JP2004119545A - Wiring board with solder bump and its manufacturing method - Google Patents

Wiring board with solder bump and its manufacturing method Download PDF

Info

Publication number
JP2004119545A
JP2004119545A JP2002278526A JP2002278526A JP2004119545A JP 2004119545 A JP2004119545 A JP 2004119545A JP 2002278526 A JP2002278526 A JP 2002278526A JP 2002278526 A JP2002278526 A JP 2002278526A JP 2004119545 A JP2004119545 A JP 2004119545A
Authority
JP
Japan
Prior art keywords
solder
resin layer
opening
resistant resin
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278526A
Other languages
Japanese (ja)
Inventor
Osamu Akashi
明石 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002278526A priority Critical patent/JP2004119545A/en
Publication of JP2004119545A publication Critical patent/JP2004119545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board provided with solder bumps which have flat, uniform-diameter and large-area upper end faces and capable of effectively connecting the electrodes of electronic components to the solder bumps. <P>SOLUTION: A part of each solder bump 5 which is extruded from a solder resisting resin layer 4 is an approximately disc-like shape whose diameter is larger than that of an aperture 4a of the resin layer 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子や抵抗器等の電子部品を搭載するための半田バンプ付き配線基板およびその製造方法に関するものである。
【0002】
【従来の技術】
近時、半導体素子等の電子部品を搭載するために用いられる半田バンプ付き配線基板として、例えばガラス−エポキシ板から成る絶縁板やエポキシ樹脂等の絶縁層を複数層積層して成り、その内部および/または表面に銅箔や銅めっき膜から成る複数の配線導体および表面に半田接合パッドを形成して成る絶縁基板と、この絶縁基板の表面に前記半田接合パッドの中央部を露出させる開口部を有するとともに半田接合パッドの外周部を覆うようにして被着された耐半田樹脂層と、この耐半田樹脂層から露出した半田接合パッドに耐半田樹脂層から突出するようにして接合された半田バンプとを具備して成る有機材料系の半田バンプ付き配線基板が採用されるようになってきている。
【0003】
そして、このような半田バンプ付きの配線基板においては、電子部品をその各電極がそれぞれ対応する半田バンプに当接するようにして配線基板上に載置するとともに、これらを例えば電気炉等の加熱装置で加熱して半田バンプを溶融させて半田バンプと電子部品の電極とを接合させることによって、電子部品が配線基板上に実装される。
【0004】
ところで、このような半田バンプ付きの配線基板においては、その上面に電子部品を載置する際に電子部品の電極とこれに対応する半田バンプとが接触しやすいようにするために、半田バンプの上端を平坦化して高さを一定に揃えている。半田バンプの上端を平坦化するには、例えば先ず、半田接合パッド上に半田ペーストや半田ボールを載置させるとともに加熱溶融させて表面が球面状の半田バンプを形成した後、その半田バンプの頂部を平板状のコイニング治具や半田バンプに対向する円錐台形状の凹部を有するコイニング治具でプレスして平坦化する方法が採用されている。
【0005】
【特許文献1】
特開2000−100863号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の半田バンプ付き配線基板は、半田バンプの上端が平板状のコイニング治具でプレスされて平坦化されている場合には、全ての半田バンプ上端面の面積を常に一定とすることが困難であり、円錐台形状の凹部を有するコイニング治具でプレスして平坦化されている場合には、半田バンプの上端面の面積を一定とすることは可能であるが、半田バンプが円錐台形状となるため半田バンプの上端面の面積が小さいものとなる。そのため、小型で高密度配置された半田バンプを備えた近時の配線基板においては、半田バンプの形成位置に製造ばらつきによる僅かなずれがあると、電子部品を配線基板の上面に載置する際に電子部品の電極と半田バンプとが良好に接触しないことがあり、電子部品の電極と半田バンプとを正確かつ良好に接続させることが困難であった。本発明は、かかる従来の問題点に鑑み完成されたものであり、その目的は、平坦でかつ径が均一な大きな面積の上端面を有する半田バンプが形成されており、電子部品の電極と配線基板の半田バンプとを正確かつ良好に接続することが可能な半田バンプ付き配線基板を提供することにある。
【0007】
【課題を解決するための手段】
本発明の半田バンプ付き配線基板は、表面に半田接合パッドが形成された絶縁基板と、絶縁基板の表面に被着されており、半田接合パッドの中央部を露出させる開口部を有するとともに半田接合パッドの外周部を被覆する耐半田樹脂層と、耐半田樹脂層の開口部内に露出した半田接合パッド上に開口部内を埋めるとともに耐半田樹脂層から突出するようにして接合された半田バンプとを具備して成る半田バンプ付き配線基板であって、前記半田バンプは、耐半田樹脂層から突出した部位が耐半田樹脂層の開口部より直径の大きな円柱形状であることを特徴とするものである。
【0008】
