JP2004116320A - 内燃機関の燃料制御装置 - Google Patents

内燃機関の燃料制御装置 Download PDF

Info

Publication number
JP2004116320A
JP2004116320A JP2002277827A JP2002277827A JP2004116320A JP 2004116320 A JP2004116320 A JP 2004116320A JP 2002277827 A JP2002277827 A JP 2002277827A JP 2002277827 A JP2002277827 A JP 2002277827A JP 2004116320 A JP2004116320 A JP 2004116320A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
air
fuel ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002277827A
Other languages
English (en)
Inventor
Shigeki Miyashita
宮下 茂樹
Hiroshi Tanaka
田中 比呂志
Jun Hasegawa
長谷川 純
Masakazu Yamamoto
山本 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2002277827A priority Critical patent/JP2004116320A/ja
Publication of JP2004116320A publication Critical patent/JP2004116320A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】触媒温度が高温の場合に機関が始動された場合であってもHSの排出量を最小限に抑える。
【解決手段】内燃機関の排気を浄化するNO吸蔵触媒34と、NO吸蔵触媒34の温度を検知する水温センサ42を備え、始動時にNO吸蔵触媒34の温度が所定値(T)以上である場合には高温再始動判定フラグを立ち上げ、排気空燃比が通常よりもリーン側となるように制御する。これにより、高温再始動時に排出されるHS量を低減することができる。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関の燃料制御装置に関し、特に、内燃機関の排気ガスを浄化する触媒を備えた内燃機関に適用して好適である。
【0002】
【従来の技術】
近年、希薄(リーン)燃焼型の内燃機関の排気ガスに含まれる窒素酸化物(NO)を浄化するべくNO触媒が実用化されている。NO触媒は、例えばアルミナを担体としてバリウム(Ba)などのアルカリ土類と白金(Pt)のような貴金属とが担持されたものであり、排気ガス中のNOは硝酸イオン(NO )の形でNO触媒内に吸蔵される。そして、NO触媒は内燃機関がリーン空燃比にて運転中にあるときにはその排気ガス中のNOを吸蔵する一方、内燃機関の排気空燃比が理論空燃比以下のリッチ空燃比で運転されるときにはその吸蔵したNOを放出し還元する機能を有している。
【0003】
ところが、燃料および機関の潤滑油内にはイオウ(S)が含まれているので、排気ガス中にもイオウが含まれる。このため、NO触媒は排ガス中のイオウ成分をBaSOなどの硫酸塩として吸蔵してしまい、イオウ成分により被毒(S被毒)される性質を有する。NO触媒に吸蔵されたイオウ成分はNOに比べて安定性が高いため、排気空燃比を燃料リッチにしてもNO触媒から放出されず、NO触媒中に次第に蓄積される。そして、NO触媒内のイオウ成分の量が増大するとNO触媒が吸収しうるNOの量が次第に低下し、NO触媒がNOをほとんど吸収できなくなるという問題を生ずる。
【0004】
そこで、S被毒されたNO触媒の温度を高めるとともにNO触媒を還元雰囲気下におくことにより、吸蔵されたイオウ成分をNO触媒から離脱させ、NOの吸蔵能力を回復させることが知られている。しかし、S被毒したNO触媒を再生する際には、例えば下記の化学式によりNO触媒から脱離したイオウ成分(SO)が排ガス中の炭化水素(HC)と反応し、イオウ化合物(硫化水素:HS)が一時的に多量に生成される。
BaSO+CO→BaCO+SO
SO+H→HS+O
このような硫化水素は強い臭気を発生させる性質があり、大気中に放出されると車両の周囲で異臭を放つため、好ましいものではない。
【0005】
NO触媒がSO脱離温度域にあるとき、排気空燃比がリッチであるほどSOが多く排出される。また、NO触媒へのS付着量が多いほどHSは大量に排出される。そして、SOの排出量が増えると、結果的に多量のHSが生成されてしまう。
【0006】
このようなNO触媒再生時の硫化水素の発生を抑制するため、例えば、特開平11−107809号公報には、排出ガス温度に応じて触媒再生時のリッチ化度合いを変更することが記載されている。
【0007】
【特許文献1】
特開平11−107809号公報
【特許文献2】
特開2000−199424号公報
【特許文献3】
特公平3−62893号公報
【0008】
【発明が解決しようとする課題】
しかしながら、触媒再生時以外であっても、排気空燃比、触媒温度、触媒へのS付着量等が一定の条件に達すれば、NO触媒からHSが排出されるという問題がある。
【0009】
特に希薄燃焼型の内燃機関では、良好なエンジン始動性、ドライバビリティを確保するため、始動時に空燃比を燃料リッチにする必要がある。機関冷間始動時はNO触媒の温度も低いためHSの排出は抑えられるが、NO触媒の温度が高い場合、例えば、エンジン停止後にNO触媒が十分に冷え切らない状態で再始動されたような場合は、多量のHSが排出されるという問題が生じる。
【0010】
図11は、NO触媒が高温状態にある場合において、始動時及び始動直後の排気空燃比と、排気ガス中のHS濃度を示すタイミングチャートである。ここで、図11(A)はNO触媒へ流入する排気ガスの排気空燃比を、図11(B)はNO触媒から排出された排気ガス中のHS濃度を示している。
【0011】
図11(A)に示すように、エンジンの始動性を良好に確保するためには始動時に供給する燃料を増量して空燃比を燃料リッチにする必要がある。このような燃料リッチな雰囲気下でNO触媒が高温状態にあると、NO触媒中の硫酸塩が分解され、図11(B)に示すように排気ガス中のHS量は人が異臭を感じるレベルLに達してしまう。更に、始動直後は通常アイドリング状態で車両が停止しているため、車両の周囲にHSの異臭が拡がることになり好ましくない。
【0012】
特開平11−107809号公報に記載された方法は、触媒再生時のHS排出の抑制に着目しているため、機関の高温再始動時におけるHS発生を抑えることはできない。また、同公報に記載された方法では、触媒再生時のHS発生を抑えるため、排出ガス温度が高いときには濃化の度合いを小さくして理論空燃比付近にしているが、高温再始動時にそのまま適用した場合、エンジン始動性、ドライバビリティ等を劣化させる要因となる。
【0013】
この発明は、上述のような問題を解決するためになされたものであり、触媒温度が高い状況下で機関が始動された場合でもHSの排出量を最小限に抑えることを目的とする。
【0014】
【課題を解決するための手段】
請求項1記載の発明は、上記の目的を達成するため、排気中のイオウ成分を吸着、吸収又はその両方にて選択的に保持し、触媒温度が高温で排気空燃比が燃料リッチとなったときに、吸蔵したイオウ成分を排出する排気浄化触媒と、前記排気浄化触媒の温度を直接又は間接的に検知する触媒温度検知手段と、始動時に排気空燃比を燃料リッチとし、始動後に排気空燃比をリーン側に向かって制御する燃料制御手段と、始動時の前記排気浄化触媒の温度に基づいて、前記排気空燃比のリーン側への制御を補正するリーン化補正手段と、を備えたことを特徴とする。
【0015】
請求項2記載の発明は、上記の目的を達成するため、請求項1記載の内燃機関の燃料制御装置であって、前記リーン化補正手段は、前記排気浄化触媒へのイオウ成分の付着量が多いほどリーン化の速度を大きくすることを特徴とする。
【0016】
請求項3記載の発明は、上記の目的を達成するため、請求項1記載の内燃機関の燃料制御装置であって、前記リーン化補正手段は、前記排気浄化触媒の温度が高いほどリーン化の速度を大きくすることを特徴とする。
【0017】
請求項4記載の発明は、上記の目的を達成するため、請求項1〜3のいずれかに記載の内燃機関の燃料制御装置であって、前記排気浄化触媒の上流側又は下流側に配置され、前記排気空燃比を検出するセンサと、内燃機関に燃料と空気の混合気を供給する混合気供給手段とを備え、前記燃料制御手段は、前記センサの検出値に応じて前記混合気供給手段から内燃機関へ供給する混合気の空燃比を制御することを特徴とする。
【0018】
請求項5記載の発明は、上記の目的を達成するため、請求項4記載の内燃機関の燃料制御装置であって、内燃機関の始動後、前記センサの出力が所定の活性判定電圧に達した際に、前記センサがその機能を発揮する活性状態になったと判定する活性判定手段を備え、前記燃料制御手段は、前記センサが活性状態になったと判定された時点から排気空燃比をリーン側に向かって制御し、前記リーン化補正手段は、前記排気浄化触媒へのイオウ成分の付着量が多いほど前記活性判定電圧を小さくすることを特徴とする。
【0019】
請求項6記載の発明は、上記の目的を達成するため、請求項4記載の内燃機関の燃料制御装置であって、内燃機関の始動後、前記センサの出力が所定の活性判定電圧に達した際に、前記センサがその機能を発揮する活性状態になったと判定する活性判定手段を備え、前記燃料制御手段は、前記センサが活性状態になったと判定された時点から排気空燃比をリーン側に向かって制御し、前記リーン化補正手段は、前記排気浄化触媒の温度が高いほど前記活性判定電圧を小さくすることを特徴とする。
【0020】
請求項7記載の発明は、上記の目的を達成するため、請求項1〜6のいずれかに記載の内燃機関の燃料制御装置であって、内燃機関の始動後、前記排気浄化触媒の温度が所定値以下となった場合には、前記排気空燃比をストイキに制御することを特徴とする。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明のいくつかの実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態により本発明が限定されるものではない。
【0022】
実施の形態1.
図1は、本発明の実施の形態1にかかる内燃機関の燃料制御装置及びその周辺の構造を説明するための図である。本実施形態の内燃機関10は希薄燃焼型の内燃機関である。内燃機関10には吸気通路12および排気通路14が連通している。吸気通路12は、上流側の端部にエアフィルタ16を備えている。エアフィルタ16には、吸気温THA(すなわち外気温)を検出する吸気温センサ18が組みつけられている。
【0023】
エアフィルタ16の下流には、エアフロメータ20が配置されている。エアフロメータ20は、吸気通路12を流れる空気流入量Gaを検出するセンサである。エアフロメータ20の下流には、スロットルバルブ22が設けられている。スロットルバルブ22の近傍には、スロットル開度TAを検出するスロットルセンサ24と、スロットルバルブ22が全閉となることでオンとなるアイドルスイッチ26とが配置されている。
【0024】
スロットルバルブ22の下流には、サージタンク28が設けられている。また、サージタンク28の更に下流には、内燃機関10の吸気ポートに燃料を噴射するための燃料噴射弁30が配置されている。
【0025】
排気通路14には、上流側触媒(スタートキャタリスト)32と下流側触媒(NO吸蔵触媒)34とが直列に配置されている。上流側触媒32は比較的小容量の触媒とされ、内燃機関10に近い位置に配置されていることから、機関冷間始動時等に短時間で活性化温度まで昇温し、主として始動直後の排気浄化を行う。
【0026】
また、本実施形態において、下流側触媒34は流入する排気空燃比がリーンのときに排気中のNOを吸着、吸収またはその両方にて選択的に保持(吸蔵)し、流入する排気の空燃比が理論空燃比またはリッチ空燃比となったときに、吸蔵しているNOを排気中の還元成分(HC,CO)を用いて還元浄化するものである。
【0027】
排気通路14には、上流側触媒32の上流に空燃比センサ(A/Fセンサ)35が配置されている。空燃比センサ35は排気ガス中の酸素濃度を検出するセンサであって、上流側触媒32に流入する排気ガス中の酸素濃度に基づいて内燃機関10で燃焼に付された混合気の空燃比を検出するものである。
【0028】
また、下流側触媒34の下流に、サブOセンサ38が配置されている。サブOセンサ38は、排気ガス中の酸素濃度が所定値より大きいか小さいかを検出するためのセンサであって、センサ位置の排気空燃比がストイキよりも燃料リッチになると0.45V以上の出力を発生し、排気空燃比がストイキよりも燃料リーンになると0.45V以下の出力を発生する。酸素濃度が所定値よりも大きいか小さいかの判定は、サブOセンサ38の出力と所定の判定電圧を比較して行う。通常、判定電圧は0.45Vに設定されており、サブOセンサ38の出力が0.45V以上のときは酸素濃度が所定値より大きいものとして判定出力“1”が出力される。出力が0.45Vより小さいときは酸素濃度が所定値より小さいものとして判定出力“0”が出力される。
【0029】
サブOセンサ38によれば、下流側触媒34の下流に、燃料リッチな排気ガス(HC,COを含む排気ガス)、或いは燃料リーンな排気ガス(NOを含む排気ガス)が流出してきたかを判断することができる。
【0030】
図1に示すように、本実施形態の燃料制御装置はECU(Electronic ControlUnit)40を備えている。ECU40には、上述した各種センサおよび燃料噴射弁30に加えて、内燃機関10の冷却水温THWを検出する水温センサ42や、車速SPDを検出する車速センサ44などが接続されている。
【0031】
図1に示すシステムにおいて、内燃機関10から排出される排気ガスは、先ず、上流側触媒32で浄化される。そして、下流側触媒34では、上流側触媒32で浄化し切れなかった排気ガスの浄化処理が行われる。上流側触媒32は、燃料リッチな排気ガス中に酸素を放出し、また、燃料リーンな排気ガス中の過剰酸素を吸蔵することで排気ガスの浄化を図る。また、下流側触媒34は、上流側触媒32からの排気ガスの排気空燃比がリーン空燃比であるときにはその排気ガス中のNOを吸蔵する一方、排気空燃比が理論空燃比以下のリッチ空燃比であるときにはその吸蔵したNOを放出して還元する。
【0032】
上述したように、下流側触媒34はNOのみならず、排ガス中に含まれるイオウ成分の酸化物SOを硫酸バリウムBaSOなどの硫酸塩X−SOとして保持し、硫酸塩X−SOで被毒(S被毒)される性質を有している。本実施形態の燃料制御装置は、下流側触媒34からのHSの排出を抑えるため、特に始動直後の排気空燃比が燃料リッチな状態において、下流側触媒34からのSOの排出量を最小限に抑える制御を行う。
【0033】
図2は、本実施形態の燃料制御装置の制御に関わる各波形を示すタイミングチャートである。ここで、図2(A)は下流側触媒34の触媒温度を示している。触媒温度は、例えば水温センサ42で検出した水温から間接的に推定することができるが、下流側触媒34に設けた温度センサから直接求めても良い。また、図2(B)は高温始動判定フラグ、図2(C)はエンジン回転数、図2(D)は下流側触媒34に流入する排気ガスの排気空燃比(触媒前空燃比)、図2(E)は下流側触媒34から排出された排ガス中のHS濃度の波形をそれぞれ示している。本実施形態では、これらの波形に基づいてECU40において以下の制御を行う。
【0034】
図2(C)に示すように、始動によりエンジン回転数は増加し、その後、定常状態のアイドリング回転数へ移行する。図2(A)に示すように、エンジンの始動時に触媒温度がHS排出温度(T)以上の高温である場合、図2(B)に示すように高温始動判定フラグを立ち上げる。触媒温度が650℃〜800℃のとき、HSが下流側触媒34から脱離し易いため、HS排出温度(T)は例えば650℃に設定しておく。
【0035】
そして、高温始動判定フラグの立ち上がりにより、高温時にエンジン再始動(高温再始動)がされたことが認識される。そして、高温再始動の場合は、図2(D)中の実線に示すように排気空燃比を高温再始動でない場合(図2(D)中の破線)に比べてリーン側に制御する。
【0036】
本実施形態の内燃機関は希薄燃焼型の内燃機関であるため、図2(D)に示すように、その始動時には良好な始動性を確保するため空燃比が燃料リッチに制御される。そして、高温再始動の場合は、排気空燃比が始動直後の燃料リッチの状態から直ちにストイキ側へ制御され、その後、わずかにリーンな値に制御される。更に時間が経過して図2(A)に示すように触媒温度がHS排出温度(T)以下となった後は、図2(D)に示すように空燃比はストイキに制御される。
【0037】
そして、本実施の形態の燃料制御装置は、始動直後に排気空燃比を燃料リッチの状態から弱リーンの状態へ移行させる時間を下流側触媒34のS被毒量または触媒温度に応じて可変する。すなわち、燃料リッチの状態から弱リーンの状態へ移行させる速度(リーン化速度)をS被毒量(S付着量)または触媒温度に応じて制御する。具体的には、燃料噴射弁30から噴射する燃料の噴射時間を制御し、内燃機関10へ供給する混合気の空燃比を変更することで排気空燃比のリーン化速度を制御する。
【0038】
ここで、S被毒量は下流側触媒34に吸蔵されているイオウ成分の量であり、イオウ成分は元々燃料中に含まれることから、S被毒量は燃料噴射弁30から噴射した燃料量に応じて増加し、高温下の還元雰囲気によりイオウ成分を浄化するS被毒回復制御によって減少する。従って、S被毒量は、燃料噴射量とS被毒回復制御の実行履歴から求めることができる。また、下流側触媒34の触媒温度は図2(A)と同様に水温センサ42で検出した内燃機関10の水温等から求めることができる。
【0039】
図3は、下流側触媒34のS被毒量または触媒温度に応じてリーン化速度を可変させる方法を示す模式図である。図3に示すように、S被毒量が多い場合にはリーン化速度を速くし、S被毒量が少ない場合にはリーン化速度を遅くする。また、触媒温度に応じてリーン化速度を可変する場合は、触媒温度が高いほどリーン化速度を速くし、触媒温度が低いほどリーン化速度を遅くするように制御を行う。
【0040】
SOが脱離温度域にあるとき、下流側触媒34へのS付着量が多いほど、又は下流側触媒34の温度が高温であるほどHSは大量に排出される。図3に示すようにS付着量が多いほど、又は触媒温度が高温になるほどリーン化速度を大きくすることで排気空燃比が燃料リッチの状態にある時間を短縮することができ、HSの排出量を最小限に抑えることができる。また、S付着量が少ないとき、又は触媒温度が低温の場合にはHSの排出量が許容レベルになるため、燃料リッチの時間を増やすことで始動性を良好に保つことができる。更に、排気空燃比がストイキ側に達した後、わずかにリーンな値に制御することでHSの排出を確実に抑止できる。
【0041】
なお、図3の特性を求める際には、下流側触媒34のS被毒量、リーン化速度をパラメータとして可変しながらHS排出量を実際に測定し、HS排出量が臭気を感じるレベル(L)以下となる場合の被毒量、リーン化速度の値を求める。これにより、図3の特性を得ることができる。
【0042】
図4は、リーン化速度を可変した場合の図2(D)の排気空燃比の波形を示している。例えばS被毒量に応じてリーン化速度を可変する場合、S被毒量が少ない場合は、図4(A)に示すように排気空燃比の燃料リッチのピークからストイキに到達させる目標時間tを長くしてリーン化速度を遅くする。S被毒量が多い場合は、図4(B)に示すように目標時間をtより短いtに設定してリーン化速度を速くする。触媒温度に応じてリーン化速度を可変する場合も同様の制御を行う。この際、図4に示すように燃料リッチな排気空燃比のピーク値は変更せずに目標時間のみを変更する。燃料リッチな空燃比のピーク値を一定に保つことで、リーン化速度を変更した場合であっても良好な始動性を得ることができる。排気空燃比を燃料リッチにした後、実際にHSが排出されるまでには一定の時間遅れが存在するため、始動時の燃料リッチな排気空燃比自体は変更しなくても、HSが実際に排出されるまでの間に空燃比をリーン化していくことで、始動性を確保しつつHS発生を抑制できる。
【0043】
このように、高温再始動があった場合は、始動直後の燃料リッチの状態からストイキ側へ排気空燃比を制御し、S付着量が多いほど、又は触媒温度が高温になるほどリーン化速度を大きくすることで、図2(E)に示すように始動時のHSの排出量を人が臭気を感じるレベルL以下に抑制することができる。これにより、HSに起因する異臭が車両の周囲に拡がることを抑止できる。
【0044】
リーン化速度の制御は、空燃比センサ35の検出値を燃料噴射弁30における燃料噴射量にフィードバックするメインフィードバック(メインF/B)、サブOセンサ38の検出値を燃料噴射弁30における燃料噴射量にフィードバックするサブフィードバック(サブF/B)を用いて制御することができる。図5はメインF/B及びサブF/Bを示す模式図である。
【0045】
図5は、内燃機関10が#1〜#4の4気筒で構成される場合に、上流側触媒32が2つ設けられ、それぞれの上流側触媒32の上流に空燃比センサ35が配置された例を示している。図5に示す構成では、空燃比センサ35からECU40を介して燃料噴射弁30に達するループがメインF/Bとなる。また、下流側触媒34の下流側に配置されたサブOセンサ38からECUを介して燃料噴射弁30に達するループがサブF/Bとなる。
【0046】
メインF/Bでリーン化速度を制御する場合は、空燃比センサ35で排気空燃比をモニタしながら燃料噴射弁30の燃料噴射量を制御してリーン化速度を可変する。一方、サブF/Bでリーン化速度を制御する場合は、サブOセンサ38の出力に基づいて燃料噴射弁30の燃料噴射量を制御する。触媒温度がHS排出温度以下となった後は、通常のストイキ制御として、メインF/Bにより空燃比をA/F=14.7に制御し、更に、サブF/Bの検出値で補正することにより下流側触媒34から排出される排気の空燃比をストイキに制御する。
【0047】
次に、図6及び図7のフローチャートに基づいて、本実施形態の燃料制御装置の制御の手順について説明する。最初に、図6のフローチャートに基づいて始動時の状態が高温再始動であるか否かを判定する。先ず、ステップS1ではエンジンの水温などから下流側触媒34の触媒温度(ecattemp)を検出する。次のステップS2では触媒温度(ecattemp)とHS排出温度(KCATTEMP)を比較し、ecattemp≧KCATTEMPの場合にはステップS3へ進む。ecattemp≧KCATTEMPでない場合にはステップS4へ進む。
【0048】
ステップS3、ステップS4では高温再始動判定のためのフラグ(xhstart)の状態を設定する。ステップS3へ進んだ場合は、ecattemp≧KCATTEMPであるため、xhstart=1とし、フラグ(xhstart)を高温再始動の状態に設定する。一方、ステップS4へ進んだ場合は、xhstart=0とし、フラグ(xhstart)を高温再始動ではない状態(通常の始動)に設定する。
【0049】
フラグ(xhstart)の状態を設定した後は、図7のフローチャートの手順で制御を行う。先ず、ステップS11ではエンジンの始動があったか否かを検出する。始動があった場合はステップS12へ進み、始動がなかった場合は初期状態へ戻る(RETURN)。ステップS12では、図6で設定したフラグ(xhstart)の状態を読み出し、xhstart=1のときはステップS13へ進む。
【0050】
ステップS13では下流側触媒34へのイオウ成分の付着量(S被毒量:eqsoxcnt)を算出する。上述のようにS被毒量は、燃料噴射量とS被毒回復制御の実行履歴から求めることができ、過去の燃料噴射とS被毒回復制御の実行履歴から算出する。次のステップS14ではS被毒量からリーン化速度を算出する。ここでは、図3の模式図をマップとして用い、S被毒量に応じたリーン化速度をマップから算出する。
【0051】
次のステップS15ではステップS14で算出したリーン化速度に応じて空燃比リーン化制御を行う。ここでは、燃料噴射弁30から噴射する燃料の噴射時間を可変し、図3、図4で説明したようにS被毒量が多くなるほどリーン化速度を大きくして空燃比リーン化制御を行う。
【0052】
一方、ステップS12でxhstart=1でないときは、ステップS16へ進み、リーン化速度を変更することなく通常の空燃比制御を行う。
【0053】
なお、触媒温度に応じてリーン化速度を可変する場合も、図6及び図7と同様の手順で行うことができる。この場合、ステップS13で触媒温度を検出し、ステップS14で触媒温度を図3のマップに当てはめてリーン化速度を求め、ステップS15でリーン化速度に応じた制御を行う。
【0054】
以上説明したように実施の形態1によれば、高温再始動の場合には下流側触媒34のS被毒量、又は触媒温度に応じてリーン化速度を可変するようにしたため、始動時におけるHSの排出量を最少限に抑えることができる。また、燃料リッチな排気空燃比のピーク値は変更せずにリーン化速度のみを可変するようにしたため、リッチ空燃比自体を変更する場合と比べて、良好な始動性、ドライバビリティを確保することができる。
【0055】
実施の形態2.
次に、本発明の実施の形態2について説明する。実施の形態2は、実施の形態1と同様に下流側触媒のS付着量又は触媒温度に応じてリーン化速度を可変するものであるが、具体的にサブOセンサ38の活性判定電圧を可変することでリーン化速度を制御するようにしたものである。
【0056】
図8は、本実施形態の燃料制御装置での制御に関わる各パラメータの波形を示すタイミングチャートである。本実施形態では、これらの波形に基づいてECU40において以下の制御を行う。ここで、図8(A)は下流側触媒34の触媒温度、図8(B)は高温始動判定フラグ、図8(C)はエンジン回転数、図8(D)はサブOセンサ38による活性判定出力(xsoxact)の波形をそれぞれ示している。また、図8(E)はサブOセンサ38の生出力波形をそれぞれ示しており、生出力は排気空燃比が燃料リッチになるほど増加する。また、図8(F)の破線は目標空燃比を示しており、実線は下流側触媒34へ流入する排気ガスの排気空燃比の波形を示している。図8(A)〜図8(C)の各波形は図2(A)〜図2(C)の各波形と同様である。
【0057】
サブOセンサ38は、それ自体が所定の温度(300℃〜400℃程度)に達するまでは活性状態にならず、センサとして機能しない。このため、始動時には、サブOセンサ38を活性させるための加熱が行われる。サブOセンサ38が活性状態に達したか否かの判定は、サブOセンサ38の生出力が活性判定電圧に到達したか否かによって判定される。
【0058】
サブOセンサ38の活性状態と下流側触媒34の暖機状態には関係があり、通常の始動の場合は、サブOセンサ38が活性していれば下流側触媒34も暖機したと判断できる。そして、下流側触媒34が暖機していれば目標空燃比をリーン側に制御してもドライバビリティの悪化は抑えられる。従って、サブOセンサ38が活性状態に達すると、図8(D)に示すように活性判定出力(xsoxact)を“1”とし、始動時の燃料リッチな空燃比を燃料リーンにする制御を開始する。
【0059】
一方、高温再始動の場合、始動時に下流側触媒34は既に殆ど暖機されており、HS放出温度域に達している。始動時には空燃比を燃料リッチにしているため、高温再始動の場合にサブOセンサ38が活性するまで待機していると、この間に下流側触媒34からHSが排出されてしまう。
【0060】
本実施形態の燃料制御装置は、高温再始動時に始動直後の早い段階から目標空燃比を燃料リーンにしてHSの発生を抑える。このため、サブOセンサ38の出力が小さい段階で目標空燃比をリーン側へ移行させる。より詳細には、サブOセンサ38の活性判定電圧を通常の0.45Vから0.2Vへ変更している。活性判定電圧を小さくした場合であっても、実際の排気空燃比に対してサブOセンサ38の出力には応答遅れが生じるため、センサ出力が活性判定電圧に到達するまでには一定の時間を要する。本実施形態ではこの応答遅れを利用して、センサ出力が0.2Vの活性判定電圧を超えるまでは目標空燃比を燃料リッチに制御している。これにより、始動直後の一定の時間だけ目標空燃比を燃料リッチにすることができ、エンジン始動性、ドライバビリティを向上させることができる。
【0061】
図8(E)中、破線は活性判定電圧を0.45Vとした場合のサブOセンサ38の出力波形を示しており、実線は活性判定電圧を0.2Vとした場合のサブOセンサ38の出力波形を示している。このように、活性判定電圧を0.45Vから0.2Vに変更することで、図8(D)に示す活性判定出力の立ち上がり時刻tを、活性判定電圧が0.45Vの場合の立ち上がり時刻tに比べて始動直後のより速いタイミングにすることができる。これにより、排気空燃比を燃料リッチの状態からリーン側へ移行させるタイミングを早めることが可能となり、リーン化速度を速くすることが可能となる。
【0062】
そして、図8(F)の排気空燃比の波形に示すように、時刻t経過後、直ちに排気空燃比をリーン側へ制御することができ、始動直後のHSの排出を最小限に抑えることができる。なお、活性判定のみをサブOセンサ38の出力に基づいて行い、実際の排気空燃比の制御はメインF/Bで制御してもよい。
【0063】
図9は、下流側触媒34のS被毒量または触媒温度に応じてサブOセンサ38の活性判定電圧を可変させる方法を示す模式図である。図9に示すように、S被毒量が多い場合には活性判定電圧を小さくし、S被毒量が少ない場合には活性判定電圧を大きくする。同様に、触媒温度に応じて活性判定電圧を可変する場合、触媒温度が高いほど活性判定電圧を小さく、触媒温度が低いほど活性判定電圧を大きくするように制御を行う。
【0064】
下流側触媒34のS被毒量が多い場合、または触媒温度が高い場合にはHSが排出され易いので、より早くリーンにするよう制御を行うことが望ましい。従ってこの場合には活性判定電圧を小さくして、空燃比のリーン化を早い段階から行なうようにする。一方、S被毒量が少ない場合、または触媒温度が低い場合はHSは排出されにくいので、始動性を重視するとともに吸蔵されたNOの還元を促進するため遅めにリーン化するようにする。
【0065】
次に、図10のフローチャートに基づいて、本実施形態の燃料制御装置の制御の手順について説明する。実施の形態2では、図6で説明した高温再始動判定の手順については実施の形態1と同様に行ない、その後、図10のフローチャートに従って制御を行う。先ず、ステップS21ではエンジンの始動があったか否かを検出する。始動があった場合はステップS22へ進み、始動がなかった場合は初期状態へ戻る(RETURN)。ステップS22では、高温再始動判定のフラグ(xhstart)の状態を判定し、xhstart=1のときはステップS23へ進む。
【0066】
ステップS23では、燃料噴射とS被毒回復制御の実行履歴からS被毒量(eqsoxcnt)を算出し、次のステップS24ではS被毒量からサブOセンサ38の活性判定電圧を算出する。ここでは、図9の模式図をマップとして用い、S被毒量に応じた活性判定電圧を算出する。
【0067】
次のステップS25では、xsoxact=1であるか否かを判定し、サブOセンサ38の活性状態を判別する。サブOセンサ38が活性済である場合、すなわちxsoxact=1のときはステップS28へ進む。これにより、1回でもサブOセンサ38が活性済と判定された場合は、ステップS28で空燃比リーンのフィードバック制御が行われる。一方、xsoxact=1でない場合はステップS26へ進む。
【0068】
