JP2004113968A - マイクロミキサー - Google Patents

マイクロミキサー Download PDF

Info

Publication number
JP2004113968A
JP2004113968A JP2002282854A JP2002282854A JP2004113968A JP 2004113968 A JP2004113968 A JP 2004113968A JP 2002282854 A JP2002282854 A JP 2002282854A JP 2002282854 A JP2002282854 A JP 2002282854A JP 2004113968 A JP2004113968 A JP 2004113968A
Authority
JP
Japan
Prior art keywords
flow path
substrate
horizontal
vertical
micromixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002282854A
Other languages
English (en)
Other versions
JP3888275B2 (ja
Inventor
Hirozo Matsumoto
松本 浩造
Akihiko Kadowaki
門脇 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002282854A priority Critical patent/JP3888275B2/ja
Publication of JP2004113968A publication Critical patent/JP2004113968A/ja
Application granted granted Critical
Publication of JP3888275B2 publication Critical patent/JP3888275B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】マイクロミキサーに要求される小型化を維持しつつ、混合・撹拌効率を高めたマイクロミキサーを提供する。
【解決手段】このマイクロミキサー100は、蓋板10と、垂直流路基板20と、水平流路基板30と、底板40とが順次積層されており、蓋板10の供給口11、12から、垂直流路基板20に形成された第1垂直連通路21、22、水平流路基板30に形成された第2垂直連通路31、32、底板40に形成された線状溝41、環状溝42を介し、更に、水平流路基板30に形成された放射状微小流路34、垂直流路基板20に形成された流体溜室23を介して、蓋板10の取出口13に連通する連続流路が形成されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に形成された微小な流路を用いて、微小容量の気体、液体、固体の撹拌、混合を行うマイクロミキサーに関する。
【0002】
【従来の技術】
近年、マイクロマシニング技術を用いてシリコンやガラス、プラスチックなどの基板上に微小流路(マイクロチャンネル)を作製し、その微小空間を各種溶液類の混合、化学反応、分析、等の場に利用する試みが注目されている。これらの分野に供されるデバイス、装置は、その使用目的に応じて、マイクロミキサーやマイクロリアクタと呼ばれている。
【0003】
このようなマイクロミキサーにおいては、通常、反応流路の等価直径(流路の断面を円に換算したときの直径)が500μmより小さいものが微小流路(マイクロチャンネル)とされている。このように、流路のスケールが微小化してくると、▲1▼レイノルズ数が小さくなるので流れは層流支配となる、▲2▼単位体積当たりの表面積が非常に大きくなる、という特徴が得られる。
【0004】
この特徴によって、温度、圧力、濃度などの勾配が大きくなるため、熱伝導、物質移動拡散などの効率が向上し、反応系での反応時間の短縮、反応速度の向上等の利点が得られることになる。更に、微小反応で適量合成が可能であり、高い再現性も得られるので、薬品や触媒試薬類などの使用量を大幅に低減でき、経済的にも有効である。
【0005】
このようなマイクロミキサーの構造に関する従来技術として、以下のような各種の平面的な構造が提案されている(例えば、非特許文献1〜3参照)。
【0006】
先ず、図3、4に示すような、Y型と呼ばれるマイクロミキサーが知られている。図3は、Y型マイクロミキサーの一例の各構成部材を示す図であって、(A)蓋板、(B)基板、の平面図であり、図4は、図3の基板と蓋板の接合後におけるC−C’矢示線に沿った断面図である。
【0007】
このマイクロミキサー50は、蓋板51と基板52より構成されており、図3(B)に示すように、基板52にY字状の微小流路56が形成されている。また、図3(A)に示すように、蓋板51には、Y字状の微小流路56の両端に連通する位置に、各種溶液、薬品、試薬等を微小流路56に供給するための供給口53、54が設けられ、更に、Y字状の微小流路56の合流後の先端部に連通する位置には、混合又は反応した流体を取り出すための流出口55が形成されている。
【0008】
そして、図4に示すように、蓋板51と基板52が接合され、供給口53、54から供給された各種流体は、微小流路56で混合され、流出口55から外部に取り出すことができるように連続流路が形成されている。
【0009】
また、上記の基板52の代わりに、図5に示すような、T字状の微小流路61を形成した基板60を用いた、T型と呼ばれるマイクロミキサーも知られている。
【0010】
上記のような、等価直径が500μm以下の微小流路内では、レイノルズ数が10〜数100程度と極めて小さいため、流れは層流状態である。よって、上記のようなY型やT型のマイクロミキサーにおいては、2つの供給口53、54から供給された溶液は微小流路では2層の流れとなり、その2層の撹拌、混合は拡散に支配されるため、完全混合にはある一定の時間を必要とする。
【0011】
そこで、この混合時間を短縮するため、2層の流れを平面上で多数に分割して、多数の層流を作り、混合・撹拌効率を上げることも提案されている。
【0012】
図6は、このような基板の一例であり、上記の基板52、60の代わりに、2層の流れをいくつもに分割して多数の層流を作り出すマルチ流路71を形成した基板70を用いている。そして、このマルチ流路71を用いることによって、2つの供給口53、54から導入された流体を、マルチ流路71内で多数の層流に分割し、撹拌、混合効率を向上するものである。
【0013】
また、その他のマイクロミキサーの構造に関する従来技術として、例えば、1000以上の多数の生化学反応を同時に並列的に行うことができ、かつ、単なる分析だけではなく、蛋白質合成などの物質合成反応をもセル上で行うことができる生化学反応用マイクロリアクタとして、シリコン基板の表面に異方性エッチングにより形成された複数の独立した反応チャンバと、該シリコン基板の表面に陽極接合され前記反応チャンバを密閉する平板とからなるマイクロリアクタが開示されている(特許文献1参照)。
【0014】
【非特許文献1】
B.He,N.Tait,F.Regnier:Anal.Chem.70,3790(1998)
【非特許文献2】
W.Ehrfeld,V.Hessel,H.Lowe:Microreactors.,PP64−66,Wile・VHC(2000)
【非特許文献3】
草壁、外輪、諸岡:マイクロリアクタの研究動向と熱化学への応用.計装,第45巻,1号(2002年)
【特許文献1】
特開平10−337173号公報
【0015】
【発明が解決しようとする課題】
上記の従来の技術における、いずれのマイクロミキサーにおいても、通常、基板としてシリコン又はガラスなどを用い、その基板上にドライプラズマエッチングもしくは湿式エッチングなどの方法で微小な流略を形成し、蓋板を接合、接着して構成される。したがって、混合に供する微小流路は、いずれも平面的に配置されている。
【0016】
そして、上記のように、平面的に形成された微小流路内の流体は層流となるので、撹拌、混合は拡散で支配される。このため、層流状態で混合効率を上げるには流れをいくつもに分割して多数の層流を作りだす必要があり、図6に示したようなマルチ流路が要求される。
【0017】
しかしながら、上記のマルチ流路においても、やはり平面的に形成された微小流路であるので流体は層流であり、撹拌、混合は拡散で支配されるので効率が低いという問題があった。
【0018】
また、マルチ流路を平面上に形成すると、基板面積が大となって装置・デバイスのマイクロ化することが困難になるという問題があり、このことは、混合の為の溶液が2種類でなく、多元系に及ぶ場合には特に問題となっていた。
【0019】
本発明は、以上の問題点を鑑みなされたもので、マイクロミキサーに要求される小型化を維持しつつ、流れの方向を組み合わせることで撹拌、混合効率を高めたマイクロミキサーを提供することを目的とする。
【0020】
【課題を解決するための手段】
上記課題を解決するために、本発明のマイクロミキサーは、混合すべき複数の流体を導入するための複数の供給口、及び混合された流体を取り出すための1又は複数の流出口が設けられた蓋板と、
前記供給口に連通する第1垂直連通路、及び前記取出口に連通する流体溜室が形成された垂直流路基板と、
前記第1垂直連通路に連通する第2垂直連通路、及び前記流体溜室に連通する水平微小流路とが形成された水平流路基板と、
前記第2垂直連通路と前記水平微小流路とに連通する溝状の微小流路が形成された底板とが積層配置されており、
前記蓋板の供給口から、前記第1垂直連通路、前記第2垂直連通路、前記溝状の微小流路、前記水平微小流路、前記流体溜室を介して、前記蓋板の取出口に連通する連続流路が形成されていることを特徴とする。
【0021】
これによれば、それぞれの供給口から垂直に注入された流体類が底板の溝状の微小流路で平行流となり、この平行流が、水平流路基板に垂直に流入した後、再度、平行流に転換し、更にそれが垂直流れとなって外部に取り出される。このように、数次に渡って流れの転換があるため、異なる流体の接触界面積が大となり混合度が向上し、更に垂直流から平行流、平行流から垂直流に変化するときに乱流も生ずるので、その乱流効果でより一層、混合度は向上する。
【0022】
本発明においては、前記水平流路基板の前記水平微小流路が放射状に配置され、前記底板の溝状の微小流路が、前記放射状の水平微小流路と連通するように環状をなしていることが好ましい。
【0023】
これによれば、更に、水平微小流路を放射状に配置することで、平板状に微小流路を配置したマイクロミキサーに比べて、マイクロミキサーの専有面積が縮小でき、マイクロミキサーの小型化、薄形化、及び、混合装置としてのアレイ化が可能となる。
【0024】
本発明においては、前記蓋板、底板、水平流路基板、及び垂直流路基板が拡散接合によって一体化されて積層されていることが好ましい。
【0025】
これによれば、拡散接合により接合の際の接着剤等が不要となるので、試料溶液との化学的反応やコンタミネーション等を有効に防止でき、更に、充分な接合強度で、それぞれの板材を一体化して積層できる。
【0026】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。図1、2には、本発明のマイクロミキサーの一実施形態が示されている。図1は本発明のマイクロミキサーの一実施形態を示す分解斜視図であり、図2は、図1の接合後におけるD−D’矢示線に沿った断面図である。
【0027】
図1、2に示すように、このマイクロミキサー100は、混合すべき複数の流体を導入して取り出すための蓋板10と、混合された流体を受けて円周状に拡散させるための底板40との間に、垂直流路基板20、水平流路基板30とが順に積層されて一体化されている。
【0028】
蓋板10には、その両端付近に、流体を供給するための複数の供給口11、12が貫通孔として設けられている。また、蓋板10の中央部には、混合された流体を取り出すための取出口13が設けられている。
【0029】
蓋板10の材質としては特に限定されず、金属、シリコン、ガラス、プラスチック等からなる従来公知の材料が使用できるが、耐薬品性に優れて安定であり、しかも後述するように拡散接合で容易に接合できる材質であり、また、多数の供給口を容易に形成できる点から、金属を用いることが好ましい。金属としては、例えば、銅、鉄、アルミニウム、ニッケル、チタン、ニオブ、ジルコニウム、モリブデン、タングステン等の金属、又はその合金類が使用でき、マイクロミキサーの使用目的、使用条件(溶液・薬品類との化学的反応の有無、使用時の温度・環境、等)から選定されるが、エッチング等で微小流路を形成しやすく、加工精度にも優れ、更に、溶液・薬品類に対する耐化学性、耐熱性、材料の経済性、などの点からステンレス鋼の箔又は薄板を使用することが好ましい。
【0030】
なお、各種の溶液・薬品類に対する化学的安定性がより重要な場合は、チタン、ニオブ、ニッケルなどの金属又はその合金、更に、より高温での使用を目的とする場合は、モリブデン、タングステン又はその合金を使用することが好ましい。
【0031】
蓋板10の厚さは特に限定されないが、10〜500μmのものが好ましく用いられる。
【0032】
供給口11、12、及び取出口13は、流路の形状に合わせて、所定の位置に適宜形成される。供給口、取出口の数も、混合する流体の数に合わせて適宜選択でき限定されない。この供給口11、12、及び取出口13は、例えば、湿式エッチングや、ドリル加工、超音波加工、放電加工もしくはパンチ打抜き等によって形成することができる。
【0033】
蓋材10の下面には、垂直流路基板20が接合される。この垂直流路基板20には、図1に示すように、蓋材10の供給口11、12に連通する位置に、第1垂直連通路21、22が貫通形成されている。また、蓋材10の取出口13に連通する位置には、流体溜室23が円形に貫通形成されている。
【0034】
垂直流路基板20の材質、厚さ、第1垂直連通路21、22、流体溜室23の形成方法等は、蓋板10と同様のものを用いることができる。
【0035】
更に、垂直流路基板20の下面には、水平流路基板30が接合される。この水平流路基板30の両端には、垂直流路基板20の第1垂直連通路21、22に連通する位置に、第2垂直連通路31、32が形成されている。
【0036】
また、水平流路基板30の中央部には、垂直流路基板20の流体溜室23に連通する位置に、円形の合流部33が貫通形成されており、更に、この合流部33から放射状に伸びる放射状微小流路34が形成されている。なお、この実施形態においては、合流部33から8本の放射状微小流路34が形成され、それぞれの放射状微小流路34の中央部付近には、乱流を発生させて撹拌、混合率を向上させるための膨らみ部35が設けられている。
【0037】
放射状微小流路34の形状、長さ、本数は特に限定されず、適宜選定できる。例えば、放射状微小流路34の形状は、図1のような直線形状に限らず、S字やジグザグ状であってもよい。微小流路の幅も特に限定されないが、好ましくは10〜500μmである。微小流路の幅が10μm未満であると、流路が閉塞しやすくなるので好ましくなく、500μmを超えると、混合に要する拡散時間が長くなるので好ましくない。
【0038】
水平流路基板30の材質、厚さ、微小流路の形成方法等は、蓋板10と同様のものを用いることができる。
【0039】
なお、本発明においては、水平流路基板30に形成される水平微小流路は、必ずしも上記のような放射状には限定されず、例えば、櫛状等であってもよい。
【0040】
更に、水平流路基板30の下面には、底板40が接合される。底板40には図1に示すように、水平流路基板30の放射状微小流路34の末端部に連通する位置に、円周状に環状溝41が形成されており、更に、環状溝41から底板40の両端に向かって伸びる2本の線状溝42が連続して形成されており、この線状溝42の末端が、水平流路基板30の連通流路31、32に連通するように形成されている。
【0041】
環状溝41、線状溝42の形成方法としては、従来公知のドライプラズマエッチングや、ふっ酸溶液による湿式エッチング等の微細加工方法によって形成することができる。環状溝41、線状溝42の大きさは適宜設定可能であり限定されないが、通常は幅が500μm以下、深さ数十μm程度であることが好ましい。
【0042】
また、本発明においては、底板40に形成される溝状の微小流路は、第2垂直連通路と水平微小流路とに連通していればよく、上記のような環状溝41と線状溝42との組み合わせには必ずしも限定されない。
【0043】
上記のそれぞれの基板は、従来公知の方法によって接合して一体化される。接合方法としては、例えば、エポキシ樹脂等の有機系接着剤による接合する方法、ハンダ、銀ロー等の接合材を用いて接合する方法、ふっ素系樹脂を主として含有する溶液を加熱処理して形成されるふっ素系樹脂層を接着層として接合する方法、有機金属化合物の加水分解・脱水縮合生成物を加熱処理して形成した金属酸化物層を接着層として接合する方法、拡散接合等が利用できるが、なかでも拡散接合を用いることが好ましい。
【0044】
拡散接合は、真空下で加熱加圧することにより、金属同士の拡散を利用して直接接合する方法であり、接着剤や接合層を介さないので、接合条件に不整合がある場合においても微小流路を閉塞することがない。また、接合層の不均一による、微小流路間でのリークを防止できる。更に、各種の溶剤薬品、試薬などに対する化学的耐性や耐熱性にも優れる。
【0045】
拡散接合は、従来公知の拡散接合装置により行なうことができる。拡散接合の条件は、接合材料によって適宜選択されるが、例えばステンレス鋼の場合には、加熱温度750〜1000℃、荷重負荷0.1〜1.0kg/mm、真空度10−4torr以下、保持時間1〜5時間であることが好ましい。
【0046】
このようにして得られたマイクロミキサー100は、図2に示すように、供給口11、12から第1連通路21、22、第2連通路31、31を介して、底板40の線状溝42、43から環状溝41に連通する。更に、環状溝41から、水平流路基板30の放射状微小流路34の末端に連通し、そこから中央の合流部33、流体溜室23を介して、最後に取出口13に連通するように、連続流路が形成されている。
【0047】
なお、本発明においては、蓋板10と底板40との間に設けられる垂直流路基板20と水平流路基板30の数は限定されず、この実施形態のようにそれぞれ1枚づつ設けてもよく、複数枚が設けられていてもよい。このように、流体を水平方向と垂直方向に交互に流すことにより、流体の流れの変化(転回)がより多くなるので混合効率はより向上してくる。また、連続流路の長さも増加できるので、1枚あたりの微小流路の長さを短縮できる。したがって、混合効率を低下させずに、マイクロミキサーを小型化することができる。
【0048】
また、マイクロミキサー100の基板面積は、水平流路基板30に形成する水平微小流路の幅、本数等によって適宜設定される。
【0049】
このマイクロミキサー100は、例えば、以下のように使用される。
まず、図示しない試料流体供給手段により、混合すべき複数の試料流体を供給口11、12注入する。複数の試料流体としては、液体、気体、微小固体、又はこれらの組合せ等が適用可能であり、特に溶液には限定されない。また、試料流体の供給は、重力と毛細管現象を利用して供給してもよく、マイクロシリンジポンプ等によって加圧注入してもよいが、本発明においては、流体が一旦底板40の線状溝41、環状溝40まで下降した後、蓋板10の取出口13まで上昇するので、ディスペンサやマイクロシリンジ等によって、供給口11、12から加圧注入することが好ましい。
【0050】
それぞれの試料溶液は、第1連通路21、22、第2連通路31、31を介して、底板40の線状溝42、43の末端に到達し、そこから、環状溝41に至り、撹拌、混合が開始される。
【0051】
その後、混合流体は、環状溝41に連通する、水平流路基板30の放射状微小流路34の末端に上昇し、更に合流部33に至る。ここで混合流体は層流となり、拡散によって更なる混合が行なわれる。なお、それぞれの放射状微小流路34には膨らみ部35が形成されているので、ここで乱流が生じることにより、より混合度が向上する。
【0052】
複数の放射状微小流路34で混合された流体は、合流部33から垂直流路基板20の流体溜室23に到達し、流体溜室23で更に整流された後に、蓋板10に設けられた取出口13から外部に取り出されて一連の混合工程が完了することになる。
【0053】
このマイクロミキサー100によれば、それぞれの供給口11、12から垂直に注入された流体類が底板40の線状溝41、42、環状溝43で平行流となり、この平行流が、水平流路基板に垂直に流入した後、再度平行流に転換し、更にそれが垂直流れとなって外部に取り出される。このように、このマイクロミキサー100では、数次に渡って流れの転換があるため、異なる流体の接触界面積が大となり、混合度が向上し、更に垂直流から平行流、平行流から垂直流に変化するときに乱流も生ずるので、その乱流効果でより一層、混合度は向上する。
【0054】
更に、水平微小流路を放射状に配置することで、上記の従来技術における平面上に微小流路を配置したマイクロミキサーに比べて、マイクロミキサーの専有面積の縮小化、薄形化が可能となりマキクロミキサーを小型化することができるので、混合装置としてのアレイ化等も容易に行なうことができる。
【0055】
なお、上記の混合においては、混合条件を制御、監視等するために、マイクロリミキサーに、ヒータ装置や、混合状態を監視するための分析装置等が目的に応じて装着されていてもよい。
【0056】
【実施例】
以下、実施例を挙げて、本発明を更に具体的に説明する。
【0057】
<各基板の形成>
図1に示す形状で、蓋板10、垂直流路基板20、水平流路基板30、底板40を形成した。また、各基板における供給口、取出口、微小流路、等は、王水を使用した湿式エッチングによって貫通形成した。なお、上記の各基板の大きさは、すべて20×30mmとした。
蓋板10としては、厚さ0.2mmのステンレス薄板を用い、供給口11、12として、穴径0.5mmの貫通穴を形成した。
垂直流路基板20としては、厚さ0.5mmのステンレス薄板を用い、第1連通路21、22として穴径0.3mmの貫通穴、流体溜室23として穴径0.8mmの貫通穴を形成した。
水平流路基板30としては、厚さ0.2mmのステンレス薄板を用い、第2連通路21、22として穴径0.3mmの貫通穴を形成した。また、水平微小流路として、それぞれの放射状微小流路34の長さが5mm、幅が0.08mm、膨らみ部35の最大幅が0.15mmとなるように、8本の放射状微小流路34を形成した。
底板40としては、厚さ0.5mmのステンレス薄板を用い、直径10mmの環状溝41、及び線状溝42を、流路幅0.15mm、深さ0.15mmで形成した。
【0058】
<各基板の接合>
上記の各基板を、図2に示すように順に積層し、拡散接合によって接合して総厚さ1.4mmの実施例のマイクロミキサー100を得た。
なお、拡散接合の条件は、0.1kg/mmの荷重を負荷し、1×10−4torr以下の真空雰囲気で、950℃、1時間保持して一体化した。
【0059】
上記の実施例のマイクロミキサー100においては、X線による撮像、超音波探傷法などによって、図2に示すように、蓋板10の供給口11、12から、取出口13への連続流路が形成されていることが確認できた。
【0060】
また、各基板は完全に一体化しており、接合界面での溶液の洩れなどは一切、認められなかった。
【0061】
【発明の効果】
以上説明したように、本発明によれば、マイクロミキサーに要求される小型化を維持しつつ、流れの方向を組み合わせることで撹拌、混合効率を高めたマイクロミキサーを提供することができる。
【図面の簡単な説明】
【図1】本発明のマイクロチャンネルチップの一実施形態を示す分解斜視図である。
【図2】図1の接合後におけるD−D’矢示線に沿った断面図である。
【図3】従来のマイクロミキサーの一例を示す各構成部材を示す図であって、(A)蓋板、(B)基板、の平面図である。
【図4】図3の基板と蓋板の接合後におけるC−C’矢示線に沿った断面図である。
【図5】従来のマイクロミキサーにおける、基板の他の例を示す平面図である。
【図6】従来のマイクロミキサーにおける、基板の更に他の例を示す平面図である。
【符号の説明】
10:蓋板
11、12:供給口
13:取出口
20:垂直流路基板
21、22:第1垂直連通路
23:流体溜室
30:水平流路基板
31、32:第2連通路
33:合流部
34:放射状微小流路
35:膨らみ部
40:底板
41:環状溝
42:線状溝
100:マイクロミキサー

Claims (3)

  1. 混合すべき複数の流体を導入するための複数の供給口、及び混合された流体を取り出すための1又は複数の流出口が設けられた蓋板と、
    前記供給口に連通する第1垂直連通路、及び前記取出口に連通する流体溜室が形成された垂直流路基板と、
    前記第1垂直連通路に連通する第2垂直連通路、及び前記流体溜室に連通する水平微小流路とが形成された水平流路基板と、
    前記第2垂直連通路と前記水平微小流路とに連通する溝状の微小流路が形成された底板とが少なくとも積層されており、
    前記蓋板の供給口から、前記第1垂直連通路、前記第2垂直連通路、前記溝状の微小流路、前記水平微小流路、前記流体溜室を介して、前記蓋板の取出口に連通する連続流路が形成されていることを特徴とするマイクロミキサー。
  2. 前記水平流路基板の前記水平微小流路が放射状に配置され、前記底板の溝状の微小流路が、前記放射状の水平微小流路と連通するように環状をなしている請求項1記載のマイクロミキサー。
  3. 前記蓋板、底板、水平流路基板、及び垂直流路基板が拡散接合によって一体化されて積層されている請求項1又は2記載のマイクロミキサー。
JP2002282854A 2002-09-27 2002-09-27 マイクロミキサー Expired - Fee Related JP3888275B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282854A JP3888275B2 (ja) 2002-09-27 2002-09-27 マイクロミキサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282854A JP3888275B2 (ja) 2002-09-27 2002-09-27 マイクロミキサー

Publications (2)

Publication Number Publication Date
JP2004113968A true JP2004113968A (ja) 2004-04-15
JP3888275B2 JP3888275B2 (ja) 2007-02-28

Family

ID=32276895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282854A Expired - Fee Related JP3888275B2 (ja) 2002-09-27 2002-09-27 マイクロミキサー

Country Status (1)

Country Link
JP (1) JP3888275B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008634A (ja) * 2004-06-29 2006-01-12 Nippon Steel Chem Co Ltd ビスフェノール類の製造方法
JP2006008633A (ja) * 2004-06-29 2006-01-12 Nippon Steel Chem Co Ltd ビスフェノール類の製造方法
JP2006026603A (ja) * 2004-07-21 2006-02-02 Yamatake Corp マイクロ混合器
JP2007069137A (ja) * 2005-09-08 2007-03-22 Hitachi Plant Technologies Ltd マイクロ化学反応装置
WO2007037007A1 (ja) * 2005-09-29 2007-04-05 Fujifilm Corporation マイクロデバイスおよび流体の合流方法
JP2008290038A (ja) * 2007-05-28 2008-12-04 Hitachi Plant Technologies Ltd 流体混合装置及び混合流体の製造方法
KR100880005B1 (ko) * 2007-09-21 2009-01-22 한국기계연구원 카오틱 믹싱을 갖는 sar 마이크로 믹서
JP2009521308A (ja) * 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット 熱交換混合システム
WO2014184925A1 (ja) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 電極ペーストの製造方法
CN107224950A (zh) * 2017-07-14 2017-10-03 杭州沈氏节能科技股份有限公司 微反应器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008634A (ja) * 2004-06-29 2006-01-12 Nippon Steel Chem Co Ltd ビスフェノール類の製造方法
JP2006008633A (ja) * 2004-06-29 2006-01-12 Nippon Steel Chem Co Ltd ビスフェノール類の製造方法
JP2006026603A (ja) * 2004-07-21 2006-02-02 Yamatake Corp マイクロ混合器
JP2007069137A (ja) * 2005-09-08 2007-03-22 Hitachi Plant Technologies Ltd マイクロ化学反応装置
JP4715403B2 (ja) * 2005-09-08 2011-07-06 株式会社日立プラントテクノロジー マイクロ化学反応装置
WO2007037007A1 (ja) * 2005-09-29 2007-04-05 Fujifilm Corporation マイクロデバイスおよび流体の合流方法
JP2009521308A (ja) * 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット 熱交換混合システム
JP2008290038A (ja) * 2007-05-28 2008-12-04 Hitachi Plant Technologies Ltd 流体混合装置及び混合流体の製造方法
KR100880005B1 (ko) * 2007-09-21 2009-01-22 한국기계연구원 카오틱 믹싱을 갖는 sar 마이크로 믹서
WO2014184925A1 (ja) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 電極ペーストの製造方法
US9853282B2 (en) 2013-05-16 2017-12-26 Toyota Jidosha Kabushiki Kaisha Electrode paste production method
CN107224950A (zh) * 2017-07-14 2017-10-03 杭州沈氏节能科技股份有限公司 微反应器

Also Published As

Publication number Publication date
JP3888275B2 (ja) 2007-02-28

Similar Documents

Publication Publication Date Title
Erickson et al. Integrated microfluidic devices
Jakeway et al. Miniaturized total analysis systems for biological analysis
US9086371B2 (en) Fluidics devices
JP3605102B2 (ja) 液体混合装置
US20020125139A1 (en) Methods and devices for high throughput fluid delivery
US20060171864A1 (en) High performance microreaction device
US20040043479A1 (en) Multilayerd microfluidic devices for analyte reactions
AU2001284700A1 (en) Methods and devices for high throughput fluid delivery
JP2003516223A (ja) モジュール式ミクロ反応システム
Tu et al. Development of micro chemical, biological and thermal systems in China: a review
Ehrfeld et al. Microreactors for chemical synthesis and biotechnology—current developments and future applications
JP3888275B2 (ja) マイクロミキサー
Köhler et al. Chip devices for miniaturized biotechnology
JP2004016870A (ja) マイクロリアクター及びそれを用いた化学反応方法
JPWO2006030952A1 (ja) 流体混合器
JP2004113967A (ja) マイクロミキサー
US20070240773A1 (en) Methods and devices for high throughput fluid delivery
JP2004351309A (ja) マイクロ化学チップおよびその製造方法
US20040265992A1 (en) Microchemical chip and method for producing the same
JP2006208188A (ja) マイクロ化学チップ
JP3873866B2 (ja) 微小流体混合器
KR20040036387A (ko) 마이크로 혼합기 및 그의 제조방법
JP4372701B2 (ja) マイクロチップ
De Mello et al. Chip technology for micro-separation
Chew et al. Fluid micromixing technology and its applications for biological and chemical processes

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040729

A621 Written request for application examination

Effective date: 20050117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees