from the drive signals based on the respective two-phase phase voltage command values in the vicinity of the zero crossing point of the line voltage command value of each phase derived from the phase voltage command value of each phase When the pulse width of the line voltage becomes narrower than the predetermined value tw, the pulse width of the line voltage becomes a predetermined pulse width T LIM (tw <T LIM ) as a new driving signal instead of the driving signal. By generating a drive signal and a drive signal for reducing the line voltage to zero, and turning on or off each of the semiconductor switch circuits forming the upper and lower arms of each phase based on these new drive signals, A method for controlling a voltage-source inverter, comprising outputting an AC voltage, which is substantially equivalent to the average value of the AC voltage based on a phase voltage command value, from each corresponding phase of the voltage-type inverter.
JP2002290879A 2002-10-03 2002-10-03 Control method of voltage source inverter Expired - Fee Related JP4284585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290879A JP4284585B2 (en) 2002-10-03 2002-10-03 Control method of voltage source inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290879A JP4284585B2 (en) 2002-10-03 2002-10-03 Control method of voltage source inverter

Publications (2)

Publication Number Publication Date
JP2004129405A true JP2004129405A (en) 2004-04-22
JP4284585B2 JP4284585B2 (en) 2009-06-24

Family

ID=32282619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290879A Expired - Fee Related JP4284585B2 (en) 2002-10-03 2002-10-03 Control method of voltage source inverter

Country Status (1)

Country Link
JP (1) JP4284585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095082A (en) * 2007-10-04 2009-04-30 Toshiba Corp Power converter
JP2012239358A (en) * 2011-05-13 2012-12-06 Nippon Soken Inc Control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095082A (en) * 2007-10-04 2009-04-30 Toshiba Corp Power converter
JP2012239358A (en) * 2011-05-13 2012-12-06 Nippon Soken Inc Control device

Also Published As

Publication number Publication date
JP4284585B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5599538B1 (en) Power converter
JP5126550B2 (en) Matrix converter
JP2008048550A (en) Matrix converter
JP2008220117A (en) Ac motor controller
JP2004120979A (en) Power converter
JP4672392B2 (en) Inverter device
JP2006246649A (en) Inverter device
JP2018164347A (en) Inverter device, air conditioner, control method for inverter device, and program
JP2010206931A (en) Method and device for control of three-level inverter
JP4893152B2 (en) Space vector modulation method for AC-AC direct conversion device
JP4423950B2 (en) AC / AC direct converter controller
JP2005051838A (en) Inverter and reducing method of ripple current
JP2006081362A (en) Power converter
JP4284585B2 (en) Control method of voltage source inverter
JP4491718B2 (en) 3-level converter
JP6970341B2 (en) Inverter controller
JP5012311B2 (en) Switching pattern switching method for AC-AC direct conversion device
JP5428744B2 (en) Power converter control method
JP2010252628A (en) Power converter
KR20220026590A (en) power converter
WO2017034028A1 (en) Control method and control device for inverter, and inverter device
JP2005210805A (en) Ac/ac direct conversion device
JP6376049B2 (en) Rotating machine control device
JP2009060708A (en) Control method for double converter device
US20230019205A1 (en) Power conversion device and motor system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees