JP2004119655A - Package for receiving semiconductor element and semiconductor device - Google Patents

Package for receiving semiconductor element and semiconductor device Download PDF

Info

Publication number
JP2004119655A
JP2004119655A JP2002280349A JP2002280349A JP2004119655A JP 2004119655 A JP2004119655 A JP 2004119655A JP 2002280349 A JP2002280349 A JP 2002280349A JP 2002280349 A JP2002280349 A JP 2002280349A JP 2004119655 A JP2004119655 A JP 2004119655A
Authority
JP
Japan
Prior art keywords
plate member
semiconductor element
hole
base
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002280349A
Other languages
Japanese (ja)
Inventor
Kazuyuki Takayama
高山 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002280349A priority Critical patent/JP2004119655A/en
Publication of JP2004119655A publication Critical patent/JP2004119655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To permit the normal and stabilized operation of a semiconductor element for a long period of time by preventing the generation of crack in a circuit substrate for mounting the semiconductor element connected to the upper parts of a substrate and a sheet member. <P>SOLUTION: A package A for receiving the semiconductor element is equipped with a frame type substrate 1a consisting of an iron alloy with a through hole formed at the central part thereof, the sheet member 1b attached to the through hole of the substrate 1a and consisting of copper or a copper alloy, and the circuit substrate 2 whose lower surface is connected to the upper surfaces of the sheet member 1b and the substrate 1a. The sheet member 1b is inserted into the through hole of the substrate 1a with a clearance 1d of 0.5-2mm, and a plurality of projected parts 1e formed on the lower side of a side surface with a substantially equal interval is attached to the through hole by brazing the same to the inner surface 1c of the through hole. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、LSIや電界効果型トランジスタ(Field Effect Transisrtor:FET)などの半導体素子を収容するための半導体素子収納用パッケージおよび半導体装置に関する。
【0002】
【従来の技術】
近年、無線通信に使用される携帯電話等の通信機器の発達に伴って、高周波帯域で高出力で作動するIC,LSI,FET等の半導体素子の需要が大幅に伸びている。特に、携帯電話の基地局に用いられる情報機器等では、限られた電力で高出力が得られ長時間の信号変換ができるように高効率で動作する半導体素子と、これを収納する半導体素子収納用パッケージ(以下、半導体パッケージともいう)が重要となってきている。即ち、内部の電力損失が小さく、入力された直流電力を効率よく高周波電力に変換する半導体素子と、この半導体素子を収納して、その性能を最大限引き出せる半導体パッケージが望まれている。
【0003】
このようなことから、ガリウム砒素(GaAs)化合物半導体を用いたMESFET(Metal Semiconductor Field Effect Transistor)の開発が進められてきたが、低電圧時の特性および変換効率が悪く、また大電流を流せないという点で問題があった。しかしながら、近年、GaAs化合物半導体を用いたHBT(Heterojunction Bipolar Transistor)等の半導体素子が、MESFETに比し優れた低電圧時の特性を有し、大きな直流電力を効率よく高周波電力に変換できるものとして注目されてきている。また、このような半導体素子は作動時に大量の熱を発生するため、熱放散性の良好な半導体パッケージが強く望まれている。
【0004】
そして、HBT等の半導体素子を搭載した半導体パッケージが、近年、産業用および民生用として開発され、例えば通信機器などに数多く使用されている。このような半導体パッケージを用いた半導体装置の一例を図3に示す。同図に示すように、アルミナ(酸化アルミニウム:Al)質焼結体(アルミナセラミックス)等から成るとともに上面や内部に配線導体2aが形成された回路基板2が、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等からなる基体11上に取着され、回路基板2上面の載置部2aに半導体素子4が取着されている。また、半導体素子4は、回路基板2の上面に形成された配線導体2bにボンディングワイヤを介して電気的に接合され、さらに枠体3の取付部3aに嵌着された入出力端子3bにボンディングワイヤを介して電気的に接続されている。そして、蓋体6が枠体3の上面に接合されることにより半導体装置Bとなる(例えば、下記の特許文献1参照)。
【0005】
アルミナセラミックスから成る回路基板2は、回路基板2の内部にタングステン(W)等から成る配線導体2bを形成することができ、また他の能動素子や受動素子を搭載して回路基板2に電気回路を形成することができる。従って、小型化および高密度化をともに満足させることができる。また、回路基板2を用いることにより、半導体パッケージに半導体素子4を収容した状態で性能試験で不良品が発見された場合、半導体素子4を回路基板2ごと取り替えれば良く、生産性に大きく寄与することができる。
【0006】
【特許文献1】
特開2000−124559号公報(第3−5頁、図1)
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の半導体パッケージにおいては、Fe−Ni−Co合金等からなる基体11と回路基板2との熱膨張係数差に起因して、回路基板2にクラックが発生するという不具合を招来していた。このクラックは、例えばFe−Ni−Co合金からなる基体1が、420℃付近で熱膨張係数が大きく変化する熱膨張係数の変曲点を有していることに起因して発生する。
【0008】
すなわち、Fe−Ni−Co合金の熱膨張係数は420℃以下の温度域では約5.4×10−6/℃で420℃を超える温度域では約11×10−6/℃であり、また例えばアルミナセラミックスから成る回路基板2の熱膨張係数は420℃を超える温度域で約7×10−6/℃であることにより、回路基板2を基体1上面にロウ付けする際に800℃程度の温度に晒された後に徐々に420℃付近まで冷却される過程において、回路基板2全体に水平方向に引張り応力が加わることになる。その結果、回路基板2の角部などの応力に対して弱い部分を起点としてクラックが発生し、配線導体2bが切れて電気回路として不良となるという不具合が発生することがあった。
【0009】
また、基体11を成すFe−Ni−Co合金の熱伝導率が約17W/m・Kであり、CuやCu合金に比して数十分の一程度であることから、半導体素子4の発熱量が増えると放熱性が劣化し易くなっていた。
【0010】
そこで、図4に示すように、基体11の半導体素子4が搭載される部位をCu板101bに置き換えて熱を効率よく外部に放散させることが試みられた。この場合、Cu板101bは基体101aの貫通孔にロウ材を介して取着され接合されるため、部分的に接伝導率が良好な複合基体101となり、またCu板101bの熱膨張が周囲のFe−Ni−Co合金からなる基体101aによって抑え込まれることとなる。その結果、半導体素子4をCu板101bの上側主面に搭載して作動させるに際して不具合が発生することはなかった。
【0011】
しかしながら、この複合基体101においては、Cu板101bの大きさを貫通孔に対して若干小さくすることにより、Cu板101bをロウ材を介して基体101aの貫通孔に取着させる際にCu板101bの熱膨張によって基体101aに過大な応力を及ぼさないようにしているが、Cu板101bがロウ付け時に800℃程度まで加熱された後に冷却していく過程で回路基板2に大きな引張り応力が加わり、回路基板2にクラックが発生したり、高温域(750〜900℃程度)で固化したロウ材に低温域(室温〜数十℃程度)でクラックが発生する場合があり、複合基体101を量産するに際しての大きな障害となっていた。
【0012】
そこで、回路基板2を厚くして応力に耐えるようにすることが試みられた。しかしながら、この場合、回路基板2において半導体素子4の熱に対する熱抵抗が大きくなり、半導体素子4の温度が上昇して、半導体素子4の動作性が劣化するといった不具合が発生した。また、回路基板2のクラック発生を防止するために強度の大きな炭化珪素(SiC)セラミックス等から成るものを用いることが試みられた。しかしながら、この場合、回路基板2にクラックは発生しないものの、例えばSiCセラミックスでは、熱膨張係数がアルミナ(Al)の熱膨張係数(8×10−6/℃)の約1/2程度であり、半導体素子4が作動したときに発生する熱によりCu板101bが膨張したときに回路基板2がその膨張に追従しきれないために回路基板2を接合しているロウ材にクラックが発生し、その結果、回路基板2が基体101aから外れるといった不具合が発生していた。
【0013】
従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、回路基板にクラックが発生するのを防止して、半導体素子を長期に亘り正常かつ安定に作動させることのできる半導体パッケージを提供することにある。
【0014】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージは、中央部に貫通孔が形成された鉄を主成分とする鉄合金から成る枠状の基体と、前記基体の前記貫通孔に取着された銅または銅を主成分とする銅合金から成る板部材と、上面に半導体素子が搭載される載置部を有する、下面が前記板部材の上側主面の全面および前記上側主面の周囲の前記基体の上面に接合された回路基板と、前記基体の上面の外周部に前記回路基板を囲繞するように取着された枠体と、該枠体の側部に形成された貫通孔または切欠きからなる入出力端子の取付部と、該取付部に嵌着された入出力端子とを具備しており、前記板部材は、前記基体の前記貫通孔に0.5乃至2mmの隙間をもって挿入されるとともに側面の下側に略等間隔で形成された複数の凸部が前記貫通孔の内面にロウ付けされることによって前記貫通孔に取着されていることを特徴とする。
【0015】
本発明の半導体素子収納用パッケージは、板部材は基体の貫通孔に0.5乃至2mmの隙間をもって挿入されるとともに側面の下側に略等間隔で形成された複数の凸部が貫通孔の内面にロウ付けされることによって貫通孔に取着されていることにより、半導体素子収納用パッケージの気密性が保持されるとともに基体は半導体素子の熱を良好に放熱できるものとなる。即ち、板部材の上側主面の面積が小さくなるため、板部材の熱膨張や収縮による回路基板への影響が小さくなり、回路基板にクラックが発生するのを抑制することができる。また、板部材を貫通孔に取着するためのロウ材にクラックが発生するのを防ぐことができ、その結果、半導体素子収納用パッケージの気密性が保持されるとともに半導体素子の熱を良好に放熱できることとなる。
【0016】
本発明の半導体素子収納用パッケージにおいて、好ましくは、前記板部材の前記凸部は、厚さが前記板部材の厚さの1/4乃至1/2とされているとともに幅が前記板部材の厚さの1/4乃至1/2とされていることを特徴とする。
【0017】
本発明の半導体素子収納用パッケージは、板部材の凸部は厚さが板部材の厚さの1/4乃至1/2とされているとともに幅が板部材の厚さの1/4乃至1/2とされていることから、凸部の剛性を保持して板部材を確実に貫通孔にロウ付けできるとともに板部材の上下主面と基体の上下面とを略面一に保持することができる。その結果、安定した基体の放熱性が得られ、これにより半導体素子を基体の上面に信頼性よく長期に亘って載置することができる。また、板部材による半導体素子の接地性が安定化し、高周波信号の伝送損失が改善された半導体素子収納用パッケージとなすことができる。
【0018】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする。
【0019】
本発明の半導体装置は、上記の構成により、上記本発明の作用効果を有する、半導体素子を長期に亘り正常かつ安定して作動させることができる信頼性の高いものとなる。
【0020】
【発明の実施の形態】
本発明の半導体素子収納用パッケージおよび半導体装置について以下に詳細に説明する。図1は本発明の半導体パッケージについて実施の形態の一例を示し、(a)は半導体パッケージの平面図、(b)は(a)のX−X’線における断面図である。また、図2は本発明の半導体パッケージにおける板部材の凸部の拡大断面図である。
【0021】
これらの図において、Aは半導体パッケージ、1は複合基体、1aは基体、1bは板部材、1cは基体1aの貫通孔の内面、1dは隙間、1eは凸部、2は回路基板、2aは半導体素子の載置部、2bは配線導体、2cはメタライズ層である。また、3は枠体、3aは入出力端子3bの取付部、3bは入出力端子、4はFET等の半導体素子、6は蓋体である。そして、複合基体1、回路基板2、枠体3および蓋体6とで半導体素子4を気密に収容する容器が基本的に構成される。
【0022】
なお、図1,図2において、従来例を示す図3,図4と同じ部分には同じ符号を付した。
【0023】
本発明の半導体パッケージAは、中央部に貫通孔が形成された鉄を主成分とする鉄合金から成る枠状の基体1aと、基体1aの貫通孔に取着された銅または銅を主成分とする銅合金から成る板部材1bと、上面に半導体素子4が搭載される載置部2aを有する、下面が板部材1bの上側主面の全面および上側主面の周囲の基体1aの上面に接合された回路基板2と、基体1aの上面の外周部に回路基板2を囲繞するように取着された枠体3と、枠体3の側部に形成された貫通孔または切欠きからなる入出力端子3bの取付部3aと、取付部3aに嵌着された入出力端子3bとを具備し、板部材1bは、基体1aの貫通孔に0.5乃至2mmの隙間1dをもって挿入されるとともに側面の下側に略等間隔で形成された複数の凸部1eが貫通孔の内面1cにロウ付けされることによって貫通孔に取着されている。
【0024】
本発明の板部材1bは、例えば側面の対向する2隅部に凸部1eが形成されており、凸部1eの先端面と基体1aの内面1cとが例えばAg−Cu合金ロウ(BAg−8:JIS Z 3261)によって接合され、一体となって複合基体1を構成する。
【0025】
回路基板2の下面には略全面にメタライズ層2cが形成されており、そのメタライズ層2cが上記Ag−Cu合金ロウ等のロウ材を介して板部材1bの上側主面にロウ付けされているとともに、隙間1dを塞ぐようにして貫通孔の周囲の基体1aの上面にロウ付けされている。これにより、枠体3とその上面に接合される蓋体6とで半導体装置Bの内部を気密に封止することができる。
【0026】
本発明の複合基体1は、上面に半導体素子4を載置する載置部2aを有する回路基板2を搭載し、回路基板2および半導体素子4を支持する支持部材であり、半導体素子4の熱を回路基板2を介して外部に効率良く放散する機能を有する。複合基体1を構成する基体1aは、外形形状が略正方形や略長方形の略四角形であり、Fe−Ni−Co合金,Fe−Ni合金,SUS(ステンレススチール)等の鉄を主成分とする鉄合金から成り、例えばFe−Ni−Co合金のインゴット(塊)に圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって所定形状に作製される。
【0027】
また、基体1aの貫通孔の内側に貫通孔の内面との間に隙間1dをもって設置される板部材1bは、銅(Cu)またはCu−亜鉛(Zn)合金、Cu−タングステン(W)合金等の銅を主成分とする銅合金から成る。そして、板部材1bは、例えば銅板に圧延加工や打抜き加工を施すことによって外形形状が概略的に成形され、次にエッチング法によって銅板の側面に所定の厚さおよび幅を有する凸部1eが形成される。この凸部1eは、銅板を上側主面側からエッチングすることによって形成される。また、板部材1bの大きさは半導体素子4の面積によって変動するが、隙間1dの大きさは半導体素子4の面積によって変動しない。
【0028】
凸部1eは、板部材1bの側面に略等間隔で複数設けられ、先端面が基体1aの内面1cにロウ付けされることによって基体1aに板部材1bが接合される。板部材1bを基体1aの貫通孔に凸部1eで接合することにより、板部材1bを確実に貫通孔にロウ付けできるとともに板部材1bの上下主面と基体1aの上下面とを略面一に保持することができる。その結果、安定した基体1aの放熱性が得られ、これにより半導体素子4を基体1aの上面に信頼性よく長期に亘って載置することができる。
【0029】
さらに、凸部1eの厚さを板部材1bの厚さの1/4乃至1/2とし、凸部1eの幅を板部材1bの厚さの1/4乃至1/2としていることにより、凸部1eの剛性が小さすぎたり大きすぎたりすることが無く、その結果、板部材1bにうねりが発生したり、応力によって凸部1eが変形するような不具合が発生することが無い。
【0030】
凸部1eの厚さが板部材1bの厚さの1/4未満であるか、または凸部1eの幅が板部材1bの厚さの1/4未満である場合、凸部1eの剛性が小さくなり、板部材1bに応力や外力が加わると、凸部1eの付け根付近が折れたり屈曲するといった変形が生じ易くなる。また、凸部1eの厚さが板部材1bの厚さの1/4乃至1/2であるとしても、凸部1eの幅が板部材1bの厚さの1/4未満になると、凸部1eの剛性が小さくなり、板部材1bに応力や外力が加わると、凸部1eの付け根付近が折れたり屈曲するといった変形が生じ易くなる。
【0031】
また、凸部1eの厚さが板部材1bの厚さの1/2を超え、凸部1eの幅が板部材1bの厚さの1/2を超えると、半導体素子4の熱等によって複合基体1が加熱されたときに、板部材1bにうねりや反り等が発生するとともに、凸部1eの剛性が大きいため板部材1bのうねりや反りによって回路基板2にクラック等が発生し易くなる。即ち、凸部1eの剛性が適度であると、板部材1bのうねりや反りが発生しても、そのうねりや反りを緩和し打ち消すように凸部1eが変形でき、その結果、うねりや反りによる回路基板2への影響を抑制することができるが、凸部1eの厚さが板部材1bの厚さの1/2を超え、凸部1eの幅が板部材1bの厚さの1/2を超えると、板部材1bのうねりや反りによる回路基板2への影響を抑制するという効果が小さくなる。
【0032】
また、凸部1eは板部材1bの側面に略等間隔に複数設けられる必要がある。これにより、板部材1bを基体1aに強固に接合できるとともに、板部材1bが上下方向にずれたりするのを防ぐことができる。また、例えば凸部1eを3ヶ所に設けると、たとえ板部材1bに大きな外力が作用したとしても、その位置ずれはほとんど発生しないことが確認できた。凸部1eを2ヶ所に設ける場合のそれら位置は、板部材1bの対向する2隅部、対向する2側面、または一方を隅部に他方をその隅部に略対向する側面とすることができ、実際にいずれの場合にも良好な結果が得られた。
【0033】
本発明の複合基体1は、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層をメッキ法により順次被着しておくのがよく、複合基体1が酸化腐蝕するのを有効に防止できるとともに複合基体1上に回路基板2を強固に接着固定することができる。
【0034】
また、複合基体1を構成する基体1aの上面には、回路基板2を囲繞するように、側部に入出力端子3bを嵌着するための貫通孔または切欠き部から成る取付部3aが形成された枠体3が銀ロウ等のロウ材で接合されており、枠体3の内側に半導体素子4を収納するための空所が形成される。この枠体3は、基体1aと同様の金属から成り半導体パッケージAの側壁を成すものであり、その製作は基体1aと同様の金属加工法により側部に取付部3aを有する形状になるようにして行なわれる。
【0035】
なお、枠体3の複合基体1の基体1aへの接合は、基体1aの上面の外周部と枠体3の下面とを、基体1aの上面の外周部に敷設した適度なボリュームを有するプリフォームとされた銀ロウ等のロウ材を介して行なわれる。この枠体3の表面には、複合基体1と同様に厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0036】
また、枠体3の取付部3aには、半導体素子4と外部電気回路との高周波信号の入出力を行うとともに半導体パッケージAの内外を遮断するための入出力端子3bが、その側面に設けられているメタライズ層を介して銀ロウ等のロウ材で接合される。この入出力端子3aは、略長方形等の略四角形の平板部の上面に、横倒しにされた四角柱状の立壁部が積層されて成る構造を有している。
【0037】
本発明の回路基板2は、Al質焼結体等からなり、その形状は例えば略四角形である。この回路基板2は、以下のようにして作製される。先ず、Al,酸化珪素(SiO),酸化マグネシウム(MgO),酸化カルシウム(CaO)等の原料粉末に適当な有機バインダー、有機溶剤、可塑剤、分散剤等を添加混合してスラリー状となし、これを従来周知のドクターブレード法によってシート状となすことにより、複数枚のセラミックグリーンシートを得る。
【0038】
次に、このセラミックグリーンシートに適当な打抜き加工を施すとともに、タングステン(W),モリブデン(Mo),マンガン(Mn),銅(Cu),銀(Ag),ニッケル(Ni),パラジウム(Pd),金(Au)等の金属粉末に適当なバインダー、溶剤を混合してなる導体ペーストを、セラミックグリーンシートに予めスクリーン印刷法等により所定パターンに印刷塗布することによって、配線導体2b、メタライズ層2cとなる印刷層をそれぞれ形成する。その後、セラミックグリーンシートを所定の順序で積層した後、所定の寸法に切断し、最後に約1600℃の温度で焼成することによって、回路基板2が作製される。
【0039】
また、回路基板2はセラミックグリーンシート積層法によって内層に配線導体2bを有するものであっても良い。そして、回路基板2は、下面にメタライズ層2cが形成されていることにより、セラミックグリーンシートとメタライズ層2cとの若干の収縮率や収縮挙動の差によって回路基板2に若干の反りが発生する。
【0040】
また、配線導体2b、メタライズ層2cの表面に、良導電性で耐食性およびロウ材との濡れ性が良好な金属、例えばNiメッキ層を0.5〜9μmの厚さで被着させておくのがよく、配線導体2b、メタライズ層2cの酸化腐食を有効に防止するとともに、メタライズ層2cと板部材1bとのロウ付けを容易かつ強固とすることができる。
【0041】
本発明において、図1,図3に示すように、基体1aの貫通孔の内面と板部材1bの側面との隙間1dは0.5乃至2mmである。0.5mm未満では、凸部1eを貫通孔にロウ付けした際に隙間1d全体が薄いロウ材で埋まってしまい、回路基板2で板部材1bの熱膨張がある程度抑え込まれているものの、板部材1bの熱膨張や収縮に際して発生する応力が薄いロウ材に直接作用し、その結果、ロウ材にクラックが発生して半導体パッケージAの気密性が劣化し易くなる。一方、隙間1dが2mmを超えると、基体1aと回路基板2との接合面積が小さくなり、基体1a側のロウ付け部にクラックや割れ等が発生すると容易に気密性が損なわれる傾向がある。
【0042】
このような半導体パッケージAにおいて、載置部2aに半導体素子4を錫(Sn)−鉛(Pb)半田などの低融点ロウ材で載置固定するとともに、配線導体2bと半導体素子4とをボンディングワイヤ等で電気的に接続し、配線導体2bと入出力端子3bとをボンディングワイヤで電気的に接続し、最後に枠体3の上面に蓋体6をシーム溶接法により接合することで、製品としての半導体装置となる。この半導体装置は、例えば外部電気回路から供給される高周波信号等の駆動信号によって半導体素子4を作動させ、大容量の情報を高速に伝送する通信装置などに用いられる。
【0043】
【実施例】
本発明の半導体パッケージおよび半導体装置の実施例を以下に説明する。
【0044】
まず、図1,図2に示す複合基体1を以下のように構成した。外形寸法が縦20mm×横20mm×厚さ1mmであり、中央部に貫通孔を有し枠部の幅が4mmである、Fe−Ni−Co合金から成る枠状の基体1aを準備した。そして、基体1aの貫通孔に取着させる板部材1bとして、貫通孔に対応した形状の銅から成るものを用意した。この板部材1bの対向する2隅部にそれぞれ厚さが0.4mmで幅が0.4mmの凸部1eをエッチング法によって形成した。このとき、隙間1dが9種の値(表1)となるようにして各5個作製した。
【0045】
また、予め内層および上面に配線導体2bおよび下面にメタライズ層2cを設けた、縦16mm×横16mm×厚さ0.635mmの回路基板2を45個(隙間9種×5個=45個)作製し、その下面を板部材1bの上側主面および基体1aの上面にロウ付けして複合基体1上に設けた。このとき、基体1aの上面における回路基板2下面のロウ付け部幅を2mmとしてロウ付け部のクラックおよび気密性について調査した。その結果を表1に示す。
【0046】
【表1】

Figure 2004119655
【0047】
表1より、隙間1dが0.5〜2mmの場合に板部材1bと基体1aとのロウ付け部にクラックの発生は見られず、また基体1aと回路基板2とのロウ付け部における気密性が良好であり、本発明の有効性が確認できた。
【0048】
次に、隙間1dを1mmとして、凸部1eの厚さおよび幅を種々の値(表2)とし、1種につき5個すつ作製した。これらについて、凸部1eの変形と板部材1bの反りやうねり等の変形について調査した。その結果を表2に示す。
【0049】
【表2】
Figure 2004119655
【0050】
表2より、凸部1eの厚さが板部材1bの厚さ(1mm)の1/4(0.25mm)乃至1/2(0.5mm)であり、凸部1eの幅が板部材1bの厚さ1/4(0.25mm)乃至1/2(0.5mm)である場合に、凸部1eの変形が発生せず、本発明の有効性が確認できた。またこの試験結果は、複合基体1の厚さ、すなわち板部材1bの厚さを通常用いられる範囲内で適宜変化させた場合にも同様であった。
【0051】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何等差し支えない。例えば、上記実施の形態では半導体素子をFET等として説明したが、これを半導体レーザやフォトダイオード等の光半導体素子としても良く、そのときは枠体3の側部に光ファイバを取着するための貫通孔から成る取付部が形成される。
【0052】
【発明の効果】
本発明の半導体素子収納用パッケージは、中央部に貫通孔が形成された鉄を主成分とする鉄合金から成る枠状の基体と、基体の貫通孔に取着された銅または銅を主成分とする銅合金から成る板部材と、上面に半導体素子が搭載される載置部を有する、下面が板部材の上側主面の全面および上側主面の周囲の基体の上面に接合された回路基板と、基体の上面の外周部に回路基板を囲繞するように取着された枠体と、枠体の側部に形成された貫通孔または切欠きからなる入出力端子の取付部と、取付部に嵌着された入出力端子とを具備し、板部材は、基体の貫通孔に0.5乃至2mmの隙間をもって挿入されるとともに側面の下側に略等間隔で形成された複数の凸部が貫通孔の内面にロウ付けされることによって貫通孔に取着されていることにより、半導体素子収納用パッケージの気密性が保持されるとともに基体は半導体素子の熱を良好に放熱できるものとなる。即ち、板部材の上側主面の面積が小さくなるため、板部材の熱膨張や収縮による回路基板への影響が小さくなり、回路基板にクラックが発生するのを抑制することができる。また、板部材を貫通孔に取着するためのロウ材を必要としないことから、従来の半導体素子収納用パッケージに発生していたロウ材のクラックを解消することができ、その結果、半導体素子収納用パッケージの気密性が保持されるとともに半導体素子の熱を良好に放熱できることとなる。
【0053】
本発明の半導体素子収納用パッケージにおいて、好ましくは、板部材の凸部は厚さが板部材の厚さの1/4乃至1/2とされているとともに幅が板部材の厚さの1/4乃至1/2とされていることにより、凸部の剛性を保持して板部材を確実に貫通孔にロウ付けできるとともに板部材の上下主面と基体の上下面とを略面一に保持することができる。その結果、安定した基体の放熱性が得られ、これにより半導体素子を基体の上面に信頼性よく長期に亘って載置することができる。また、板部材による半導体素子の接地性が安定化し、高周波信号の伝送損失が改善された半導体素子収納用パッケージとなすことができる。
【0054】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、載置部に載置固定されるとともに入出力端子に電気的に接続された半導体素子と、枠体の上面に接合された蓋体とを具備したことにより、上記本発明の作用効果を有する、半導体素子を長期に亘り正常かつ安定して作動させることができる信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージについて実施の形態の一例を示し、(a)は半導体素子収納用パッケージの平面図、(b)は(a)のX−X’線における断面図である。
【図2】図1の半導体素子収納用パッケージにおける板部材の凸部を示す要部拡大断面図である。
【図3】従来の半導体素子収納用パッケージの一例を示す断面図である。
【図4】従来の半導体素子収納用パッケージの他の例を示す断面図である。
【符号の説明】
1:複合基体
1a:基体
1b:板部材
1c:貫通孔の内面
1d:隙間
1e:凸部
2:回路基板
2a:載置部
3:枠体
3a:入出力端子の取付部
3b:入出力端子
4:半導体素子
A:半導体素子収納用パッケージ
B:半導体装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device housing package for housing a semiconductor device such as an LSI or a field effect transistor (FET), and a semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of communication devices such as mobile phones used for wireless communication, demand for semiconductor devices such as ICs, LSIs, and FETs that operate with high output in a high-frequency band has been greatly increased. In particular, in information equipment and the like used for base stations of mobile phones, a semiconductor element that operates with high efficiency so that high power can be obtained with limited power and long-term signal conversion can be performed, and a semiconductor element housing that houses the semiconductor element Packages (hereinafter, also referred to as semiconductor packages) have become important. That is, there is a demand for a semiconductor element which has a small internal power loss and efficiently converts input DC power into high-frequency power, and a semiconductor package which accommodates the semiconductor element and can maximize its performance.
[0003]
For this reason, the development of MESFETs (Metal Semiconductor Field Effect Transistors) using gallium arsenide (GaAs) compound semiconductors has been advanced, but the characteristics and conversion efficiency at low voltages are poor, and large currents cannot be passed. There was a problem in that. However, in recent years, semiconductor devices such as HBTs (Heterojunction Bipolar Transistors) using GaAs compound semiconductors have excellent low-voltage characteristics as compared with MESFETs, and can convert large DC power to high-frequency power efficiently. It is getting attention. Further, since such a semiconductor element generates a large amount of heat during operation, a semiconductor package having good heat dissipation is strongly desired.
[0004]
In recent years, semiconductor packages on which semiconductor elements such as HBTs are mounted have been developed for industrial and consumer use in recent years, and are widely used in, for example, communication equipment. FIG. 3 shows an example of a semiconductor device using such a semiconductor package. As shown in the figure, alumina (aluminum oxide: Al 2 O 3 A circuit board 2 made of a sintered material (alumina ceramics) or the like and having a wiring conductor 2a formed on the upper surface or inside is formed on a substrate 11 made of an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or the like. The semiconductor element 4 is attached to the mounting portion 2a on the upper surface of the circuit board 2. The semiconductor element 4 is electrically connected to a wiring conductor 2b formed on the upper surface of the circuit board 2 via a bonding wire, and is further bonded to an input / output terminal 3b fitted to the mounting portion 3a of the frame 3. They are electrically connected via wires. Then, the semiconductor device B is obtained by joining the lid 6 to the upper surface of the frame 3 (for example, see Patent Document 1 below).
[0005]
In the circuit board 2 made of alumina ceramics, a wiring conductor 2b made of tungsten (W) or the like can be formed inside the circuit board 2, and an electric circuit is mounted on the circuit board 2 by mounting other active elements and passive elements. Can be formed. Therefore, both miniaturization and high density can be satisfied. In addition, by using the circuit board 2, when a defective product is found in a performance test in a state where the semiconductor element 4 is housed in the semiconductor package, the semiconductor element 4 may be replaced with the entire circuit board 2, greatly contributing to productivity. can do.
[0006]
[Patent Document 1]
JP-A-2000-124559 (page 3-5, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, in the above-mentioned conventional semiconductor package, a crack is generated in the circuit board 2 due to a difference in thermal expansion coefficient between the base 11 made of an Fe—Ni—Co alloy or the like and the circuit board 2. Was. This crack occurs because the base 1 made of, for example, an Fe—Ni—Co alloy has an inflection point of the thermal expansion coefficient at which the thermal expansion coefficient changes largely at around 420 ° C.
[0008]
That is, the thermal expansion coefficient of the Fe—Ni—Co alloy is about 5.4 × 10 in a temperature range of 420 ° C. or less. -6 About 11 × 10 in the temperature range exceeding 420 ° C./° C. -6 / ° C., and the thermal expansion coefficient of the circuit board 2 made of, for example, alumina ceramics is about 7 × 10 -6 / ° C., the circuit board 2 is exposed to a temperature of about 800 ° C. when brazing the circuit board 2 to the upper surface of the base 1 and is gradually cooled to around 420 ° C. Tensile stress will be applied. As a result, cracks may be generated starting from a portion of the circuit board 2 that is weak against stress, such as a corner, and the wiring conductor 2b may be broken to cause a failure as an electric circuit.
[0009]
The thermal conductivity of the Fe—Ni—Co alloy forming the base 11 is about 17 W / m · K, which is about several tenths of that of Cu or Cu alloy. When the amount was increased, the heat radiation was likely to deteriorate.
[0010]
Therefore, as shown in FIG. 4, an attempt has been made to efficiently dissipate heat to the outside by replacing the portion of the base 11 on which the semiconductor element 4 is mounted with a Cu plate 101b. In this case, since the Cu plate 101b is attached to and joined to the through hole of the base 101a through a brazing material, the composite base 101 has a partially good contact conductivity, and the thermal expansion of the Cu plate 101b is reduced by the surroundings. This is suppressed by the base 101a made of the Fe—Ni—Co alloy. As a result, no problem occurred when the semiconductor element 4 was mounted on the upper main surface of the Cu plate 101b and operated.
[0011]
However, in the composite substrate 101, the Cu plate 101b is slightly reduced in size with respect to the through hole, so that the Cu plate 101b is attached to the through hole of the substrate 101a via the brazing material. Does not exert an excessive stress on the substrate 101a due to thermal expansion of the substrate 101. However, a large tensile stress is applied to the circuit board 2 in the process of cooling after the Cu plate 101b is heated to about 800 ° C. during brazing, Cracks may occur in the circuit board 2 or cracks may occur in the low-temperature range (room temperature to about several tens of degrees Celsius) in the brazing material solidified in the high-temperature range (about 750 to 900 ° C.). It was a major obstacle for me.
[0012]
Therefore, an attempt was made to make the circuit board 2 thicker to withstand stress. However, in this case, the thermal resistance of the semiconductor element 4 to the heat in the circuit board 2 becomes large, and the temperature of the semiconductor element 4 rises, and the operability of the semiconductor element 4 deteriorates. Further, in order to prevent the occurrence of cracks in the circuit board 2, an attempt has been made to use a high strength silicon carbide (SiC) ceramic or the like. However, in this case, although cracks do not occur in the circuit board 2, for example, in the case of SiC ceramics, the coefficient of thermal expansion is alumina (Al). 2 O 3 ) (8 × 10 -6 / ° C.), and when the Cu board 101b expands due to heat generated when the semiconductor element 4 operates, the circuit board 2 cannot follow the expansion because the Cu board 101b expands. Cracks were generated in the brazing material, and as a result, there was a problem that the circuit board 2 came off the base 101a.
[0013]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to prevent a crack from occurring in a circuit board and to operate a semiconductor element normally and stably for a long period of time. It is to provide a semiconductor package which can be used.
[0014]
[Means for Solving the Problems]
The semiconductor device housing package of the present invention includes a frame-shaped base made of an iron alloy containing iron as a main component having a through hole formed in a central portion, and copper or copper attached to the through hole of the base. A plate member made of a copper alloy as a main component, and a mounting portion on which a semiconductor element is mounted on the upper surface, the lower surface is provided on the entire upper main surface of the plate member and on the upper surface of the base around the upper main surface. An input / output comprising a bonded circuit board, a frame attached to an outer peripheral portion of an upper surface of the base so as to surround the circuit board, and a through hole or notch formed in a side portion of the frame; A terminal attachment portion, and an input / output terminal fitted to the attachment portion, wherein the plate member is inserted into the through hole of the base with a gap of 0.5 to 2 mm, and a side surface of the plate member is provided. A plurality of convex portions formed at substantially equal intervals on the lower side are formed on the inner surface of the through hole. Characterized in that it is attached to the through hole by being attached.
[0015]
In the package for accommodating a semiconductor element of the present invention, the plate member is inserted into the through hole of the base with a gap of 0.5 to 2 mm, and a plurality of convex portions formed at substantially equal intervals below the side surface are formed in the through hole. By being attached to the through hole by being brazed to the inner surface, the airtightness of the semiconductor element storage package is maintained, and the base can satisfactorily radiate heat of the semiconductor element. That is, since the area of the upper main surface of the plate member is reduced, the influence of the thermal expansion and contraction of the plate member on the circuit board is reduced, and the occurrence of cracks in the circuit board can be suppressed. Further, it is possible to prevent cracks from being generated in the brazing material for attaching the plate member to the through-hole, and as a result, the airtightness of the semiconductor element housing package is maintained and the heat of the semiconductor element is satisfactorily reduced. Heat can be dissipated.
[0016]
In the package for accommodating a semiconductor element of the present invention, preferably, the projection of the plate member has a thickness of 1/4 to 1/2 of a thickness of the plate member and a width of the plate member. The thickness is set to 1 / to の of the thickness.
[0017]
In the package for housing a semiconductor element according to the present invention, the projection of the plate member has a thickness of 1 / to の of the thickness of the plate member and a width of 4 to 1 of the thickness of the plate member. / 2, the rigidity of the convex portion is maintained, the plate member can be securely brazed to the through hole, and the upper and lower main surfaces of the plate member and the upper and lower surfaces of the base are held substantially flush. it can. As a result, stable heat dissipation of the base is obtained, and the semiconductor element can be mounted on the upper surface of the base with high reliability over a long period of time. Further, the grounding property of the semiconductor element by the plate member is stabilized, and a semiconductor element housing package in which transmission loss of a high-frequency signal is improved can be provided.
[0018]
The semiconductor device of the present invention includes the semiconductor element housing package of the present invention, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and an upper surface of the frame body. And a joined lid.
[0019]
According to the semiconductor device of the present invention having the above-described configuration, the semiconductor device having the above-described advantageous effects of the present invention can be normally and stably operated for a long time with high reliability.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The package for housing a semiconductor element and the semiconductor device according to the present invention will be described in detail below. 1A and 1B show an example of an embodiment of a semiconductor package of the present invention. FIG. 1A is a plan view of the semiconductor package, and FIG. 1B is a cross-sectional view taken along line XX ′ of FIG. FIG. 2 is an enlarged sectional view of a convex portion of a plate member in the semiconductor package of the present invention.
[0021]
In these figures, A is a semiconductor package, 1 is a composite substrate, 1a is a substrate, 1b is a plate member, 1c is an inner surface of a through hole of the substrate 1a, 1d is a gap, 1e is a convex portion, 2 is a circuit board, and 2a is a circuit board. The mounting portion of the semiconductor element, 2b is a wiring conductor, and 2c is a metallized layer. Reference numeral 3 denotes a frame, 3a denotes a mounting portion of the input / output terminal 3b, 3b denotes an input / output terminal, 4 denotes a semiconductor element such as an FET, and 6 denotes a lid. The composite base 1, the circuit board 2, the frame 3, and the lid 6 basically constitute a container for hermetically housing the semiconductor element 4.
[0022]
In FIGS. 1 and 2, the same parts as those in FIGS. 3 and 4 showing the conventional example are denoted by the same reference numerals.
[0023]
The semiconductor package A of the present invention includes a frame-shaped base 1a made of an iron alloy containing iron as a main component and having a through-hole formed in the center, and copper or copper attached to the through-hole of the base 1a as a main component. A plate member 1b made of a copper alloy and a mounting portion 2a on the upper surface of which the semiconductor element 4 is mounted. The lower surface is formed on the entire upper main surface of the plate member 1b and on the upper surface of the base 1a around the upper main surface. It comprises a bonded circuit board 2, a frame 3 attached to the outer periphery of the upper surface of the base 1a so as to surround the circuit board 2, and a through hole or notch formed in a side portion of the frame 3. The plate member 1b includes a mounting portion 3a for the input / output terminal 3b and an input / output terminal 3b fitted to the mounting portion 3a. The plate member 1b is inserted into the through hole of the base 1a with a gap 1d of 0.5 to 2 mm. A plurality of protrusions 1e formed at substantially equal intervals below the side surface are formed in the through hole. It is attached to the through hole by being brazed to a surface 1c.
[0024]
In the plate member 1b of the present invention, for example, convex portions 1e are formed at two opposing corners of the side surface, and the tip surface of the convex portion 1e and the inner surface 1c of the base 1a are made of, for example, an Ag-Cu alloy brazing (BAg-8). : JIS Z 3261) to form the composite substrate 1 integrally.
[0025]
A metallized layer 2c is formed on substantially the entire lower surface of the circuit board 2, and the metallized layer 2c is brazed to the upper main surface of the plate member 1b via a brazing material such as the Ag-Cu alloy brazing. At the same time, it is brazed to the upper surface of the base 1a around the through hole so as to close the gap 1d. Thus, the inside of the semiconductor device B can be hermetically sealed by the frame 3 and the lid 6 joined to the upper surface thereof.
[0026]
The composite substrate 1 of the present invention is a support member on which the circuit board 2 having the mounting portion 2a on which the semiconductor element 4 is mounted is mounted on the upper surface, and is a support member for supporting the circuit board 2 and the semiconductor element 4. Is efficiently dissipated to the outside via the circuit board 2. The base 1a constituting the composite base 1 has an outer shape of a substantially square or a substantially rectangle and a substantially quadrangular shape, and is composed mainly of iron such as Fe-Ni-Co alloy, Fe-Ni alloy, and SUS (stainless steel). The ingot is formed into a predetermined shape by subjecting an ingot (a lump) of, for example, an Fe-Ni-Co alloy to a conventionally known metal working method such as rolling or punching.
[0027]
In addition, the plate member 1b provided with a gap 1d between the inside of the through hole of the base 1a and the inner surface of the through hole is made of copper (Cu), Cu-zinc (Zn) alloy, Cu-tungsten (W) alloy, or the like. Made of a copper alloy containing copper as a main component. The outer shape of the plate member 1b is roughly formed by, for example, rolling or punching a copper plate, and then a convex portion 1e having a predetermined thickness and width is formed on a side surface of the copper plate by an etching method. Is done. The projection 1e is formed by etching the copper plate from the upper main surface side. The size of the plate member 1 b varies depending on the area of the semiconductor element 4, but the size of the gap 1 d does not vary depending on the area of the semiconductor element 4.
[0028]
A plurality of protrusions 1e are provided at substantially equal intervals on the side surface of the plate member 1b, and the plate member 1b is joined to the base 1a by brazing the front end surface to the inner surface 1c of the base 1a. By joining the plate member 1b to the through hole of the base 1a with the projection 1e, the plate member 1b can be securely brazed to the through hole and the upper and lower main surfaces of the plate member 1b and the upper and lower surfaces of the base 1a are substantially flush. Can be held. As a result, stable heat dissipation of the base 1a is obtained, and the semiconductor element 4 can be mounted on the upper surface of the base 1a with high reliability over a long period of time.
[0029]
Further, the thickness of the projection 1e is set to 1 / to の of the thickness of the plate member 1b, and the width of the projection 1e is set to 1 / to の of the thickness of the plate member 1b. The rigidity of the convex portion 1e is not too small or too large. As a result, there is no occurrence of undulation in the plate member 1b or a problem that the convex portion 1e is deformed by stress.
[0030]
When the thickness of the projection 1e is less than 1/4 of the thickness of the plate member 1b, or when the width of the projection 1e is less than 1/4 of the thickness of the plate member 1b, the rigidity of the projection 1e is reduced. When the plate member 1b becomes smaller and a stress or an external force is applied to the plate member 1b, deformation such as bending or bending near the base of the convex portion 1e easily occurs. Further, even if the thickness of the projection 1e is 1 / to の of the thickness of the plate member 1b, if the width of the projection 1e is less than 1 / of the thickness of the plate member 1b, the projection is When the rigidity of 1e decreases and a stress or an external force is applied to the plate member 1b, deformation such as bending or bending near the base of the convex portion 1e is likely to occur.
[0031]
If the thickness of the projection 1e exceeds 1 / of the thickness of the plate member 1b and the width of the projection 1e exceeds 1 / of the thickness of the plate member 1b, the composite due to heat of the semiconductor element 4 or the like. When the base 1 is heated, undulation and warpage are generated in the plate member 1b, and cracks and the like are easily generated in the circuit board 2 due to undulation and warpage of the plate member 1b because the rigidity of the projection 1e is large. That is, if the stiffness of the convex portion 1e is appropriate, even if undulation or warpage of the plate member 1b occurs, the convex portion 1e can be deformed so as to reduce and cancel the undulation or warpage. Although the influence on the circuit board 2 can be suppressed, the thickness of the convex portion 1e exceeds 1/2 of the thickness of the plate member 1b, and the width of the convex portion 1e is 1/2 of the thickness of the plate member 1b. Is exceeded, the effect of suppressing the influence on the circuit board 2 due to the undulation or warpage of the plate member 1b is reduced.
[0032]
Further, it is necessary to provide a plurality of convex portions 1e on the side surface of the plate member 1b at substantially equal intervals. Thus, the plate member 1b can be firmly joined to the base 1a, and the plate member 1b can be prevented from shifting in the vertical direction. In addition, it was confirmed that, for example, when the protrusions 1e were provided at three places, even if a large external force was applied to the plate member 1b, the positional displacement hardly occurred. When the protrusions 1e are provided at two places, the positions may be two opposing corners, two opposing sides, or one side of the plate member 1b and one side substantially opposing the corner of the plate member 1b. In all cases, good results were obtained.
[0033]
The composite substrate 1 of the present invention has, on its surface, a metal having excellent corrosion resistance and excellent wettability with a brazing material, specifically a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm. The layers are preferably sequentially applied by plating, so that the composite substrate 1 can be effectively prevented from being oxidized and corroded, and the circuit board 2 can be firmly adhered and fixed on the composite substrate 1.
[0034]
On the upper surface of the base 1a constituting the composite base 1, there is formed a mounting portion 3a formed of a through hole or a cutout for fitting the input / output terminal 3b to a side portion so as to surround the circuit board 2. The frame 3 thus formed is joined with a brazing material such as silver brazing, and a space for accommodating the semiconductor element 4 is formed inside the frame 3. The frame 3 is made of the same metal as the substrate 1a and forms the side wall of the semiconductor package A. The frame 3 is manufactured by the same metal working method as the substrate 1a so as to have the mounting portion 3a on the side. It is done.
[0035]
The joining of the frame body 3 to the base body 1a of the composite base 1 is performed by a preform having an appropriate volume in which the outer peripheral portion of the upper surface of the base body 1a and the lower surface of the frame body 3 are laid on the outer peripheral portion of the upper surface of the base body 1a. This is performed through a brazing material such as silver brazing. A metal layer such as a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm is applied to the surface of the frame 3 by plating in the same manner as the composite substrate 1. good.
[0036]
An input / output terminal 3b for inputting / outputting a high-frequency signal between the semiconductor element 4 and an external electric circuit and for shutting off the inside and outside of the semiconductor package A is provided on a side surface of the attachment portion 3a of the frame 3. With a brazing material such as silver brazing via the metallized layer. The input / output terminal 3a has a structure in which a standing quadrangular prism-shaped wall portion is stacked on the upper surface of a substantially rectangular flat plate portion such as a substantially rectangular shape.
[0037]
The circuit board 2 of the present invention is made of Al 2 O 3 It is made of a porous sintered body or the like, and its shape is, for example, a substantially square shape. This circuit board 2 is manufactured as follows. First, Al 2 O 3 , Silicon oxide (SiO 2 ), Magnesium oxide (MgO), calcium oxide (CaO), and other suitable raw materials, and an appropriate organic binder, an organic solvent, a plasticizer, a dispersant, and the like are added and mixed to form a slurry. Thus, a plurality of ceramic green sheets are obtained.
[0038]
Next, the ceramic green sheet is subjected to an appropriate punching process, and tungsten (W), molybdenum (Mo), manganese (Mn), copper (Cu), silver (Ag), nickel (Ni), and palladium (Pd). And a metal paste such as gold (Au) mixed with an appropriate binder and a solvent. The conductor paste is printed and applied in a predetermined pattern on a ceramic green sheet by a screen printing method or the like in advance so that the wiring conductor 2b and the metallized layer 2c are formed. Are formed respectively. After that, the ceramic green sheets are laminated in a predetermined order, cut into a predetermined size, and finally fired at a temperature of about 1600 ° C., whereby the circuit board 2 is manufactured.
[0039]
Further, the circuit board 2 may have the wiring conductor 2b in the inner layer by a ceramic green sheet laminating method. Since the metallized layer 2c is formed on the lower surface of the circuit board 2, the circuit board 2 slightly warps due to a slight difference in shrinkage ratio and shrinkage behavior between the ceramic green sheet and the metallized layer 2c.
[0040]
Also, a metal having good conductivity, good corrosion resistance and good wettability with the brazing material, for example, a Ni plating layer having a thickness of 0.5 to 9 μm is applied to the surfaces of the wiring conductor 2b and the metallized layer 2c. It is possible to effectively prevent oxidative corrosion of the wiring conductor 2b and the metallized layer 2c, and to easily and firmly braze the metallized layer 2c and the plate member 1b.
[0041]
In the present invention, as shown in FIGS. 1 and 3, the gap 1d between the inner surface of the through hole of the base 1a and the side surface of the plate member 1b is 0.5 to 2 mm. If it is less than 0.5 mm, when the projection 1e is brazed to the through hole, the entire gap 1d is filled with a thin brazing material, and the thermal expansion of the plate member 1b is suppressed to some extent by the circuit board 2. The stress generated at the time of thermal expansion and contraction of the member 1b directly acts on the thin brazing material, and as a result, cracks are generated in the brazing material, and the airtightness of the semiconductor package A is easily deteriorated. On the other hand, if the gap 1d exceeds 2 mm, the bonding area between the base 1a and the circuit board 2 becomes small, and if cracks or cracks occur in the brazing portion on the base 1a side, the airtightness tends to be easily lost.
[0042]
In such a semiconductor package A, the semiconductor element 4 is mounted and fixed on the mounting portion 2a with a low melting point brazing material such as tin (Sn) -lead (Pb) solder, and the wiring conductor 2b and the semiconductor element 4 are bonded. The product is formed by electrically connecting with a wire or the like, electrically connecting the wiring conductor 2b and the input / output terminal 3b with a bonding wire, and finally joining the lid 6 to the upper surface of the frame 3 by seam welding. As a semiconductor device. This semiconductor device is used, for example, as a communication device that operates the semiconductor element 4 by a driving signal such as a high-frequency signal supplied from an external electric circuit and transmits large-capacity information at high speed.
[0043]
【Example】
Embodiments of a semiconductor package and a semiconductor device according to the present invention will be described below.
[0044]
First, the composite substrate 1 shown in FIGS. 1 and 2 was configured as follows. A frame-shaped base 1a made of an Fe-Ni-Co alloy having an outer dimension of 20 mm in length x 20 mm in width x 1 mm in thickness, having a through hole in the center and a width of 4 mm in the frame was prepared. And, as the plate member 1b attached to the through hole of the base 1a, a plate member made of copper having a shape corresponding to the through hole was prepared. Protrusions 1e each having a thickness of 0.4 mm and a width of 0.4 mm were formed at two opposing corners of the plate member 1b by an etching method. At this time, five pieces each were produced such that the gap 1d had nine values (Table 1).
[0045]
In addition, 45 circuit boards 2 each having a length of 16 mm, a width of 16 mm, and a thickness of 0.635 mm, in which wiring conductors 2b are provided on the inner layer and the upper surface and a metallization layer 2c is provided on the lower surface in advance (9 gaps × 5 = 45) are produced. Then, the lower surface was brazed to the upper main surface of the plate member 1b and the upper surface of the base 1a, and provided on the composite base 1. At this time, the width of the brazed portion on the lower surface of the circuit board 2 on the upper surface of the base 1a was set to 2 mm, and cracks and airtightness of the brazed portion were examined. Table 1 shows the results.
[0046]
[Table 1]
Figure 2004119655
[0047]
According to Table 1, when the gap 1d is 0.5 to 2 mm, no crack is observed in the brazed portion between the plate member 1b and the base 1a, and the airtightness in the brazed portion between the base 1a and the circuit board 2 is obtained. Was good, and the effectiveness of the present invention was confirmed.
[0048]
Next, the gap 1d was set to 1 mm, and the thickness and width of the protrusion 1e were set to various values (Table 2), and five pieces were produced for each type. Regarding these, the deformation of the convex portion 1e and the deformation of the plate member 1b such as warpage and undulation were examined. Table 2 shows the results.
[0049]
[Table 2]
Figure 2004119655
[0050]
From Table 2, the thickness of the projection 1e is 1/4 (0.25 mm) to 1/2 (0.5 mm) of the thickness (1 mm) of the plate member 1b, and the width of the projection 1e is When the thickness was 1/4 (0.25 mm) to 1/2 (0.5 mm), the deformation of the projection 1e did not occur, confirming the effectiveness of the present invention. The test results were the same when the thickness of the composite substrate 1, that is, the thickness of the plate member 1b was appropriately changed within a range normally used.
[0051]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the semiconductor element is described as an FET or the like, but this may be an optical semiconductor element such as a semiconductor laser or a photodiode, in which case an optical fiber is attached to the side of the frame 3. Is formed.
[0052]
【The invention's effect】
The package for housing a semiconductor element of the present invention comprises a frame-shaped base made of an iron alloy containing iron as a main component having a through-hole formed in the center portion, and copper or copper attached to the through-hole of the base as a main component. A circuit board having a plate member made of a copper alloy and a mounting portion on which a semiconductor element is mounted on the upper surface, the lower surface being joined to the entire upper main surface of the plate member and to the upper surface of a base body surrounding the upper main surface A frame attached to the outer peripheral portion of the upper surface of the base so as to surround the circuit board; a mounting portion for an input / output terminal comprising a through hole or a cutout formed in a side portion of the frame; The plate member is inserted into the through-hole of the base with a gap of 0.5 to 2 mm, and a plurality of convex portions formed at substantially equal intervals on the lower side of the side surface. Is attached to the through hole by brazing to the inner surface of the through hole. The substrate with airtightness of the semiconductor device housing package is held is assumed to be well radiate heat of the semiconductor element. That is, since the area of the upper main surface of the plate member is reduced, the influence of the thermal expansion and contraction of the plate member on the circuit board is reduced, and the occurrence of cracks in the circuit board can be suppressed. Further, since no brazing material is required for attaching the plate member to the through-hole, cracks in the brazing material, which have occurred in the conventional package for housing semiconductor elements, can be eliminated. The airtightness of the storage package is maintained, and the heat of the semiconductor element can be radiated well.
[0053]
In the semiconductor element housing package of the present invention, preferably, the convex portion of the plate member has a thickness of 1/4 to 1/2 of the thickness of the plate member and a width of 1/4 to 1/2 of the thickness of the plate member. Since the thickness is set to 4 to 1/2, the rigidity of the convex portion is maintained, the plate member can be securely brazed to the through hole, and the upper and lower main surfaces of the plate member and the upper and lower surfaces of the base are maintained substantially flush. can do. As a result, stable heat dissipation of the base is obtained, and the semiconductor element can be mounted on the upper surface of the base with high reliability over a long period of time. Further, the grounding property of the semiconductor element by the plate member is stabilized, and a semiconductor element housing package in which transmission loss of a high-frequency signal is improved can be provided.
[0054]
The semiconductor device of the present invention is joined to the semiconductor device housing package of the present invention, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminals, and an upper surface of the frame. By providing the lid, the semiconductor device having the above-described effects of the present invention can be operated normally and stably for a long time with high reliability.
[Brief description of the drawings]
1A and 1B show an example of an embodiment of a package for housing a semiconductor element of the present invention, wherein FIG. 1A is a plan view of the package for housing a semiconductor element, and FIG. 1B is a cross-sectional view taken along line XX ′ of FIG. It is.
FIG. 2 is an enlarged sectional view of a main part showing a projection of a plate member in the package for housing a semiconductor element of FIG. 1;
FIG. 3 is a cross-sectional view showing an example of a conventional semiconductor element storage package.
FIG. 4 is a cross-sectional view showing another example of a conventional semiconductor element storage package.
[Explanation of symbols]
1: Composite substrate
1a: Substrate
1b: plate member
1c: Inner surface of through hole
1d: gap
1e: convex part
2: Circuit board
2a: mounting part
3: Frame
3a: Input / output terminal mounting part
3b: input / output terminal
4: Semiconductor element
A: Package for semiconductor device storage
B: Semiconductor device

Claims (3)

中央部に貫通孔が形成された鉄を主成分とする鉄合金から成る枠状の基体と、前記基体の前記貫通孔に取着された銅または銅を主成分とする銅合金から成る板部材と、上面に半導体素子が搭載される載置部を有する、下面が前記板部材の上側主面の全面および前記上側主面の周囲の前記基体の上面に接合された回路基板と、前記基体の上面の外周部に前記回路基板を囲繞するように取着された枠体と、該枠体の側部に形成された貫通孔または切欠きからなる入出力端子の取付部と、該取付部に嵌着された入出力端子とを具備しており、前記板部材は、前記基体の前記貫通孔に0.5乃至2mmの隙間をもって挿入されるとともに側面の下側に略等間隔で形成された複数の凸部が前記貫通孔の内面にロウ付けされることによって前記貫通孔に取着されていることを特徴とする半導体素子収納用パッケージ。A frame-shaped base made of an iron alloy containing iron as a main component having a through hole formed in a central portion, and a plate member made of copper or a copper alloy containing copper as a main component attached to the through hole of the base. A circuit board having a mounting portion on which a semiconductor element is mounted on an upper surface, a lower surface joined to the entire upper main surface of the plate member and the upper surface of the base around the upper main surface; and A frame attached to the outer peripheral portion of the upper surface so as to surround the circuit board, a mounting portion for an input / output terminal formed of a through hole or a cutout formed in a side portion of the frame, and The input / output terminal is fitted, and the plate member is inserted into the through hole of the base with a gap of 0.5 to 2 mm, and is formed at substantially equal intervals below the side surface. A plurality of projections are brazed to the inner surface of the through-hole, thereby securing the through-hole. Package for housing semiconductor chip, characterized in that it is. 前記板部材の前記凸部は、厚さが前記板部材の厚さの1/4乃至1/2とされているとともに幅が前記板部材の厚さの1/4乃至1/2とされていることを特徴とする請求項1記載の半導体素子収納用パッケージ。The projection of the plate member has a thickness of 1 / to 1 / of the thickness of the plate member and a width of 1 / to の of the thickness of the plate member. 2. The package for accommodating a semiconductor element according to claim 1, wherein: 請求項1または請求項2記載の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする半導体装置。3. The package for storing a semiconductor element according to claim 1 or 2, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminal, and joined to an upper surface of the frame. A semiconductor device comprising: a lid;
JP2002280349A 2002-09-26 2002-09-26 Package for receiving semiconductor element and semiconductor device Pending JP2004119655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280349A JP2004119655A (en) 2002-09-26 2002-09-26 Package for receiving semiconductor element and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280349A JP2004119655A (en) 2002-09-26 2002-09-26 Package for receiving semiconductor element and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004119655A true JP2004119655A (en) 2004-04-15

Family

ID=32275075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280349A Pending JP2004119655A (en) 2002-09-26 2002-09-26 Package for receiving semiconductor element and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004119655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092251A1 (en) * 2016-11-17 2018-05-24 三菱電機株式会社 Semiconductor package
JP2020004801A (en) * 2018-06-26 2020-01-09 京セラ株式会社 Heat sink, semiconductor package, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092251A1 (en) * 2016-11-17 2018-05-24 三菱電機株式会社 Semiconductor package
JPWO2018092251A1 (en) * 2016-11-17 2019-03-14 三菱電機株式会社 Semiconductor package
JP2020004801A (en) * 2018-06-26 2020-01-09 京セラ株式会社 Heat sink, semiconductor package, and semiconductor device

Similar Documents

Publication Publication Date Title
EP1414064A1 (en) Semiconductor device and package for housing semiconductor chip made of a metal-diamond composite
JP2006303400A (en) Package for containing electronic component, electronic device and its packaging structure
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JP4822820B2 (en) Semiconductor element storage package and semiconductor device
JP5858637B2 (en) Semiconductor package
JP4926033B2 (en) Circuit board, package using the same, and electronic device
JP3816821B2 (en) High frequency power module substrate and manufacturing method thereof
KR102588854B1 (en) Power module and manufacturing method thereof
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP2006210672A (en) Connecting terminal, package for housing electronic part using it and electronic device
JP2005150133A (en) Container for housing semiconductor element
JP3387221B2 (en) High thermal conductive ceramic package for semiconductor
JP2004119655A (en) Package for receiving semiconductor element and semiconductor device
JP2007012718A (en) Electronic component housing package and electronic device
JP3695706B2 (en) Semiconductor package
JP2009277794A (en) Package for semiconductor element storage
JP4377769B2 (en) Electronic component storage package and electronic device
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JP3623179B2 (en) Semiconductor element storage package and semiconductor device
JP4295641B2 (en) Manufacturing method of electronic component storage package
JP2002314186A (en) Package for storing optical semiconductor element and optical semiconductor device
JP2011035340A (en) High heat dissipation-type package for housing electronic component
JP2002057235A (en) Package for housing semiconductor element
JP2004288948A (en) Semiconductor element-housing package and semiconductor device
JP2014086581A (en) Package for housing semiconductor element