JP2004128471A - Nonvolatile memory device - Google Patents

Nonvolatile memory device Download PDF

Info

Publication number
JP2004128471A
JP2004128471A JP2003201732A JP2003201732A JP2004128471A JP 2004128471 A JP2004128471 A JP 2004128471A JP 2003201732 A JP2003201732 A JP 2003201732A JP 2003201732 A JP2003201732 A JP 2003201732A JP 2004128471 A JP2004128471 A JP 2004128471A
Authority
JP
Japan
Prior art keywords
memory device
nonvolatile memory
storage element
transistor
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003201732A
Other languages
Japanese (ja)
Inventor
Masahiko Hirai
平井 匡彦
Naotake Sato
佐藤 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003201732A priority Critical patent/JP2004128471A/en
Priority to PCT/JP2003/010017 priority patent/WO2004015778A1/en
Priority to AU2003253428A priority patent/AU2003253428A1/en
Priority to TW092121497A priority patent/TW200402873A/en
Publication of JP2004128471A publication Critical patent/JP2004128471A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/80Interconnections, e.g. terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Read Only Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonvolatile memory device which has integrated circuits formed on a substrate comprising glass or resin, and is capable of selecting desired cells. <P>SOLUTION: The nonvolatile memory device has a matrix wiring, a switching device, and a storage cell. The storage cell is one in which impedance varies, and both of the switching device and storage cell comprise at least any one of an organic semiconductor and an organic electric conductor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はマトリックス配線とスイッチング素子と、記憶素子を有する不揮発メモリ装置に関する。
【0002】
【従来の技術】
近年、有機物半導体材料を用いた、電子デバイスの開発が広く行なわれており、発行素子である有機EL(Electro−Luminescence)、有機TFT(Thin Film Transistor)、有機半導体レーザー等の開発が報告されている。中でも、有機トランジスタの一種である、有機TFTは、ローコストでガラスや樹脂のような安価な基板上に集積回路を形成する技術として有望視されている。
【0003】
有機トランジスタの構造に関し、ソース、ドレイン電極とゲート絶縁膜、ゲート電極を有する素子が提案されている(特許文献1乃至3)。
【0004】
一方、有機トランジスタとともに、ガラスや樹脂のような安価な基板上に不揮発メモリ素子を構成できることが望まれるが、現状では、シリコン基板上に作製されるようなFlashメモリ、EEPROM(Electrical Erasable Programmable Read Only Memory)に匹敵する機能を有するメモリ構造は得られていない。特開2001−189431号公報に、有機物のインピーダンスを電圧により変動させることにより、1個のセルに多値記憶できる構成を開示しているが、ガラスや樹脂基板上に集積回路を形成し、所望のセルを選択することが出来るような構成は示されていない。
【0005】
【特許文献1】
特開平08−228034号公報
【特許文献2】
特開平09−232589号公報
【特許文献3】
特開平10−270712号公報
【0006】
【発明が解決しようとする課題】
本発明は、従来の技術による構成が、ガラスや樹脂のような安価な基板上に所望のセルを選択できるような不揮発メモリ装置を形成することが困難であるという課題を解決しようとするものである。したがって、本発明の目的は、有機物を用いた素子構成することにより、ガラスや樹脂のような安価な基板上に集積回路を形成でき、所望のセルを選択することができるような不揮発メモリ装置を提供することにある。
【0007】
【課題を解決するための手段】
よって本発明は、マトリックス配線とスイッチング素子と、記憶素子を有する不揮発メモリ装置であって、
前記記憶素子はインピーダンスが変化する記憶素子であり、前記スイッチング素子及び前記記憶素子とも有機物半導体あるいは有機物電気伝導体の少なくとも何れか一方を有することを提供する。
【0008】
【発明の実施の形態】
本発明の不揮発メモリ装置は、記憶素子はインピーダンスが変化する記憶素子であり、スイッチング素子及び記憶素子が有機物の半導体あるいは有機物の電気伝導体の少なくとも何れか一方を有する。ここでは、メモリ素子における有機物電気伝導体が、読み出し動作電圧より大きな書き込み電圧を印加されることにより、読み出し動作電圧における前記有機物導電体のインピーダンスが変化する動作が基本となる。
【0009】
特に、メモリ素子における有機物電気伝導体が、読み出し動作電流より大きな書き込み電圧を印加されることにより、読み出し動作電流における前記有機物導電体のインピーダンスが不可逆的に増大することがより好ましい。このことにより、一旦書き込まれた情報は、書き換え不可能となり、セキュリティー上好都合となるばかりでなく、EEPROMなどに比べ簡単な駆動方法を選択することが出来る。
【0010】
スイッチング素子が、有機物半導体または有機物電気伝導体を含むトランジスタであることがより好ましい。このことにより、所望のメモリセルを選択することが出来る。トランジスタには、電界効果型、薄膜型、接合型などがあるが、いずれでも使用可能である。有機半導体とは、その有機物が持つバンドギャップの間にフェルミレベルがあるような物質で、半導体特性を持つ。有機物電気伝導体とは、その有機物が持つ導電帯付近にフェルミレベルがあるような物質で、主に金属的な電気伝導特性を持つ。
【0011】
スイッチング素子が、有機物半導体または有機物電気伝導体を含むダイオードであっても良い。この場合、比較的単純なマトリックス構造を持ったメモリ装置を構成することが出来る。
【0012】
ビット線、ワード線のほかに、接地線を設け、トランジスタの1端子がビット線の1つに接続され、トランジスタのさらに別の1端子がワード線の1つに接続され、トランジスタのさらに別の1端子がメモリ素子を介して接地線の1つに接続されることがより好ましい。
【0013】
メモリ素子が、基板面内方向に離れた2つの電極の隙間をまたぐ構造を持っても良い。このことにより、メモリ素子を印刷等の手段で形成させることが出来る。
【0014】
不揮発メモリ装置が、樹脂基板上に形成されることがより好ましい。このことにより、前記不揮発メモリ装置は、ICカードまたはICタグに利用することが可能である。このようなICカードまたはICタグは、定期券、身分証あるいは荷物配送にかかわる不揮発メモリ装置として、用いてもよいし、あるいはレーザービームプリンタや複写機といった電子写真方式の画像形成装置におけるカートリッジ(すなわち感光体ドラムあるいはトナーなどを収容するための手段)に取り付けられていてもよく、あるいはピエゾ方式あるいはバブルジェット(R)方式といったインクジェットプリンタのインクを収容するカートリッジに取り付けられていてもよい。その場合、さまざまな情報、あるいは大量の情報を製品出荷前乃至製品使用時に記憶することができるので好ましい。
【0015】
以下、本発明の実施の形態について図面を参照して説明する。
【0016】
図1に示す本実施形態の不揮発メモリ装置の構成について説明する。
【0017】
ビット線BL1〜BL4とこれに交差するワード線WL1〜WL4と、マトリックス状に配置された、有機物半導体を含むスイッチング素子として有機TFT(薄膜トランジスタ)T11〜T44、記憶素子であるメモリ素子R11〜R44各1個からなる単位セルC11〜C44からなる16ビットメモリ装置の構成を示す。各有機TFT T11〜T44のゲート電極はワード線に、ドレイン電極はビット線に、ソース電極はメモリ素子R11〜R44の一方の端子に接続され、メモリ素子R11〜R44の他方の端子は接地される。
【0018】
メモリ素子として注目すべき構造は、有機物電気伝導体からなる材料が、ギャップがある電極間に配置された構造である。配置には一例として液状の材料を電極間に塗布し乾燥させることを行うことができる。一例として、メモリ素子の特性を図2に示す。電極間に印加する電圧を0Vから5Vまで挿引するが、1回目と2回目で特性が大きく異なる。1回目の挿引では、印加電圧4V付近で電流量が大きく減少し高抵抗状態になり、2回目の挿引でもこの高抵抗状態が維持する。この抵抗の変化は不可逆的であり、一旦高抵抗状態になると、低抵抗状態に戻ることはない。読み出し動作電圧を3V程度とすると、メモリ素子の抵抗値は、高抵抗状態と低抵抗状態とで2桁程度異なることになる。つまりインピーダンスが不可逆的に増大する。
【0019】
前記有機物電気伝導体の具体例としては、ポリチオフェン誘導体、ポリピロール誘導体、ポリアニリン誘導体、ポリパラフェニレンビニレン誘導体などが挙げられる。
【0020】
次に、本メモリ装置の駆動方法について一例をあげて説明する。
【0021】
まず、読み出し動作について説明する。各TFTは、pチャネル動作するとする。参照電圧として(図1における「Ref.」)、−2V(電源電圧3Vの2/3に相当)をセンスアンプに印加する。次に、C23のセルの情報を読み出す動作を行なう。ワード線WL3に−3Vを印加し、選択トランジスタT23をON状態にする。次にビット線BL2に、−3Vを限度に、数μAの定電流を流す。このとき、C23が選択され、R23が低抵抗状態のときは、電流がBL2→T23→接地と流れ、BL2の電位は、接地電圧に近くなる。よって、ビット線BL2の電位は、参照電圧より大きくなり、センスアンプSA2は、「1」を出力する。一方、R23が高抵抗のときは、BL2→T23→接地と流れる電流はほとんどなくなり、BL2は電源電圧に近くなる。よって、ビット線BL2の電位は、参照電圧より小さくなり、センスアンプSA2は、「0」を出力する。
【0022】
次に書き込み動作について説明する。R23は初期状態として、低抵抗状態にあるとする。ワード線WL3に−3Vを印加し、選択トランジスタT23をON状態にする。次にビット線BL2に、−6Vを限度に、10μA程度の定電流を流す。このとき、C23が選択され、R23に5V以上の電圧が印加され、10μAの電流が流れる。このとき、R23は高抵抗状態に不可逆的に変移する。この動作によって、C23に情報が書き込まれたことになる。
【0023】
(第1の実施形態)
次に、本実施形態の一例として、メモリ装置の試作工程について説明する。
【0024】
図3乃至6は本実施形態に係るメモリ素子の作成工程を説明するための模式図である。
【0025】
符号1は基板、2はコンタクト、3はメモリ素子電極、4は接地線、5はゲート電極、6はゲート絶縁膜、7はドレイン電極、8はソース電極、9は有機半導体層、10は保護膜、11はメモリ素子、12は保護膜である。
【0026】
まず、図3に示すように、エポキシ樹脂からなる基板1の両面(表裏面)に銅箔をエッチング加工したメモリ素子電極3および接地線4およびゲート電極5を形成し、スルーホールを銅めっきにて埋め込んだコンタクト2を形成した、基板部分を用意する。ここで、ゲート電極5は、ワード線に接続される。基板1の一方の面にメモリ素子電極3と接地線4が、他方の面にゲート電極5が設けられている。
【0027】
次に、図4に示すように、ゲート絶縁膜6として、スパッタリング法により酸化アルミニウム薄膜を形成する。ゲート絶縁膜は、金属のマスクを通して、ゲート電極5を覆うように選択的に形成される。さらに、ドレイン電極7とソース電極8として、真空蒸着法により金薄膜を形成する。ゲート絶縁膜6と同様に、金属マスクにより選択的に形成される。このとき、ドレイン電極7はビット線に接続される。また、ソース電極8は、コンタクトホールと接続されることになる。
【0028】
次に、図5に示すように、有機半導体層9として、ペンタセンを真空蒸着した。ゲート絶縁膜6と同様に、有機半導体層9は金属マスクにより、ソース電極8、ドレイン電極7にはさまれた領域と各電極の一部を含めて、即ち電極間を覆うように、選択的に形成される。次に、保護膜として10として、ノボラック樹脂を塗布、硬化させた。
【0029】
次に、図6に示すように、メモリ素子電極3と接地線4の空隙をまたぐように、具体的にはメモリ素子電極3と接地線の間とそれぞれの一部とに、有機物電気伝導体PEDOT/PSS(ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸)を塗布乾燥し、メモリ素子11を形成した。
【0030】
また、図示していないが、前記ビット線は、センスアンプの1端子に接続され、他方の端子の参照電圧と比較し、前記ビット線電位が参照電圧より高い場合は、「1」(高電位:電源電圧に近い電圧)を出力し、前記ビット線電位が参照電圧より低い場合は、「0」(低電位:接地電圧に近い電圧)を出力する。
【0031】
このようにして試作したメモリ装置について、読み出し動作−3V、書き込み動作−6Vを前提に駆動させる場合について説明する。
【0032】
まず、読み出し動作について説明する。参照電圧として(図1における「Ref.」)、−2V(電源電圧2Vの2/3に相当)をセンスアンプに印加する。次に、C23のセルの情報を読み出す動作を行なう。ワード線WL3に−3Vを印加し、選択トランジスタT23をON状態にする。次にビット線BL2に、−3Vを限度に、5μAの定電流を流す。このとき、C23が選択され、R23が低抵抗状態のときは、電流がBL2→T23→接地と流れ、BL2の電位は、接地電圧に近くなる。よって、ビット線BL2の電位は、参照電圧より大きくなり、センスアンプSA2は、「1」を出力する。一方、R23が高抵抗のときは、BL2→T23→接地と流れる電流はほとんどなくなり、BL2は電源電圧に近くなる。よって、ビット線BL2の電位は、参照電圧より小さくなり、センスアンプSA2は、「0」を出力する。
【0033】
次に書き込み動作について説明する。R23は初期状態として、低抵抗状態にあるとする。ワード線WL3に−3Vを印加し、選択トランジスタT23をON状態にする。次にビット線BL2に、−6Vを限度に、10μAの定電流を流す。このとき、C23が選択され、R23に5V以上の電圧が印加され、10μAの電流が流れる。このとき、R23は高抵抗状態に不可逆的に変移する。この動作によって、C23に情報が書き込まれたことになる。
【0034】
本実施形態に係る不揮発メモリ装置はスイッチング素子として、ダイオードを用いることができる。また本実施形態に係る不揮発メモリ装置はスイッチング素子として、接合型トランジスタを用いることができる。
【0035】
(第2の実施の形態)
本実施形態に係る不揮発メモリ装置はスイッチング素子として、ダイオードを用いることができる形態である。図7に本実施形態に係る構成の一例を示す。
【0036】
本実施形態では第1の実施の形態と同様に、1つのセルがスイッチング素子とメモリ素子とを有している。第1の実施の形態においてセルはスイッチング素子としてトランジスタ素子を有しているのに対して、第2の実施の形態ではダイオード素子を有している。
【0037】
図7に示すように本実施形態に係る不揮発メモリ装置はそのようなセルを行方向および列方向に複数有している(C11乃至C44)。ひとつのセルを例にあげれば、セルC11はダイオードD11とメモリ素子M11とを有している。それぞれのメモリ素子は一方がそれぞれのセルのダイオードに接続されており、他方が共通して1つのワードラインWLに接続されている。ワードラインWLは複数ありそれぞれが複数のメモリ素子と列単位で接続されている。またダイオードの一端で、メモリ素子と接続していない側の一端は、共通して1つのラインBLに接続されている。ラインBLは複数あり、それぞれが複数のダイオードの一端と行単位に接続されている。
【0038】
読み出し動作について説明する。例えばセルC22を選択するとき、BL2に定電圧Vccを印加し、抵抗R2を経て接地されたBL2に電流が流れるようにする。この際、他のワードラインWLには、Vcc以上の電圧を印加し、選択した以外のセルには電流が流れないようにする。このときのBL2の電位を、参照電圧Ref.と比較することで、情報を読み出すことができる。
【0039】
書き込み動作について説明する。例えばセルC22を選択するとき、BL2に定電圧2Vccを印加し、R2を経てBL2に電流が流れるようにする。この際、他のワードラインWLには、2Vcc以上の電圧を印加し、選択した以外のセルには電流が流れないようにする。このようにすると、選択されたC22の記憶素子D22には大きな電圧が印加され、インピーダンスが変化することになる。
【0040】
【発明の効果】
本発明によれば、ガラスや樹脂基板上に形成可能で、所望のセルを選択できる機構を持つ、不揮発メモリ装置を構築することができる。
【図面の簡単な説明】
【図1】回路構成を示す回路図である。
【図2】メモリ素子の電気特性を示すグラフである。
【図3】第1の実施形態のトランジスタ素子を示す要部断面図である。
【図4】第1の実施形態のトランジスタ素子を示す要部断面図である。
【図5】第1の実施形態のトランジスタ素子を示す要部断面図である。
【図6】第1の実施形態のトランジスタ素子を示す要部断面図である。
【図7】第2の実施の形態の回路構成を示す回路図である。
【符号の説明】
1 基板
2 コンタクト
3 メモリ素子電極
4 接地線
5 ゲート電極
6 ゲート絶縁膜
7 ドレイン電極
8 ソース電極
9 有機半導体層
10 保護膜
11 メモリ素子
12 保護膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonvolatile memory device having a matrix wiring, a switching element, and a storage element.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices using organic semiconductor materials have been widely developed, and development of organic EL (Electro-Luminescence), organic TFT (Thin Film Transistor), organic semiconductor laser, and the like as issuing elements has been reported. I have. Among them, an organic TFT, which is a kind of an organic transistor, is regarded as a promising technology for forming an integrated circuit on an inexpensive substrate such as glass or resin at low cost.
[0003]
With respect to the structure of an organic transistor, devices having source and drain electrodes, a gate insulating film, and a gate electrode have been proposed (Patent Documents 1 to 3).
[0004]
On the other hand, it is desired that a nonvolatile memory element can be formed on an inexpensive substrate such as glass or resin together with an organic transistor. No memory structure having a function comparable to that of (Memory) has been obtained. Japanese Patent Application Laid-Open No. 2001-189431 discloses a configuration in which multi-value storage can be performed in one cell by changing the impedance of an organic substance according to a voltage. Is not shown.
[0005]
[Patent Document 1]
JP 08-228034 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 09-232589 [Patent Document 3]
JP 10-270712 A
[Problems to be solved by the invention]
An object of the present invention is to solve the problem that it is difficult to form a nonvolatile memory device that can select a desired cell on an inexpensive substrate such as glass or resin by a conventional technology. is there. Therefore, an object of the present invention is to provide a nonvolatile memory device in which an integrated circuit can be formed over an inexpensive substrate such as glass or resin by forming an element using an organic substance, and a desired cell can be selected. To provide.
[0007]
[Means for Solving the Problems]
Therefore, the present invention is a nonvolatile memory device having a matrix wiring, a switching element, and a storage element,
The storage element is a storage element whose impedance changes, and the switching element and the storage element each include at least one of an organic semiconductor and an organic electric conductor.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the nonvolatile memory device according to the present invention, the storage element is a storage element whose impedance changes, and the switching element and the storage element include at least one of an organic semiconductor and an organic electric conductor. Here, the basic operation is that the impedance of the organic conductor at the read operation voltage changes when a write voltage higher than the read operation voltage is applied to the organic conductor in the memory element.
[0009]
In particular, it is more preferable that the impedance of the organic conductor in the read operation current is irreversibly increased by applying a write voltage larger than the read operation current to the organic electric conductor in the memory element. As a result, the information once written cannot be rewritten, which is not only convenient for security but also makes it possible to select a driving method simpler than that of an EEPROM or the like.
[0010]
More preferably, the switching element is a transistor including an organic semiconductor or an organic electric conductor. Thus, a desired memory cell can be selected. The transistor includes a field effect type, a thin film type, a junction type, and the like, and any of them can be used. An organic semiconductor is a substance having a Fermi level between the band gaps of the organic substance and has semiconductor characteristics. An organic electric conductor is a substance having a Fermi level near a conductive band of the organic substance, and mainly has metallic electric conduction characteristics.
[0011]
The switching element may be a diode including an organic semiconductor or an organic electric conductor. In this case, a memory device having a relatively simple matrix structure can be configured.
[0012]
In addition to the bit line and the word line, a ground line is provided, one terminal of the transistor is connected to one of the bit lines, another terminal of the transistor is connected to one of the word lines, and another terminal of the transistor is connected. More preferably, one terminal is connected to one of the ground lines via the memory element.
[0013]
The memory element may have a structure that straddles a gap between two electrodes separated in the in-plane direction of the substrate. Thus, the memory element can be formed by printing or the like.
[0014]
More preferably, the nonvolatile memory device is formed on a resin substrate. Thus, the nonvolatile memory device can be used for an IC card or an IC tag. Such an IC card or IC tag may be used as a non-volatile memory device related to a commuter pass, an ID card, or package delivery, or may be used as a cartridge (ie, a cartridge in an electrophotographic image forming apparatus such as a laser beam printer or a copying machine). (A means for accommodating a photoreceptor drum or a toner), or may be attached to a cartridge for accommodating ink of an ink jet printer such as a piezo method or a bubble jet (R) method. In that case, it is preferable because various information or a large amount of information can be stored before the product is shipped or when the product is used.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
The configuration of the nonvolatile memory device of the present embodiment shown in FIG. 1 will be described.
[0017]
Bit lines BL1 to BL4, word lines WL1 to WL4 intersecting with the bit lines, organic TFTs (thin film transistors) T11 to T44 as switching elements including organic semiconductors arranged in a matrix, and memory elements R11 to R44 as storage elements 1 shows a configuration of a 16-bit memory device including one unit cell C11 to C44. The gate electrodes of the organic TFTs T11 to T44 are connected to word lines, the drain electrodes are connected to bit lines, the source electrodes are connected to one terminal of the memory elements R11 to R44, and the other terminals of the memory elements R11 to R44 are grounded. .
[0018]
A structure that should be noted as a memory element is a structure in which a material made of an organic electric conductor is disposed between electrodes having a gap. As an example of the arrangement, a liquid material can be applied between the electrodes and dried. As an example, characteristics of the memory element are shown in FIG. The voltage applied between the electrodes is subtracted from 0 V to 5 V, but the characteristics are greatly different between the first time and the second time. In the first sweep, the amount of current greatly decreases near the applied voltage of 4 V, and the state changes to a high resistance state. This high resistance state is maintained in the second sweep. This change in resistance is irreversible and does not return to the low resistance state once in the high resistance state. When the read operation voltage is about 3 V, the resistance value of the memory element differs by about two digits between the high resistance state and the low resistance state. That is, the impedance increases irreversibly.
[0019]
Specific examples of the organic electric conductor include a polythiophene derivative, a polypyrrole derivative, a polyaniline derivative, and a polyparaphenylenevinylene derivative.
[0020]
Next, a driving method of the present memory device will be described with reference to an example.
[0021]
First, a read operation will be described. Each TFT operates on a p-channel. As a reference voltage (“Ref.” In FIG. 1), −2 V (corresponding to / of the power supply voltage 3 V) is applied to the sense amplifier. Next, an operation of reading information from the cell C23 is performed. A voltage of -3 V is applied to the word line WL3 to turn on the select transistor T23. Next, a constant current of several μA is allowed to flow through the bit line BL2 up to -3V. At this time, when C23 is selected and R23 is in the low resistance state, the current flows from BL2 to T23 to ground, and the potential of BL2 becomes close to the ground voltage. Therefore, the potential of the bit line BL2 becomes higher than the reference voltage, and the sense amplifier SA2 outputs “1”. On the other hand, when R23 has a high resistance, almost no current flows from BL2 to T23 to ground, and BL2 approaches the power supply voltage. Therefore, the potential of the bit line BL2 becomes lower than the reference voltage, and the sense amplifier SA2 outputs “0”.
[0022]
Next, a write operation will be described. It is assumed that R23 is in a low resistance state as an initial state. A voltage of -3 V is applied to the word line WL3 to turn on the select transistor T23. Next, a constant current of about 10 μA is applied to the bit line BL2, with a limit of -6V. At this time, C23 is selected, a voltage of 5 V or more is applied to R23, and a current of 10 μA flows. At this time, R23 irreversibly changes to the high resistance state. By this operation, information has been written to C23.
[0023]
(1st Embodiment)
Next, as an example of the present embodiment, a trial manufacturing process of the memory device will be described.
[0024]
3 to 6 are schematic views for explaining a process of manufacturing the memory element according to the present embodiment.
[0025]
Reference numeral 1 denotes a substrate, 2 denotes a contact, 3 denotes a memory element electrode, 4 denotes a ground line, 5 denotes a gate electrode, 6 denotes a gate insulating film, 7 denotes a drain electrode, 8 denotes a source electrode, 9 denotes an organic semiconductor layer, and 10 denotes protection. A film, 11 is a memory element, and 12 is a protective film.
[0026]
First, as shown in FIG. 3, a memory element electrode 3 and a ground line 4 and a gate electrode 5 are formed by etching a copper foil on both surfaces (front and back surfaces) of a substrate 1 made of epoxy resin. A substrate portion on which the buried contact 2 is formed is prepared. Here, the gate electrode 5 is connected to a word line. The memory element electrode 3 and the ground line 4 are provided on one surface of the substrate 1, and the gate electrode 5 is provided on the other surface.
[0027]
Next, as shown in FIG. 4, an aluminum oxide thin film is formed as the gate insulating film 6 by a sputtering method. The gate insulating film is selectively formed so as to cover the gate electrode 5 through a metal mask. Further, a gold thin film is formed as the drain electrode 7 and the source electrode 8 by a vacuum deposition method. Like the gate insulating film 6, it is selectively formed using a metal mask. At this time, the drain electrode 7 is connected to the bit line. Further, the source electrode 8 is connected to the contact hole.
[0028]
Next, as shown in FIG. 5, pentacene was vacuum-deposited as the organic semiconductor layer 9. Similarly to the gate insulating film 6, the organic semiconductor layer 9 is selectively covered with a metal mask so as to include a region sandwiched between the source electrode 8 and the drain electrode 7 and a part of each electrode, that is, to cover between the electrodes. Formed. Next, as a protective film 10, a novolak resin was applied and cured.
[0029]
Next, as shown in FIG. 6, an organic electric conductor is provided across the gap between the memory element electrode 3 and the ground line 4, specifically, between the memory element electrode 3 and the ground line and at a part thereof. PEDOT / PSS (polyethylenedioxythiophene / polystyrenesulfonic acid) was applied and dried to form the memory element 11.
[0030]
Although not shown, the bit line is connected to one terminal of a sense amplifier and compared with a reference voltage of the other terminal. When the bit line potential is higher than the reference voltage, "1" (high potential) : A voltage close to the power supply voltage), and outputs “0” (low potential: a voltage close to the ground voltage) when the bit line potential is lower than the reference voltage.
[0031]
A description will be given of a case where the prototype memory device is driven on the assumption that the read operation is −3 V and the write operation is −6 V.
[0032]
First, a read operation will be described. As a reference voltage (“Ref.” In FIG. 1), −2 V (corresponding to / of the power supply voltage 2 V) is applied to the sense amplifier. Next, an operation of reading information from the cell C23 is performed. A voltage of -3 V is applied to the word line WL3 to turn on the select transistor T23. Next, a constant current of 5 μA is allowed to flow through the bit line BL2 with a limit of -3V. At this time, when C23 is selected and R23 is in the low resistance state, the current flows from BL2 to T23 to ground, and the potential of BL2 becomes close to the ground voltage. Therefore, the potential of the bit line BL2 becomes higher than the reference voltage, and the sense amplifier SA2 outputs “1”. On the other hand, when R23 has a high resistance, almost no current flows from BL2 to T23 to ground, and BL2 approaches the power supply voltage. Therefore, the potential of the bit line BL2 becomes lower than the reference voltage, and the sense amplifier SA2 outputs “0”.
[0033]
Next, a write operation will be described. It is assumed that R23 is in a low resistance state as an initial state. A voltage of -3 V is applied to the word line WL3 to turn on the select transistor T23. Next, a constant current of 10 μA is applied to the bit line BL2 with a limit of -6V. At this time, C23 is selected, a voltage of 5 V or more is applied to R23, and a current of 10 μA flows. At this time, R23 irreversibly changes to the high resistance state. By this operation, information has been written to C23.
[0034]
In the nonvolatile memory device according to the present embodiment, a diode can be used as a switching element. In the nonvolatile memory device according to the present embodiment, a junction transistor can be used as a switching element.
[0035]
(Second embodiment)
The nonvolatile memory device according to this embodiment has a mode in which a diode can be used as a switching element. FIG. 7 shows an example of a configuration according to the present embodiment.
[0036]
In the present embodiment, as in the first embodiment, one cell has a switching element and a memory element. In the first embodiment, the cell has a transistor element as a switching element, whereas in the second embodiment, the cell has a diode element.
[0037]
As shown in FIG. 7, the nonvolatile memory device according to the present embodiment has a plurality of such cells in the row direction and the column direction (C11 to C44). Taking one cell as an example, the cell C11 has a diode D11 and a memory element M11. One of the memory elements is connected to the diode of each cell, and the other is commonly connected to one word line WL. There are a plurality of word lines WL, each of which is connected to a plurality of memory elements in a column unit. One end of the diode, which is not connected to the memory element, is commonly connected to one line BL. There are a plurality of lines BL, each of which is connected to one end of the plurality of diodes in row units.
[0038]
The read operation will be described. For example, when the cell C22 is selected, a constant voltage Vcc is applied to BL2 so that a current flows to BL2 which is grounded via the resistor R2. At this time, a voltage higher than Vcc is applied to the other word lines WL so that no current flows to cells other than the selected cells. At this time, the potential of BL2 is set to the reference voltage Ref. By comparing with, information can be read.
[0039]
The write operation will be described. For example, when selecting the cell C22, a constant voltage of 2 Vcc is applied to BL2 so that a current flows to BL2 via R2. At this time, a voltage of 2 Vcc or more is applied to the other word lines WL so that no current flows to cells other than the selected cells. In this way, a large voltage is applied to the selected storage element D22 of C22, and the impedance changes.
[0040]
【The invention's effect】
According to the present invention, a nonvolatile memory device that can be formed on a glass or resin substrate and has a mechanism for selecting a desired cell can be constructed.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a circuit configuration.
FIG. 2 is a graph showing electrical characteristics of a memory element.
FIG. 3 is a cross-sectional view of a principal part showing the transistor element of the first embodiment.
FIG. 4 is a cross-sectional view of a principal part showing the transistor element of the first embodiment.
FIG. 5 is a cross-sectional view of a main part showing the transistor element of the first embodiment.
FIG. 6 is a fragmentary cross-sectional view showing the transistor element of the first embodiment.
FIG. 7 is a circuit diagram illustrating a circuit configuration according to a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Contact 3 Memory element electrode 4 Ground line 5 Gate electrode 6 Gate insulating film 7 Drain electrode 8 Source electrode 9 Organic semiconductor layer 10 Protective film 11 Memory element 12 Protective film

Claims (12)

マトリックス配線とスイッチング素子と、記憶素子を有する不揮発メモリ装置であって、
前記記憶素子はインピーダンスが変化する記憶素子であり、前記スイッチング素子及び前記記憶素子とも有機物半導体あるいは有機物電気伝導体の少なくとも何れか一方を有することを特徴とする不揮発メモリ装置。
A nonvolatile memory device having a matrix wiring, a switching element, and a storage element,
The nonvolatile memory device, wherein the storage element is a storage element whose impedance changes, and both the switching element and the storage element include at least one of an organic semiconductor and an organic electric conductor.
前記記憶素子が有する前記有機物電気伝導体のインピーダンスが、読み出し動作電圧より大きな書き込み電圧を印加されることにより変化することを特徴とする請求項1に記載の不揮発メモリ装置。2. The nonvolatile memory device according to claim 1, wherein the impedance of the organic electric conductor included in the storage element changes when a write voltage higher than a read operation voltage is applied. 前記記憶素子が有する前記有機物電気伝導体のインピーダンスが、読み出し動作電流より大きな書き込み電圧を印加されることにより不可逆的に増大することを特徴とする請求項1に記載の不揮発メモリ装置。2. The nonvolatile memory device according to claim 1, wherein the impedance of the organic electric conductor included in the storage element increases irreversibly when a write voltage larger than a read operation current is applied. 前記スイッチング素子はトランジスタであることを特徴とする請求項1に記載の不揮発メモリ装置。The nonvolatile memory device according to claim 1, wherein the switching element is a transistor. 前記スイッチング素子はダイオードであることを特徴とする請求項1に記載の不揮発メモリ装置。The nonvolatile memory device according to claim 1, wherein the switching element is a diode. 前記トランジスタの1端子がビット線の1つに接続され、前記トランジスタの別の1端子がワード線の1つに接続され、前記トランジスタのさらに別の1端子が前記記憶素子を介して接地線の1つに接続されることを特徴とする請求項4に記載の不揮発メモリ装置。One terminal of the transistor is connected to one of the bit lines, another terminal of the transistor is connected to one of the word lines, and another terminal of the transistor is connected to the ground line via the storage element. The nonvolatile memory device according to claim 4, wherein the nonvolatile memory device is connected to one. 前記記憶素子が、基板面内方向に離れた2つの電極をつなぐ構造を持つことを特徴とする請求項1に記載の不揮発メモリ装置。2. The nonvolatile memory device according to claim 1, wherein the storage element has a structure that connects two electrodes separated in an in-plane direction of the substrate. 樹脂またはガラスからなる基板上に前記マトリックス配線と前記スイッチング素子と、前記記憶素子が形成されることを特徴とする請求項1に記載の不揮発メモリ装置。The nonvolatile memory device according to claim 1, wherein the matrix wiring, the switching element, and the storage element are formed on a substrate made of resin or glass. 請求項1に記載の前記不揮発メモリ装置有するICカードまたはICタグ。An IC card or an IC tag having the nonvolatile memory device according to claim 1. 請求項1に記載の前記不揮発メモリ装置有するICタグ。An IC tag having the nonvolatile memory device according to claim 1. 請求項9に記載のICカードまたはICタグのいずれかを有する電子写真方式の画像形成装置用のカートリッジ。A cartridge for an electrophotographic image forming apparatus, comprising the IC card or the IC tag according to claim 9. 請求項9に記載のICカードまたはICタグのいずれかを有するインクジェットプリンタ用のカートリッジ。A cartridge for an ink jet printer, comprising the IC card or the IC tag according to claim 9.
JP2003201732A 2002-08-07 2003-07-25 Nonvolatile memory device Withdrawn JP2004128471A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003201732A JP2004128471A (en) 2002-08-07 2003-07-25 Nonvolatile memory device
PCT/JP2003/010017 WO2004015778A1 (en) 2002-08-07 2003-08-06 Nonvolatile memory device
AU2003253428A AU2003253428A1 (en) 2002-08-07 2003-08-06 Nonvolatile memory device
TW092121497A TW200402873A (en) 2002-08-07 2003-08-06 Nonvolatile memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002229907 2002-08-07
JP2003201732A JP2004128471A (en) 2002-08-07 2003-07-25 Nonvolatile memory device

Publications (1)

Publication Number Publication Date
JP2004128471A true JP2004128471A (en) 2004-04-22

Family

ID=31719842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201732A Withdrawn JP2004128471A (en) 2002-08-07 2003-07-25 Nonvolatile memory device

Country Status (4)

Country Link
JP (1) JP2004128471A (en)
AU (1) AU2003253428A1 (en)
TW (1) TW200402873A (en)
WO (1) WO2004015778A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121908A1 (en) * 2004-06-14 2005-12-22 Semiconductor Energy Laboratory Co., Ltd. Copy machine with copy control function, scanner and facsimile, and piece of paper and film each installed with semiconductor device
JP2006033809A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Copy machine with copy control function, scanner and facsimile, semiconductor device contained paper and semiconductor device contained film
JP2006148080A (en) * 2004-10-18 2006-06-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method thereof
JP2006154789A (en) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd Display device and electronic appliance using the same
JP2006179882A (en) * 2004-11-26 2006-07-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2006186346A (en) * 2004-12-03 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device
WO2006085633A1 (en) * 2005-02-10 2006-08-17 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device
JP2006310799A (en) * 2005-03-28 2006-11-09 Semiconductor Energy Lab Co Ltd Memory device and method of fabricating same
JP2007013126A (en) * 2005-05-31 2007-01-18 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
JP2007073950A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of fabricating the same
WO2007046144A1 (en) * 2005-10-19 2007-04-26 Fujitsu Limited Resistive memory element and its manufacturing method and nonvolatile semiconductor memory device
WO2007055299A1 (en) * 2005-11-09 2007-05-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
JP2007318104A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Memory device and semiconductor device
US8030643B2 (en) 2005-03-28 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
JP2011211215A (en) * 2004-10-29 2011-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device
US8188461B2 (en) 2005-05-31 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Organic memory device
JP2012165014A (en) * 2005-08-12 2012-08-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US8295104B2 (en) 2004-11-26 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101234598B1 (en) * 2011-02-28 2013-02-19 한국전자통신연구원 Read/write apparatus and method of rom cell using organic thin film transistor
US8507902B2 (en) 2004-12-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101361690B1 (en) * 2011-07-26 2014-02-12 광주과학기술원 Switching device and resistance variable memory device using the same
US8835907B2 (en) 2005-01-21 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US9734901B2 (en) 2004-10-29 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device with semiconductor memory cell

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608855B2 (en) * 2004-04-02 2009-10-27 Spansion Llc Polymer dielectrics for memory element array interconnect
DE102004025676B4 (en) * 2004-05-26 2008-09-04 Qimonda Ag Integrated semiconductor memory with organic selection transistor
DE102004025675B4 (en) * 2004-05-26 2008-02-14 Qimonda Ag Integrated semiconductor memory with organic selection transistor
US8698262B2 (en) 2004-09-14 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and manufacturing method of the same
WO2006043687A1 (en) * 2004-10-22 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101258672B1 (en) 2004-10-22 2013-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US7926726B2 (en) 2005-03-28 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Survey method and survey system
TWI395321B (en) 2005-03-31 2013-05-01 Semiconductor Energy Lab Semiconductor device and driving method thereof
US7700984B2 (en) 2005-05-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd Semiconductor device including memory cell
US7688272B2 (en) 2005-05-30 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7868320B2 (en) 2005-05-31 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7660145B2 (en) 2005-07-01 2010-02-09 Semiconductor Energy Laboratory Co., Ltd. Storage device and semiconductor device
EP1850378A3 (en) 2006-04-28 2013-08-07 Semiconductor Energy Laboratory Co., Ltd. Memory device and semicondutor device
US7719001B2 (en) 2006-06-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd Semiconductor device with metal oxides and an organic compound
WO2008041716A1 (en) 2006-10-04 2008-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP2076923B1 (en) 2006-10-24 2012-08-15 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device including storage device and method for driving the same
KR101416876B1 (en) 2006-11-17 2014-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US7988057B2 (en) 2006-11-28 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
JP5263757B2 (en) 2007-02-02 2013-08-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8283724B2 (en) 2007-02-26 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device, and method for manufacturing the same
JP5525694B2 (en) 2007-03-14 2014-06-18 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170101B2 (en) * 1993-04-15 2001-05-28 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3559580B2 (en) * 1993-12-17 2004-09-02 財団法人国際科学振興財団 Semiconductor device
US6385407B1 (en) * 1998-12-28 2002-05-07 Hitachi Maxell, Ltd. Accommodating enclosure and management system
CN1181546C (en) * 2000-03-28 2004-12-22 皇家菲利浦电子有限公司 Integrated circuit with programmable memory element

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121908A1 (en) * 2004-06-14 2005-12-22 Semiconductor Energy Laboratory Co., Ltd. Copy machine with copy control function, scanner and facsimile, and piece of paper and film each installed with semiconductor device
JP2006033809A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Copy machine with copy control function, scanner and facsimile, semiconductor device contained paper and semiconductor device contained film
JP2006148080A (en) * 2004-10-18 2006-06-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method thereof
US9734901B2 (en) 2004-10-29 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device with semiconductor memory cell
JP2011211215A (en) * 2004-10-29 2011-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2006154789A (en) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd Display device and electronic appliance using the same
JP2006179882A (en) * 2004-11-26 2006-07-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US8295104B2 (en) 2004-11-26 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006186346A (en) * 2004-12-03 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device
US8507902B2 (en) 2004-12-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8835907B2 (en) 2005-01-21 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8604547B2 (en) 2005-02-10 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device
WO2006085633A1 (en) * 2005-02-10 2006-08-17 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device
US8030643B2 (en) 2005-03-28 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
US8804404B2 (en) 2005-03-28 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
US9129866B2 (en) 2005-03-28 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
US9786669B2 (en) 2005-03-28 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
US8526216B2 (en) 2005-03-28 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method the same
US8238152B2 (en) 2005-03-28 2012-08-07 Semiconductor Energy Laboratory Co. Ltd. Memory device and manufacturing method the same
JP2006310799A (en) * 2005-03-28 2006-11-09 Semiconductor Energy Lab Co Ltd Memory device and method of fabricating same
JP2007013126A (en) * 2005-05-31 2007-01-18 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
US8188461B2 (en) 2005-05-31 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Organic memory device
US8536067B2 (en) 2005-08-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2012165014A (en) * 2005-08-12 2012-08-30 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2007073950A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method of fabricating the same
KR101369864B1 (en) * 2005-08-12 2014-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP5157448B2 (en) * 2005-10-19 2013-03-06 富士通株式会社 Resistance memory element and nonvolatile semiconductor memory device
US7859886B2 (en) 2005-10-19 2010-12-28 Fujitsu Limited Resistance memory element and method of manufacturing the same, and semiconductor memory device
WO2007046144A1 (en) * 2005-10-19 2007-04-26 Fujitsu Limited Resistive memory element and its manufacturing method and nonvolatile semiconductor memory device
WO2007055299A1 (en) * 2005-11-09 2007-05-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8088654B2 (en) 2005-11-09 2012-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7713800B2 (en) 2005-11-09 2010-05-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007173812A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Thin-film transistor backplane circuit, and method of manufacturing same
JP2007318104A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Memory device and semiconductor device
KR101234598B1 (en) * 2011-02-28 2013-02-19 한국전자통신연구원 Read/write apparatus and method of rom cell using organic thin film transistor
KR101361690B1 (en) * 2011-07-26 2014-02-12 광주과학기술원 Switching device and resistance variable memory device using the same

Also Published As

Publication number Publication date
TW200402873A (en) 2004-02-16
WO2004015778A1 (en) 2004-02-19
AU2003253428A1 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
JP2004128471A (en) Nonvolatile memory device
US7359230B2 (en) Nonvolatile memory device
US6828685B2 (en) Memory device having a semiconducting polymer film
US6781868B2 (en) Molecular memory device
US7995402B2 (en) Method for erasing a semiconductor magnetic memory integrating a magnetic tunneling junction above a floating-gate memory cell
JP4514016B2 (en) Floating gate memory device using composite molecular materials
EP0923135B1 (en) Ferroelectric memory device
KR100483593B1 (en) Non-volatile memory element and matrix display panel
WO2001069602A2 (en) Ferroelectric memory and method of operating same
JP2004342767A (en) Semiconductor memory, semiconductor device, and portable electronic equipment
US7355879B2 (en) Semiconductor integrated circuit, operating method thereof, and IC card including the circuit
JP2004335056A (en) Method of programming and erasing semiconductor memory having a plurality of memory cells
JPH07106440A (en) Nonvolatile semiconductor memory and application system thereof
US6885053B1 (en) Nonvolatile memory and erasing method
KR100655028B1 (en) Nonvolatile semiconductor memory
US20060118780A1 (en) Organo-resistive memory unit
Yang et al. Printed Organic One‐Time Programmable ROM Array Using Anti‐fuse Capacitor
US8144495B2 (en) Method for programming an electronic circuit and electronic circuit
KR20050108750A (en) Non-volatile memory device comprising ferro-electric semiconductor material and method for writing, erasing and reading data in the memory device
GB2367424A (en) Non volatile ferroelectric memory device
JP2000182379A (en) Semiconductor memory device using ferroelectric gate transistor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003