また、本発明の半田バンプ付き配線基板の製造方法は、表面に半田接合パッドが形成された絶縁基板の表面に、半田接合パッドの中央部を露出させる第一の開口部を有するとともに半田接合パッドの外周部を被覆する耐半田樹脂層を被着させる工程と、半田接合パッド上に前記第一の開口部内を埋めるとともに耐半田樹脂層から突出する半田バンプを接合する工程と、耐半田樹脂層の表面に半田バンプを取り囲み、かつ前記第一の開口部より直径の大きな円形の第二の開口部を有する樹脂層を、その樹脂層から半田バンプの上端部が突出する厚みに被着させる工程と、樹脂層から突出した半田バンプの上端部をプレスして前記第二の開口部内に押し潰すことにより半田バンプの耐半田樹脂層から突出した部位を前記第一の開口部よりも直径が大きな円柱形状とする工程と、樹脂層を剥離する工程とを順次行なうことを特徴とするものである。
【0009】
本発明の半田バンプ付き配線基板によれば、半田バンプの耐半田樹脂層から突出した部位が耐半田樹脂層の開口部より直径の大きな円柱形状であることから、半田バンプの上端面の面積が大きなものとなり、その結果、電子部品を配線基板の上面に載置する際に、半田バンプの形成位置に製造ばらつきによる僅かなずれがあったとしても、面積の大きな上端面を有する半田バンプと電子部品の電極とが良好に接触して電子部品の電極と配線基板の半田バンプとを正確かつ良好に接続することができる。
【0010】
また、本発明の半田バンプ付き配線基板の製造方法によれば、耐半田樹脂層の表面に半田バンプを取り囲み、かつ耐半田樹脂層の第一の開口部より直径の大きな円形の第二の開口部を有する樹脂層を、半田バンプの上端部が突出する厚みに被着させるとともに、その樹脂層から突出した半田バンプの上端部をプレスして第二の開口部内に押し潰すことにより半田バンプの耐半田樹脂層から突出した部位を第一の開口部よりも直径が大きな円柱形状とした後に、樹脂層を剥離することから、耐半田樹脂層から突出した部位が耐半田樹脂層の開口部より直径の大きな円柱状の半田バンプを備えた、電子部品の電極と配線基板の半田バンプとを正確かつ良好に接続することが可能な半田バンプ付き配線基板を提供することができる。
【0011】
【発明の実施の形態】
次に、本発明を添付の図面に基づき詳細に説明する。図1は、本発明の半田バンプ付き配線基板の実施の形態の一例を示す断面図であり、図2はその要部拡大断面図である。また、図3は本発明の半田バンプ付き配線基板の製造方法を説明するための工程毎の要部断面図である。
【0012】
図1において、1は絶縁基板、2は配線導体、3は半田接合パッド、4は耐半田樹脂層、5は半田バンプ、6は外部リードピンであり、主にこれらで本例の半田バンプ付き配線基板が構成されている。なお、この例では外部リードピン6を有する例を示したが、外部リードピン6は必ずしも必要ではなく、外部リードピン6に代えて例えば半田から成る外部接続用の端子を設けてもよい。
【0013】
絶縁基板1は、例えばガラス繊維を縦横に織り込んだガラス織物にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成る板状の芯体1aの上下面にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る絶縁層1bをそれぞれ複数層ずつ積層して成り、芯体1aや各絶縁層1bの表面には銅箔や銅めっき膜等の導体層から成る複数の配線導体2が形成されている。
【0014】
絶縁基板1を構成する芯体1aは、厚みが0.3〜1.5mm程度であり、その上面から下面にかけて直径が0.1〜1.0mm程度の複数の貫通孔7を有している。そして、各貫通孔7の内壁には配線導体2の一部が被着されており、芯体1aの上下面に形成された配線導体2同士が貫通孔7内の配線導体2を介して電気的に接続されている。
【0015】
このような芯体1aは、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートを熱硬化させた後、これに上面から下面にかけて貫通孔7用のドリル加工を施すことにより製作される。なお、芯体1aの上下面の配線導体2は、芯体1a用のシートの上下全面に厚みが3〜50μm程度の銅箔を貼着しておくとともに、この銅箔をシートの硬化後にエッチング加工することにより芯体1aの上下面に所定のパターンに形成される。また、貫通孔7内の配線導体2は、芯体1aに貫通孔7を設けた後に、この貫通孔7の内壁に無電解めっき法および電解めっき法により厚みが3〜50μm程度の銅めっき膜を析出させることにより貫通孔7の内壁に被着形成される。
【0016】
さらに、芯体1aは、その貫通孔7の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂から成る樹脂柱8が充填されている。樹脂柱8は、貫通孔7を塞ぐことにより貫通孔7の直上および直下に絶縁層1bを形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を貫通孔7内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。そして、この樹脂柱8を含む芯体1aの上下面に絶縁層1bが積層されている。
【0017】
芯体1aの上下面に積層された絶縁層1bは、それぞれの厚みが20〜60μm程度であり、各層の上面から下面にかけて直径が30〜100μm程度の複数の貫通孔9を有しており、これらの貫通孔9内には配線導体2の一部が被着形成されている。これらの絶縁層1bは、配線導体2を高密度に配線するための絶縁間隔を提供するためのものである。そして、上層の配線導体2と下層の配線導体2とを貫通孔9内の配線導体2を介して電気的に接続することにより高密度配線を立体的に形成可能としている。
【0018】
このような絶縁層1bは、厚みが20〜60μm程度の未硬化の熱硬化性樹脂のフィルムを芯体1a上下面に貼着し、これを熱硬化させるとともにレーザー加工により貫通孔9を穿孔し、さらにその上に同様にして次の絶縁層1bを順次積み重ねることによって形成される。なお、各絶縁層1b表面および貫通孔9内に被着された配線導体2は、各絶縁層1bを形成する毎に各絶縁層1bの表面および貫通孔9内に5〜50μm程度の厚みの銅めっき膜を公知のセミアディティブ法やサブトラクティブ法等のパターン形成法により所定のパターンに被着させることによって形成される。
【0019】
さらに、最表層の絶縁層1b上には耐半田樹脂層4が被着されている。耐半田樹脂層4は、例えばアクリル変性エポキシ樹脂にシリカやタルク等の無機物粉末フィラーを30〜70質量%程度分散させた絶縁材料から成り、表層の配線導体2同士の電気的絶縁信頼性を高めるとともに、後述する半田接合パッド3やピン接合パッド10の絶縁基板1への接合強度を大きなものとする作用をなす。
【0020】
このような耐半田樹脂層4は、その厚みが10〜50μm程度であり、感光性を有する耐半田樹脂層4用の未硬化樹脂ペーストをロールコーター法やスクリーン印刷法を採用して最表層の絶縁層1b上に塗布し、これを乾燥させた後、露光および現像処理を行なって後述する半田接合パッド3やピン接合パッド10の中央部を露出させる開口部4a、4bを形成した後、これを熱硬化させることによって形成される。あるいは、耐半田樹脂層4用の未硬化の樹脂フィルムを最上層の絶縁層1b上に貼着した後、これを熱硬化させ、しかる後、半田接合パッド3やピン接合パッド10に対応する位置にレーザービームを照射し、硬化した樹脂フィルムを部分的に除去することによって半田接合パッド3やピン接合パッド10を露出させる開口部4a、4bを有するように形成される。
【0021】
また、絶縁基板1の上面から下面にかけて形成された配線導体2は、電子部品の各電極を外部電気回路基板に接続するための導電路として機能し、絶縁基板1の上面の実装領域に設けられた部位の一部が電子部品の各電極に例えば鉛−錫合金から成る半田バンプ5を介して接合される半田接合パッド3を、絶縁基板1の下面に露出した部位の一部が外部電気回路基板に接続される外部リードピン6を接合するためのピン接合パッド10を形成している。このような半田接合パッド3やピン接合パッド10は、配線導体2に接続された導体層から成る略円形のパターンの外周部を耐半田樹脂層4により15〜35μm程度の幅で被覆してその外周縁を画定することによりその直径が、半田接合パッド3であれば70〜200μm程度に、ピン接合パッド10であれば0.5〜2.5mm程度になるように形成されている。このように半田接合パッド3およびピン接合パッド10の外周部を耐半田樹脂層4により被覆することによって、半田接合パッド3同士やピン接合パッド10同士の電気的な短絡が有効に防止されるとともに、半田接合パッド3やピン接合パッド10の絶縁基板1に対する接合強度が高いものとなっている。なお、通常であれば、半田接合パッド3およびピン接合パッド10の露出する表面には、半田接合パッド3やピン接合パッド10の酸化腐蝕の防止と半田バンプ5や外部リードピン6との接続を良好にするために、ニッケル、金等の良導電性で耐腐蝕性に優れた金属をめっき法により1〜20μmの厚さに被着することが好ましい。
【0022】
また、半田接合パッド3には半田バンプ5が、耐半田樹脂層4の開口部4aを埋めるとともに耐半田樹脂層4から突出するようにして固着形成されている。半田バンプ5は、鉛−錫合金等の半田材料から成り、半田接合パッド3と電子部品とを電気的および機械的に接続するための端子として機能し、電子部品の各電極がそれぞれ対応する半田バンプ5に当接するようにして電子部品を載置するとともに、これらを例えば電気炉などの加熱装置で加熱して半田バンプ5を溶融させることにより半田バンプ5と電子部品の電極とが接続される。
【0023】
そして、本発明の半田バンプ付き配線基板においては、半田バンプ5は、図2に要部拡大断面図で示すように、耐半田樹脂層4から突出した部位が耐半田樹脂層4の開口部4aより直径の大きな円柱形状となっている。このように、半田バンプ5は、耐半田樹脂層4から突出した部位が耐半田樹脂層4の開口部4aより直径の大きな円柱形状となっていることから、半田バンプ5の上端面の面積が大きなものとなり、その結果、電子部品を配線基板の上面に搭載する際に、半田バンプ5の形成位置に製造ばらつきによる僅かなずれがあったとしても、面積の大きな上端面を有する半田バンプ5と電子部品の電極とが良好に接触して電子部品の電極と半田バンプ5とを正確かつ良好に接続することができる。
【0024】
なお、本発明において、このような形状の半田バンプ5を半田接合パッド3上に形成するには、まず、図3(a)に要部断面図で示すように、配線導体2を有する絶縁基板1の上面に、配線導体2に接続された半田接合パッド3およびこの半田接合パッド3の中央部を露出させる開口部4aを有する耐半田樹脂層4を形成する。
【0025】
次に、図3(b)に要部断面図で示すように、半田接合パッド3上に例えば錫:鉛=9:1〜4:6から成る半田粒子を含有する半田ペースト11を印刷塗布する。
【0026】
次に、図3(c)に要部断面図で示すように、半田接合パッド3上に塗布された半田ペースト11をその半田粒子の融点以上の230〜280℃に加熱して半田粒子を溶融させることにより半田接合パッド3上に開口部4aを埋めるとともに耐半田樹脂層4から突出する表面が球面状の半田バンプ5を形成する。
【0027】
次に、図3(d)に要部断面図で示すように、耐半田樹脂層4の上に半田バンプ5を取り囲み、かつ耐半田樹脂層4の開口部4aより直径の大きな円形の開口部12aを有する樹脂層12を、その樹脂層12から半田バンプ5の上端部が突出する高さに形成する。このような樹脂層12は、感光性樹脂を耐半田樹脂層4の上面に塗布するとともに周知のフォトリソグラフィ法により露光および現像して開口部12aを有するようにパターニングし、それを熱および紫外線硬化させることにより形成される。
【0028】
次に、図3(e)に要部断面図で示すように、図示しない平板状のコイニング冶具を用いて樹脂層12の開口部12aから突出した半田バンプ5の上端部をプレスして開口部12a内に押し潰すことにより、半田バンプ5の耐半田樹脂層4から突出した部位を円柱形状とする。
【0029】
最後に、樹脂層12を耐半田樹脂層4上から剥離除去することにより、耐半田樹脂層4から突出した部位が耐半田樹脂層4の開口部4aより直径の大きな円柱形状の半田バンプ5を備えた半田バンプ付き配線基板を得ることができる。なお、樹脂層12を剥離するには、絶縁樹脂を剥離可能な溶剤に浸漬するか、あるいは剥離可能な溶剤を噴霧して剥離すればよい。
【0030】
このように本発明の製造方法によれば、耐半田樹脂層4から突出した部位が耐半田樹脂層4の開口部4aより直径の大きな円柱形状の半田バンプ5を備え、電子部品の電極と半田バンプ5とを正確かつ良好に接続可能な半田バンプ付き配線基板を提供することができる。
【0031】
また、ピン接合パッド10には、銅や鉄−ニッケル−コバルト合金等の金属から成る外部リードピン6が半田バンプ5よりも融点が高い半田を介して接合されている。外部リードピン6は、配線基板に実装される電子部品を外部電気回路基板に電気的に接続するための端子部材として機能し、外部リードピン6を外部電気回路基板の配線導体に半田やソケットを介して接続することにより、電子部品が外部電気回路に電気的に接続されることとなる。
【0032】
かくして本発明により提供される半田バンプ付き配線基板によると、配線基板の上面に電子部品をその電極が半田バンプ5に当接するようにして載置するとともに、半田バンプ5を溶融させて電子部品の電極と半田接合パッド3とを接合させることにより電子装置となる。
【0033】
なお、本発明は、上述の実施形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更が可能であることはいうまでもない。
【0034】
【発明の効果】
本発明の半田バンプ付き配線基板によれば、耐半田樹脂層から突出した部位が耐半田樹脂層の開口部より直径の大きな円柱形状であることから、半田バンプの上端面の面積が大きなものとなり、その結果、電子部品を配線基板の上面に載置する際に、半田バンプの形成位置に製造ばらつきによる僅かなずれがあったとしても、面積の大きな上端面を有する半田バンプと電子部品の電極とが良好に接触して電子部品の電極と配線基板の半田バンプとを正確かつ良好に接続することができる。
【0035】
また、本発明の半田バンプ付き配線基板の製造方法によれば、耐半田樹脂層の表面に半田バンプを取り囲み、かつ耐半田樹脂層の第一の開口部より直径の大きな円形の第二の開口部を有する樹脂層を、半田バンプの上端部が突出する厚みに被着させるとともに、その樹脂層から突出した半田バンプの上端部をプレスして第二の開口部内に押し潰すことにより半田バンプの耐半田樹脂層から突出した部位を第一の開口部よりも直径が大きな略円板形状とした後に、樹脂層を剥離することから、耐半田樹脂層から突出した部位が耐半田樹脂層の開口部より直径の大きな円柱状の半田バンプを備えた、電子部品の電極と配線基板の半田バンプとを正確かつ良好に接続することが可能な半田バンプ付き配線基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の半田バンプ付き配線基板の実施形態例の断面図である。
【図2】図1に示す半田バンプ付き配線基板の要部拡大断面図である。
【図3】(a)乃至(f)は本発明の配線基板の製造方法を説明するための工程毎の要部断面図である。
【符号の説明】
1・・・・・配線基板
2・・・・・配線導体
3・・・・・半田接合パッド
4・・・・・耐半田樹脂層
4a・・・耐半田樹脂層4の開口部(第一の開口部)
5・・・・ 半田バンプ
12・・・・・樹脂層
12a・・・樹脂層12の開口部(第二の開口部)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board with solder bumps for mounting electronic components such as semiconductor elements and resistors, and a method for manufacturing the same.
[0002]
[Prior art]
Recently, as a wiring board with solder bumps used for mounting electronic components such as semiconductor elements, for example, an insulating plate made of a glass-epoxy plate or a plurality of insulating layers made of epoxy resin or the like are laminated, and the inside and And / or a plurality of wiring conductors made of a copper foil or a copper plating film on the surface and an insulating substrate formed with solder bonding pads on the surface, and an opening for exposing a central portion of the solder bonding pad on the surface of the insulating substrate. A solder-resistant resin layer having a solder-bonded resin layer and covering the outer periphery of the solder-bonded pad; and a solder bump bonded to the solder-bonded pad exposed from the solder-resistant resin layer so as to protrude from the solder-resistant resin layer. And an organic material-based wiring board with solder bumps comprising:
[0003]
In such a wiring board with solder bumps, the electronic component is placed on the wiring board such that each electrode of the electronic component comes into contact with the corresponding solder bump, and these are mounted on a heating device such as an electric furnace. To melt the solder bumps to join the solder bumps to the electrodes of the electronic component, whereby the electronic component is mounted on the wiring board.
[0004]
By the way, in such a wiring board with solder bumps, when the electronic component is mounted on the upper surface thereof, the electrodes of the electronic component and the corresponding solder bumps are easily brought into contact with each other. The top is flattened to make the height uniform. In order to flatten the upper end of the solder bump, for example, first, a solder paste or a solder ball is placed on a solder bonding pad and heated and melted to form a solder bump having a spherical surface, and then the top of the solder bump is formed. Is flattened by pressing with a coining jig having a flat-plate-shaped coining jig or a truncated conical recess facing the solder bump.
[0005]
[Patent Document 1]
JP 2000-100863 A
[Problems to be solved by the invention]
However, in a conventional wiring board with solder bumps, when the upper ends of the solder bumps are pressed and flattened by a flat coining jig, the area of all the upper surfaces of the solder bumps is always constant. If it is difficult and the surface is flattened by pressing with a coining jig having a truncated conical recess, it is possible to keep the area of the upper end surface of the solder bump constant. Because of the shape, the area of the upper end surface of the solder bump is small. Therefore, in recent wiring boards having small and high-density solder bumps, if there is a slight shift due to manufacturing variations in the formation position of the solder bumps, the electronic components may be placed on the upper surface of the wiring board. In some cases, the electrodes of the electronic component and the solder bumps do not come into good contact with each other, and it has been difficult to accurately and satisfactorily connect the electrodes of the electronic component and the solder bumps. The present invention has been completed in view of the conventional problems described above, and an object of the present invention is to form a solder bump having a large-area upper end surface which is flat and uniform in diameter. An object of the present invention is to provide a wiring board with solder bumps that can accurately and satisfactorily connect to solder bumps on a board.
[0007]
[Means for Solving the Problems]
The wiring board with solder bumps according to the present invention has an insulating substrate having a solder bonding pad formed on the surface thereof, and an opening which is attached to the surface of the insulating substrate and exposes a central portion of the solder bonding pad. A solder-resistant resin layer covering the outer peripheral portion of the pad and a solder bump joined by filling the opening on the solder bonding pad exposed in the opening of the solder-resistant resin layer and projecting from the solder-resistant resin layer. A wiring board with solder bumps, wherein the solder bumps have a columnar shape in which a portion projecting from the solder-resistant resin layer is larger in diameter than an opening of the solder-resistant resin layer. .
[0008]
In addition, the method of manufacturing a wiring board with solder bumps according to the present invention may further comprise a first opening for exposing a central portion of the solder bonding pad on a surface of the insulating substrate having the solder bonding pad formed on the surface. Applying a solder-resistant resin layer covering an outer peripheral portion of the solder bonding pad, filling the inside of the first opening on a solder joint pad, and joining a solder bump protruding from the solder-resistant resin layer; Applying a resin layer surrounding the solder bumps on the surface thereof and having a circular second opening having a diameter larger than that of the first opening so that the upper end of the solder bump projects from the resin layer. By pressing the upper end of the solder bump protruding from the resin layer and crushing it into the second opening, the portion of the solder bump protruding from the solder resistant resin layer has a diameter larger than that of the first opening. A step of the Kina cylindrical, and is characterized in that sequentially carried out and a step of peeling the resin layer.
[0009]
According to the wiring board with solder bumps of the present invention, since the portion of the solder bump protruding from the solder-resistant resin layer is a columnar shape having a diameter larger than the opening of the solder-resistant resin layer, the area of the upper end surface of the solder bump is reduced. As a result, when the electronic component is placed on the upper surface of the wiring board, even if there is a slight shift due to manufacturing variation in the formation position of the solder bump, the solder bump having the large upper end surface is The electrodes of the component are in good contact with each other, and the electrodes of the electronic component and the solder bumps of the wiring board can be accurately and satisfactorily connected.
[0010]
According to the method of manufacturing a wiring board with solder bumps of the present invention, a circular second opening that surrounds the solder bumps on the surface of the solder-resistant resin layer and has a larger diameter than the first opening of the solder-resistant resin layer. A resin layer having a portion is applied to a thickness at which the upper end of the solder bump protrudes, and the upper end of the solder bump protruding from the resin layer is pressed and crushed into the second opening to form a solder bump. After the portion protruding from the solder-resistant resin layer is formed into a columnar shape having a diameter larger than the first opening, the resin layer is peeled off, so that the portion protruding from the solder-resistant resin layer is closer than the opening of the solder-resistant resin layer. It is possible to provide a wiring board with solder bumps, which has a columnar solder bump having a large diameter and can accurately and satisfactorily connect the electrodes of the electronic component and the solder bumps of the wiring board.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board with solder bumps of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof. FIG. 3 is a cross-sectional view of a principal part in each step for explaining the method for manufacturing a wiring board with solder bumps of the present invention.
[0012]
In FIG. 1, reference numeral 1 denotes an insulating substrate, 2 denotes a wiring conductor, 3 denotes a solder joint pad, 4 denotes a solder-resistant resin layer, 5 denotes a solder bump, and 6 denotes an external lead pin. A substrate is configured. In this example, the example having the external lead pins 6 is shown. However, the external lead pins 6 are not always necessary, and instead of the external lead pins 6, an external connection terminal made of, for example, solder may be provided.
[0013]
The insulating substrate 1 is formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a glass fabric in which glass fibers are woven vertically and horizontally. A plurality of insulating layers 1b each made of a thermosetting resin such as a resin, and a plurality of wiring conductors formed of a conductive layer such as a copper foil or a copper plating film on the surface of the core body 1a or each insulating layer 1b; 2 are formed.
[0014]
The core 1a constituting the insulating substrate 1 has a thickness of about 0.3 to 1.5 mm and has a plurality of through holes 7 with a diameter of about 0.1 to 1.0 mm from the upper surface to the lower surface. . A part of the wiring conductor 2 is attached to the inner wall of each through hole 7, and the wiring conductors 2 formed on the upper and lower surfaces of the core 1 a are electrically connected to each other through the wiring conductor 2 in the through hole 7. Connected.
[0015]
Such a core 1a is manufactured by thermally curing a sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then performing drilling for the through holes 7 from the upper surface to the lower surface. . The wiring conductors 2 on the upper and lower surfaces of the core 1a are attached with copper foil having a thickness of about 3 to 50 μm on the entire upper and lower surfaces of the sheet for the core 1a, and the copper foil is etched after the sheet is cured. By processing, a predetermined pattern is formed on the upper and lower surfaces of the core 1a. The wiring conductor 2 in the through-hole 7 is formed by forming a through-hole 7 in the core 1a and then forming a copper plating film having a thickness of about 3 to 50 μm on the inner wall of the through-hole 7 by electroless plating and electrolytic plating. Is deposited on the inner wall of the through-hole 7.
[0016]
Further, the core 1a is filled with a resin column 8 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin inside the through hole 7. The resin pillar 8 is for enabling the insulating layer 1b to be formed directly above and directly below the through hole 7 by closing the through hole 7, and the uncured paste-like thermosetting resin is placed in the through hole 7. It is formed by filling by a screen printing method, thermally curing the material, and then polishing the upper and lower surfaces thereof to be substantially flat. An insulating layer 1b is laminated on the upper and lower surfaces of the core 1a including the resin columns 8.
[0017]
The insulating layer 1b laminated on the upper and lower surfaces of the core 1a has a thickness of about 20 to 60 μm, and has a plurality of through holes 9 having a diameter of about 30 to 100 μm from the upper surface to the lower surface of each layer. A part of the wiring conductor 2 is formed in these through holes 9. These insulating layers 1b are for providing an insulating interval for wiring the wiring conductors 2 at high density. By electrically connecting the upper layer wiring conductor 2 and the lower layer wiring conductor 2 via the wiring conductor 2 in the through-hole 9, high-density wiring can be formed three-dimensionally.
[0018]
Such an insulating layer 1b is formed by attaching an uncured thermosetting resin film having a thickness of about 20 to 60 μm to the upper and lower surfaces of the core 1a, thermally curing the same, and forming the through holes 9 by laser processing. The insulating layer 1b is formed by successively stacking the next insulating layers 1b in a similar manner. The wiring conductor 2 attached to the surface of each insulating layer 1b and the inside of the through hole 9 has a thickness of about 5 to 50 μm on the surface of each insulating layer 1b and the inside of the through hole 9 every time the insulating layer 1b is formed. It is formed by applying a copper plating film to a predetermined pattern by a known pattern forming method such as a semi-additive method or a subtractive method.
[0019]
Further, a solder-resistant resin layer 4 is provided on the outermost insulating layer 1b. The solder-resistant resin layer 4 is made of, for example, an insulating material in which an inorganic powder filler such as silica or talc is dispersed in an acrylic-modified epoxy resin by about 30 to 70% by mass, and improves the electrical insulation reliability between the surface wiring conductors 2. At the same time, it acts to increase the bonding strength of the solder bonding pad 3 and the pin bonding pad 10 to be described later to the insulating substrate 1.
[0020]
Such a solder-resistant resin layer 4 has a thickness of about 10 to 50 μm. The uncured resin paste for the solder-resistant resin layer 4 having photosensitivity is formed on the outermost layer by using a roll coater method or a screen printing method. After coating on the insulating layer 1b and drying it, exposure and development are performed to form openings 4a and 4b for exposing the central portions of the solder bonding pads 3 and the pin bonding pads 10, which will be described later. Is formed by heat curing. Alternatively, after an uncured resin film for the solder-resistant resin layer 4 is adhered on the uppermost insulating layer 1b, this is thermally cured, and then the position corresponding to the solder bonding pad 3 or the pin bonding pad 10 is set. Is formed so as to have openings 4a and 4b for exposing the solder bonding pads 3 and the pin bonding pads 10 by irradiating a laser beam to the resin film and partially removing the cured resin film.
[0021]
The wiring conductor 2 formed from the upper surface to the lower surface of the insulating substrate 1 functions as a conductive path for connecting each electrode of the electronic component to an external electric circuit board, and is provided in a mounting area on the upper surface of the insulating substrate 1. A part of the exposed part is connected to each electrode of the electronic component via a solder bump 5 made of, for example, a lead-tin alloy. A pin bonding pad 10 for bonding the external lead pins 6 connected to the substrate is formed. Such a solder bonding pad 3 or a pin bonding pad 10 is formed by covering an outer peripheral portion of a substantially circular pattern formed of a conductor layer connected to the wiring conductor 2 with a solder resin layer 4 to a width of about 15 to 35 μm. By defining the outer peripheral edge, the diameter is about 70 to 200 μm for the solder bonding pad 3 and about 0.5 to 2.5 mm for the pin bonding pad 10. By covering the outer peripheral portions of the solder bonding pads 3 and the pin bonding pads 10 with the solder-resistant resin layer 4 in this manner, an electrical short circuit between the solder bonding pads 3 and between the pin bonding pads 10 is effectively prevented, and The bonding strength of the solder bonding pad 3 and the pin bonding pad 10 to the insulating substrate 1 is high. Normally, on the exposed surfaces of the solder bonding pads 3 and the pin bonding pads 10, the prevention of oxidation corrosion of the solder bonding pads 3 and the pin bonding pads 10 and the good connection with the solder bumps 5 and the external lead pins 6 are provided. In this case, it is preferable to apply a metal having good conductivity and excellent corrosion resistance, such as nickel or gold, to a thickness of 1 to 20 μm by plating.
[0022]
Solder bumps 5 are fixed to the solder bonding pads 3 so as to fill the openings 4 a of the solder-resistant resin layer 4 and protrude from the solder-resistant resin layer 4. The solder bump 5 is made of a solder material such as a lead-tin alloy, and functions as a terminal for electrically and mechanically connecting the solder joint pad 3 to the electronic component. The electronic components are placed so as to be in contact with the bumps 5, and these are heated by a heating device such as an electric furnace to melt the solder bumps 5, so that the solder bumps 5 and the electrodes of the electronic components are connected. .
[0023]
In the wiring board with solder bumps according to the present invention, as shown in the enlarged sectional view of the main part of FIG. It has a cylindrical shape with a larger diameter. As described above, since the portion of the solder bump 5 projecting from the solder-resistant resin layer 4 is formed in a columnar shape having a diameter larger than the opening 4a of the solder-resistant resin layer 4, the area of the upper end surface of the solder bump 5 is reduced. As a result, when the electronic component is mounted on the upper surface of the wiring board, even if the formation position of the solder bump 5 is slightly shifted due to manufacturing variation, the solder bump 5 having the large upper end surface is The electrodes of the electronic component are in good contact with each other, and the electrodes of the electronic component and the solder bumps 5 can be connected accurately and well.
[0024]
In the present invention, in order to form the solder bump 5 having such a shape on the solder bonding pad 3, first, as shown in a sectional view of a main part in FIG. On the upper surface of 1, a solder-resistant resin layer 4 having a solder joint pad 3 connected to the wiring conductor 2 and an opening 4 a exposing a central portion of the solder joint pad 3 is formed.
[0025]
Next, as shown in a sectional view of a main part in FIG. 3B, a solder paste 11 containing solder particles composed of, for example, tin: lead = 9: 1 to 4: 6 is printed on the solder bonding pad 3. .
[0026]
Next, as shown in FIG. 3C, the solder paste 11 applied on the solder bonding pad 3 is heated to 230 to 280 ° C. which is higher than the melting point of the solder particles to melt the solder particles. By doing so, the openings 4a are filled on the solder bonding pads 3 and the solder bumps 5 projecting from the solder-resistant resin layer 4 and having a spherical surface are formed.
[0027]
Next, as shown in a sectional view of a main part in FIG. 3D, a circular opening which surrounds the solder bump 5 on the solder-resistant resin layer 4 and has a larger diameter than the opening 4a of the solder-resistant resin layer 4. The resin layer 12 having 12a is formed at a height where the upper end of the solder bump 5 projects from the resin layer 12. The resin layer 12 is coated with a photosensitive resin on the upper surface of the solder-resistant resin layer 4 and exposed and developed by a well-known photolithography method to be patterned so as to have an opening 12a. Formed.
[0028]
Next, as shown in the main part sectional view of FIG. 3E, the upper end of the solder bump 5 protruding from the opening 12a of the resin layer 12 is pressed by using a flat coining jig (not shown). The portion protruding from the solder-resistant resin layer 4 of the solder bump 5 by being crushed into the inside 12a is formed into a cylindrical shape.
[0029]
Finally, the resin layer 12 is peeled off from the solder-resistant resin layer 4 to remove the solder bump 5 having a columnar shape whose diameter is larger than the opening 4 a of the solder-resistant resin layer 4. Thus, a wiring board with solder bumps can be obtained. Note that the resin layer 12 may be peeled by immersing the insulating resin in a peelable solvent or by spraying a peelable solvent.
[0030]
As described above, according to the manufacturing method of the present invention, the portion protruding from the solder-resistant resin layer 4 is provided with the cylindrical solder bump 5 having a diameter larger than the opening 4 a of the solder-resistant resin layer 4, and the electrode of the electronic component is connected to the solder. It is possible to provide a wiring board with solder bumps that can accurately and satisfactorily connect to the bumps 5.
[0031]
External lead pins 6 made of a metal such as copper or an iron-nickel-cobalt alloy are joined to the pin joint pads 10 via solder having a higher melting point than the solder bumps 5. The external lead pins 6 function as terminal members for electrically connecting electronic components mounted on the wiring board to the external electric circuit board, and connect the external lead pins 6 to the wiring conductors of the external electric circuit board via solder or socket. By making the connection, the electronic component is electrically connected to the external electric circuit.
[0032]
Thus, according to the wiring board with solder bumps provided by the present invention, the electronic component is placed on the upper surface of the wiring board such that its electrodes are in contact with the solder bumps 5, and the solder bumps 5 are melted to form the electronic component. An electronic device is obtained by bonding the electrodes and the solder bonding pads 3.
[0033]
It should be noted that the present invention is not limited to the example of the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
[0034]
【The invention's effect】
According to the wiring board with solder bumps of the present invention, since the portion protruding from the solder-resistant resin layer has a cylindrical shape having a diameter larger than the opening of the solder-resistant resin layer, the area of the upper end surface of the solder bump becomes large. As a result, when the electronic component is mounted on the upper surface of the wiring board, even if there is a slight shift due to manufacturing variation in the formation position of the solder bump, the solder bump having a large upper end surface and the electrode of the electronic component are formed. And the electrodes of the electronic component can be accurately and satisfactorily connected to the solder bumps of the wiring board.
[0035]
According to the method of manufacturing a wiring board with solder bumps of the present invention, a circular second opening that surrounds the solder bumps on the surface of the solder-resistant resin layer and has a larger diameter than the first opening of the solder-resistant resin layer. A resin layer having a portion is adhered to a thickness at which the upper end of the solder bump protrudes, and the upper end of the solder bump protruding from the resin layer is pressed and crushed into the second opening to form a solder bump. After the portion protruding from the solder-resistant resin layer is formed into a substantially disk shape having a diameter larger than the first opening, the resin layer is peeled off. It is possible to provide a wiring board with solder bumps, which is provided with a columnar solder bump having a diameter larger than that of the portion and which can accurately and satisfactorily connect the electrodes of the electronic component and the solder bumps of the wiring board.
[Brief description of the drawings]
FIG. 1 is a sectional view of an embodiment of a wiring board with solder bumps of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the wiring board with solder bumps shown in FIG. 1;
FIGS. 3 (a) to 3 (f) are cross-sectional views of essential parts in each step for explaining the method of manufacturing a wiring board according to the present invention.
[Explanation of symbols]
1, wiring board 2, wiring conductor 3, solder bonding pad 4, solder resin layer 4a, solder resin layer 4 opening (first Opening)
5 solder bump 12 resin layer 12a opening of resin layer 12 (second opening)

Claims (2)

表面に半田接合パッドが形成された絶縁基板と、該絶縁基板の表面に被着されており、前記半田接合パッドの中央部を露出させる開口部を有するとともに前記半田接合パッドの外周部を被覆する耐半田樹脂層と、前記開口部内に露出した半田接合パッド上に前記開口部内を埋めるとともに前記耐半田樹脂層から突出するようにして接合された半田バンプとを具備して成る半田バンプ付き配線基板であって、前記半田バンプは、前記耐半田樹脂層から突出した部位が前記開口部より直径の大きな円柱形状であることを特徴とする半田バンプ付き配線基板。An insulating substrate having a solder bonding pad formed on the surface thereof; and an opening attached to the surface of the insulating substrate, exposing a central portion of the solder bonding pad, and covering an outer peripheral portion of the solder bonding pad. A wiring board with solder bumps, comprising: a solder-resistant resin layer; and a solder bump that fills the opening on the solder bonding pad exposed in the opening and is joined so as to protrude from the solder-resistant resin layer. The wiring board with solder bumps, wherein the solder bump has a columnar shape in which a portion protruding from the solder-resistant resin layer is larger in diameter than the opening. 表面に半田接合パッドが形成された絶縁基板の表面に、前記半田接合パッドの中央部を露出させる第一の開口部を有するとともに前記半田接合パッドの外周部を被覆する耐半田樹脂層を被着させる工程と、前記半田接合パッド上に前記第一の開口部内を埋めるとともに前記耐半田樹脂層から突出する半田バンプを接合する工程と、前記耐半田樹脂層の表面に前記半田バンプを取り囲み、かつ前記第一の開口部より直径の大きな円形の第二の開口部を有する樹脂層を、該樹脂層から前記半田バンプの上端部が突出する厚みに被着させる工程と、前記樹脂層から突出した前記半田バンプの上端部をプレスして前記第二の開口部内に押し潰すことにより前記半田バンプの前記耐半田樹脂層から突出した部位を前記第一の開口部よりも直径が大きな円柱形状とする工程と、前記樹脂層を剥離する工程とを順次行なうことを特徴とする半田バンプ付き配線基板の製造方法。A solder-resistant resin layer having a first opening exposing a central portion of the solder bonding pad and covering an outer peripheral portion of the solder bonding pad is attached to a surface of an insulating substrate having a solder bonding pad formed on the surface. And a step of filling the first opening on the solder bonding pad and bonding a solder bump protruding from the solder-resistant resin layer, surrounding the solder bump on the surface of the solder-resistant resin layer, and A step of applying a resin layer having a circular second opening having a diameter larger than the first opening to a thickness at which the upper end of the solder bump projects from the resin layer, and protruding from the resin layer. By pressing the upper end of the solder bump and crushing it into the second opening, a portion of the solder bump protruding from the solder-resistant resin layer is a circle having a diameter larger than that of the first opening. Process and method for producing a solder bumped wiring board, characterized in that sequentially perform a step of removing the resin layer in the shape.
JP2002278526A 2002-09-25 2002-09-25 Wiring board with solder bump and its manufacturing method Pending JP2004119545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278526A JP2004119545A (en) 2002-09-25 2002-09-25 Wiring board with solder bump and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278526A JP2004119545A (en) 2002-09-25 2002-09-25 Wiring board with solder bump and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004119545A true JP2004119545A (en) 2004-04-15

Family

ID=32273786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278526A Pending JP2004119545A (en) 2002-09-25 2002-09-25 Wiring board with solder bump and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004119545A (en)

Similar Documents

Publication Publication Date Title
JP2002290022A (en) Wiring board, its manufacturing method, and electronic device
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP3860713B2 (en) WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP2004200412A (en) Wiring board with solder bump, and manufacturing method thereof
JP2009212160A (en) Wiring board and manufacturing method therefor
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2004140248A (en) Wiring board with bump and its manufacturing method
JP5311656B2 (en) Wiring board
JP2004119464A (en) Wiring board with solder bump and method for manufacturing same
JP3967989B2 (en) Manufacturing method of wiring board with solder bump
JP2004119544A (en) Wiring board and its manufacturing method
JP2004119545A (en) Wiring board with solder bump and its manufacturing method
JP2004165328A (en) Wiring board having solder bump and its manufacturing method
JP2009123757A (en) Wiring board and manufacturing method thereof
JP2003243816A (en) Wiring board and its manufacturing method
JP3940655B2 (en) Wiring board with solder bump, electronic device, and method for manufacturing wiring board with solder bump
JP2011119655A (en) Printed circuit board and method of manufacturing the same
JP2004172416A (en) Wiring board with solder bump, and its manufacturing method
JP2003338574A (en) Wiring board with pin and electronic device using the same
JP2004055958A (en) Wiring board with pin, and electronic device using same
JP4514459B2 (en) Wiring board and manufacturing method thereof
JP2007150358A (en) Process for producing wiring board with solder bump and electronic device
JP2004327741A (en) Wiring board with solder bump and its producing process
JP2004119895A (en) Method of manufacturing wiring board with solder bump
JP2005209847A (en) Method of manufacturing wiring board