ステップS26では、サブOセンサ38の出力(esoxv)とステップS24で算出した活性判定電圧を比較し、esoxv≧(算出した活性判定電圧)の場合にはステップS27へ進む。esoxv≧(算出した活性判定電圧)でないときは、初期状態へ戻る(RETURN)。
【0069】
ステップS27では、xsoxact=1に設定し、サブOセンサ38が活性済であること、すなわち、サブOセンサ38の出力が活性判定電圧に達していることを認識する。そして、次のステップS28では空燃比リーンのフィードバック制御を行う。
【0070】
ステップS22でxhstart=1でないときは、高温再始動ではないため、ステップS29へ進んでリーン化速度を変更することなく通常の空燃比制御を行う。
【0071】
なお、触媒温度に応じて活性判定電圧を可変する場合は、ステップS23で触媒温度を検出し、ステップS24で触媒温度を図9のマップに当てはめてリーン化速度を求め、ステップS28でリーン化速度に応じた制御を行う。
【0072】
以上説明したように実施の形態2によれば、下流側触媒34のS被毒量又は触媒温度に応じてサブOセンサ38の活性判定電圧を変更するようにしたため、始動直後の燃料リッチの状態からリーン側へ制御するタイミングを可変することができる。これにより、実施の形態1と同様にリーン化速度を可変することができ、S被毒量が多い場合または触媒温度が高い場合には、より早くリーンにするよう制御を行うことで、HSの排出量を最小限に抑えることができる。
【0073】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
【0074】
請求項1記載の発明によれば、始動時に排気空燃比を燃料リッチとし、排気浄化触媒の温度に基づいて排気空燃比のリーン側への制御を補正するようにしたため、排気浄化触媒から排出されるイオウ成分を最小限に抑えるとともに、良好な始動性、ドライバビリティを確保できる。
【0075】
請求項2記載の発明によれば、排気浄化触媒へのイオウ成分の付着量が多いほどリーン化の速度を大きくすることで、排気空燃比を速やかにリーン側へ移行させることができ、排気浄化触媒から排出されるイオウ成分を最小限に抑えることができる。
【0076】
請求項3記載の発明によれば、排気浄化触媒の温度が高いほどリーン化の速度を大きくすることで、排気空燃比を速やかにリーン側へ移行させることができ、排気浄化触媒から排出されるイオウ成分を最小限に抑えることができる。
【0077】
請求項4記載の発明によれば、排気空燃比を検出するセンサの検出値に応じて混合気供給手段から内燃機関へ供給する混合気の空燃比を制御することで、排気空燃比を高い精度で制御することができる。
【0078】
請求項5記載の発明によれば、排気浄化触媒へのイオウ成分の付着量が多いほど活性判定電圧を小さくすることで、始動から活性判定電圧に達するまでの時間を早めることができ、空燃比をリーン側に切り換える制御を始動から短時間の間に行うことができる。これにより、排気空燃比を速やかにリーン側へ移行させることができ、排気浄化触媒から排出されるイオウ成分を最小限に抑えることができる。
【0079】
請求項6記載の発明によれば、排気浄化触媒の温度が高いほど活性判定電圧を小さくすることで、始動から活性判定電圧に達するまでの時間を早めることができ、空燃比をリーン側に切り換える制御を始動から短時間の間に行うことができる。これにより、排気空燃比を速やかにリーン側へ移行させることができ、排気浄化触媒から排出されるイオウ成分を最小限に抑えることができる。
【0080】
請求項7記載の発明によれば、排気浄化触媒の温度が所定値以下となった場合には排気空燃比をストイキ制御することで、イオウ成分の排出が少ない状態においては通常の機関運転を行うことができる。
【図面の簡単な説明】
【図1】実施の形態1にかかる内燃機関の燃料制御装置及びその周辺の構造を説明するための図である。
【図2】実施の形態1の燃料制御装置の制御に関わる各波形を示すタイミングチャートである。
【図3】下流側触媒のS被毒量、または触媒温度に応じてリーン化速度を可変させる方法を示す模式図である。
【図4】リーン化速度を可変した場合の排気空燃比の波形を示す特性図である。
【図5】燃料制御装置のメインF/B及びサブF/Bを示す模式図である。
【図6】実施の形態1の燃料制御装置の制御の手順を示すフローチャートである。
【図7】実施の形態1の燃料制御装置の制御の手順を示すフローチャートである。
【図8】実施の形態2の燃料制御装置の制御に関わる各波形を示すタイミングチャートである。
【図9】下流側触媒のS被毒量、または触媒温度に応じてサブOセンサの活性判定電圧を可変させる方法を示す模式図である。
【図10】実施の形態2の燃料制御装置の制御の手順を示すフローチャートである。
【図11】従来の内燃機関において、始動時及び始動直後の排気空燃比と、排出されるHSの濃度を示すタイミングチャートである。
【符号の説明】
10 内燃機関
12 吸気通路
14 排気通路
30 燃料噴射弁
32 上流側触媒
34 下流側触媒(NO吸蔵触媒)
35 空燃比センサ
38 サブOセンサ
40 ECU
42 水温センサ

Claims (7)

  1. 排気中のイオウ成分を吸着、吸収又はその両方にて選択的に保持し、触媒温度が高温で排気空燃比が燃料リッチとなったときに、吸蔵したイオウ成分を排出する排気浄化触媒と、
    前記排気浄化触媒の温度を直接又は間接的に検知する触媒温度検知手段と、
    始動時に排気空燃比を燃料リッチとし、始動後に排気空燃比をリーン側に向かって制御する燃料制御手段と、
    始動時の前記排気浄化触媒の温度に基づいて、前記排気空燃比のリーン側への制御を補正するリーン化補正手段と、
    を備えたことを特徴とする内燃機関の燃料制御装置。
  2. 前記リーン化補正手段は、前記排気浄化触媒へのイオウ成分の付着量が多いほどリーン化の速度を大きくすることを特徴とする請求項1記載の内燃機関の燃料制御装置。
  3. 前記リーン化補正手段は、前記排気浄化触媒の温度が高いほどリーン化の速度を大きくすることを特徴とする請求項1記載の内燃機関の燃料制御装置。
  4. 前記排気浄化触媒の上流側又は下流側に配置され、前記排気空燃比を検出するセンサと、
    内燃機関に燃料と空気の混合気を供給する混合気供給手段とを備え、
    前記燃料制御手段は、前記センサの検出値に応じて前記混合気供給手段から内燃機関へ供給する混合気の空燃比を制御することを特徴とする請求項1〜3のいずれかに記載の内燃機関の燃料制御装置。
  5. 内燃機関の始動後、前記センサの出力が所定の活性判定電圧に達した際に、前記センサがその機能を発揮する活性状態になったと判定する活性判定手段を備え、
    前記燃料制御手段は、前記センサが活性状態になったと判定された時点から排気空燃比をリーン側に向かって制御し、
    前記リーン化補正手段は、前記排気浄化触媒へのイオウ成分の付着量が多いほど前記活性判定電圧を小さくすることを特徴とする請求項4記載の内燃機関の燃料制御装置。
  6. 内燃機関の始動後、前記センサの出力が所定の活性判定電圧に達した際に、前記センサがその機能を発揮する活性状態になったと判定する活性判定手段を備え、
    前記燃料制御手段は、前記センサが活性状態になったと判定された時点から排気空燃比をリーン側に向かって制御し、
    前記リーン化補正手段は、前記排気浄化触媒の温度が高いほど前記活性判定電圧を小さくすることを特徴とする請求項4記載の内燃機関の燃料制御装置。
  7. 内燃機関の始動後、前記排気浄化触媒の温度が所定値以下となった場合には、前記排気空燃比をストイキに制御することを特徴とする請求項1〜6のいずれかに記載の内燃機関の燃料制御装置。
JP2002277827A 2002-09-24 2002-09-24 内燃機関の燃料制御装置 Pending JP2004116320A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277827A JP2004116320A (ja) 2002-09-24 2002-09-24 内燃機関の燃料制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277827A JP2004116320A (ja) 2002-09-24 2002-09-24 内燃機関の燃料制御装置

Publications (1)

Publication Number Publication Date
JP2004116320A true JP2004116320A (ja) 2004-04-15

Family

ID=32273314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277827A Pending JP2004116320A (ja) 2002-09-24 2002-09-24 内燃機関の燃料制御装置

Country Status (1)

Country Link
JP (1) JP2004116320A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404289B2 (en) 2005-03-29 2008-07-29 Toyota Jidosha Kabushiki Kaisha Vehicular control device
WO2008102793A1 (ja) * 2007-02-21 2008-08-28 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404289B2 (en) 2005-03-29 2008-07-29 Toyota Jidosha Kabushiki Kaisha Vehicular control device
WO2008102793A1 (ja) * 2007-02-21 2008-08-28 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
JP2008202523A (ja) * 2007-02-21 2008-09-04 Toyota Motor Corp 内燃機関の排気浄化装置
JP4710846B2 (ja) * 2007-02-21 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8240131B2 (en) 2007-02-21 2012-08-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
US6834497B2 (en) Exhaust gas purifying device for engine
JP3649188B2 (ja) 排気浄化装置付き内燃機関
JP3788424B2 (ja) エンジンの故障診断装置
KR100385820B1 (ko) 내연기관의 배기 정화 장치
JP3870430B2 (ja) 筒内噴射型内燃機関
JP2004108176A (ja) 内燃機関の排気浄化装置
JPH1181992A (ja) 内燃機関の排気浄化装置
EP2151555B1 (en) Catalyst deterioration determination device and method
JP4107137B2 (ja) 内燃機関の排気浄化装置
JP2004116320A (ja) 内燃機関の燃料制御装置
JP4492776B2 (ja) 内燃機関の排気浄化装置
JP4193553B2 (ja) 内燃機関の排気浄化装置
JP3747693B2 (ja) 内燃機関の排気浄化装置
JP2000192811A (ja) 内燃機関の排気浄化装置
JP3937487B2 (ja) 内燃機関の排気浄化装置
JP3661464B2 (ja) 内燃機関の排気浄化装置
JP2000120483A (ja) 希薄燃焼内燃機関
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
JP2002256858A (ja) 内燃機関の排気浄化装置
JP3334634B2 (ja) 内燃機関の排気浄化装置
JP3972620B2 (ja) 内燃機関の排気浄化装置
JP3890775B2 (ja) 内燃機関の空燃比制御装置
JP2001020726A (ja) 内燃機関の排気浄化装置
JP2000161045A (ja) 内燃機関の排気浄化装置
JP2004353516A (ja) 車両用エンジンの排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080415

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080620