JP4372701B2 - マイクロチップ - Google Patents

マイクロチップ Download PDF

Info

Publication number
JP4372701B2
JP4372701B2 JP2005043592A JP2005043592A JP4372701B2 JP 4372701 B2 JP4372701 B2 JP 4372701B2 JP 2005043592 A JP2005043592 A JP 2005043592A JP 2005043592 A JP2005043592 A JP 2005043592A JP 4372701 B2 JP4372701 B2 JP 4372701B2
Authority
JP
Japan
Prior art keywords
port
powder
introduction
substrate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005043592A
Other languages
English (en)
Other versions
JP2006226940A (ja
Inventor
政夫 井上
美智恵 原地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Original Assignee
Aida Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd filed Critical Aida Engineering Ltd
Priority to JP2005043592A priority Critical patent/JP4372701B2/ja
Publication of JP2006226940A publication Critical patent/JP2006226940A/ja
Application granted granted Critical
Publication of JP4372701B2 publication Critical patent/JP4372701B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、少なくとも一方の基板内に微細な流路(マイクロチャネル)、反応容器及び/又はポートなどが形成されているマイクロチップに関する。更に詳細には、本発明は、マイクロチャネル内に粉体又は固体などの固形物を送入するのに適した構造を有するマイクロチップに関する。
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内に所定の形状の流路を構成するマイクロチャネル及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うことが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル及びポートなどの微細構造を有する構造物は総称して「マイクロチップ」と呼ばれる。
マイクロチップは遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロチップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
マイクロチップの材質や構造及び製造方法は例えば、特許文献1及び特許文献2などに提案されている。従来のマイクロチップ100は、例えば、図15に示されるように、合成樹脂(例えば、ポリジメチルシロキサン又はアクリル樹脂)などの基板102に少なくとも1本のマイクロチャネル104が形成されており、このマイクロチャネル104の少なくとも一端には、試薬類を出し入れするためのポート106が形成されている。基板102の下面側に透明又は不透明な素材(例えば、ガラス又は合成樹脂フィルム)からなる対面基板108が接着されている。この対面基板108の存在により、ポート106及びマイクロチャネル104の底部が封止される。マイクロチャネル104は対面基板108内に形成されることもある。
ポート106の主な用途は、(イ)薬液やサンプルの注入(分注)、(ロ)廃液や生成物の取り出し、(ハ)気体圧力の供給(主に、送液のための正圧や負圧の印加)、(ニ)大気開放(送液時に発生する内圧の分散や、反応で生じたガスの解放)、及び(ホ)密閉(液体の蒸発防止や故意に内圧を発生させる目的のため)などである。ポート106は例えば、内径2mm、深さ2mmの円筒形状の穴である。開放状態のままで使用することもあるが、チューブなどを接続して使用することもある。
マイクロチャネル104内には液体や気体ばかりでなく、粒径が1〜100μm程度の粉体を送入することもある(例えば、非特許文献1参照)。非特許文献1に記載されたシステムでは、粉体(シリカビーズ)をマイクロチップ内に導入して堰き止め、サンプルや溶解バッファーなどとマイクロチップ内で適宜吸着、反応させることによって、DNAを精製する。
マイクロチップにおいて必要とされる粉体の種類には次のようなものがある。
(1)DNA等の抽出を目的とした細胞断片等
具体的には口内スワブ等で、溶解バッファーと混合・撹拌し、DNAを抽出する。
(2)DNA等を特異的に吸着するビーズ
主にDNA等を精製することを目的として使用されるビーズである。ビーズといっても必ずしも球形とは限らない。材質はガラスや合成樹脂などである。磁性を帯びさせるために、酸化鉄などの磁性体を含む場合もある。
(3)触媒作用のある粉体
各種の化学反応促進を目的とした金属粉などである。
(4)光を吸収する粉体
カーボン粉等で、マイクロチップの外部よりレーザ光等を照射し、光を吸収することで局部的な熱を発生させ、その熱で化学反応を促進させる。
(5)物理的な作用を発生させるための粉体
一例としては、磁性ビーズを用い、外部からの交番磁界によってそのビーズを振動させ、粉体の混合や化学反応を促進する。
(6)その他
流れを可視化するために、透明な液体中に視認性のある粉体を混入する。
マイクロチップ内へ粉体を導入する際、粉体単独では導入することが困難なため、粉体を液体中に懸濁させ、懸濁液として導入するのが殆どである。以下、この液体を導入液体と呼ぶ。導入液体とは、粉体の保存用液体や粉体に影響を及ぼさない液体が該当する。
粉体を含む導入液体を、図16に示されるようにマイクロピペット110などを使って導入ポート106に落とし込むか、又は図17に示されるように導入ポート106の開口部にアダプター114を介して接続された送液チューブ112から送入し、図示していないポンプなどの手段により、導入ポート内の粉体を導入対象のチャネル104(以下、「導入対象チャネル」と呼ぶ)内に導入する。粉体専用の導入ポートではなく、液体導入と兼用のポートであることが殆どである。
図18は、粉体を含む導入液体をマイクロピペットなどを使って導入ポート106に落とし込み、導入対象チャネル内を移動させる状態を示す模式図である。先ず、ステップ(A)に示されるように、導入ポート106内の粉体116を含む導入液体118が導入対象チャネル104内へ流れ出す。しかし、ステップ(B)に示されるように、次第に導入ポート106中央付近より導入液体118が減少し、かつ、乾燥が進み。空(から)の部分(空気)が導入ポート106の中央から内壁面側へと拡がってゆく。本現象は、導入ポート106の内壁と導入液体118の間に発生する表面張力により、導入ポート底面内壁上に導入液体が留まる性質による。最後に、ステップ(C)に示されるように、導入液体118だけが導入ポート106から導入対象チャネル104内へ全て流れ出し、粉体116だけが導入ポート106の底部内壁面上に残留してしまう。稀に、導入ポート106の底部中央部にも残留することがあるが、導入ポートの底部内壁面上に残留してしまうことが圧倒的に多い。液体だけを導入ポート106から追加しても、ポート底部の内壁面に付着した残留粉体を洗い流すことはできなかった。
従って、導入過程において、導入ポート106内の残留粉体116の有無を、直接目視するか或いは顕微鏡などで覗きながら確認している。導入ポート106内に残留粉体116が存在する場合、例えば、実験者が導入液体118を導入ポート106に適宜補充したり、導入ポート106に接続されたポンプの送液流量を可変させることにより、粉体116を余すところなく導入対象チャネル104内へ導入させていた。
マイクロチップ内へ液体を導入することに比べて、粉体を導入することは非常に難しく、導入ポート底部内壁面上に粉体が残留することにより次のような問題点が生じる。
(1)粉体量の定量性がない。
(2)粉体の無駄が生じる。
(3)粉体導入作業に確実性がなく、人による確認作業を必要とする。
(4)人が介在する作業では個人差も生じ、実用化及び自動化が難しい。
特開2001−157855号公報 米国特許第5965237号明細書 Nae Yoon Lee et al., DEVELOPMENT OF THREE-DIMENSIONAL PASSIVE MICROMIXER AND ITS APPLICATION FOR MINIATURIZED DNA PREPARATIONS SYSTEM, (8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, September 26-30, Malmo, Sweeden), Proc. MicroTAS2004, I 524-526(2004)
従って、本発明の目的は粉体を含む液体を導入ポートからマイクロチャネルに送入する際、導入ポート内壁面上に残留しない構造を有するマイクロチップを提供することである。
本発明の別の目的は粉体を含む液体を導入ポートからマイクロチャネルに送入する際、導入ポート内壁面上に残留せず、実験者が介在しない実用化にも対応できる粉体導入方法を提供することである。
前記課題を解決するための手段として請求項1に係る発明は、第1の基板と、該第1の基板の一方の面側に接着される第2の基板とからなり、前記第1の基板又は第2の基板の少なくも何れか一方に1本以上のマイクロチャネルが形成されており、前記第1の基板は、前記マイクロチャネルのうちの何れか1本に連通する、上部が大気に開口した第1のポートを有するマイクロチップにおいて、
前記第1の基板は、前記第1のポートの上流側に、上部が大気に開口した第2のポートを有し、
前記第1のポートは粉体含有液体を導入するためのポートであり、前記第2のポートは洗流液を注入するためのポートであり、
前記第1のポートの下部に該ポートの内径よりも大きな内径と、平滑な内壁面を有する拡径部が形成されており、
前記第1のポート下部に形成された拡径部と第2のポートはマイクロチャネルにより相互に連通されていることを特徴とするマイクロチップである。
前記課題を解決するための手段として請求項2に係る発明は、前記粉体含有液体を導入するための第1のポートの下部に形成される拡径部の平面形状が真円形、液滴形又は紡錘形の何れかの形状を有することを特徴とする請求項1記載のマイクロチップである。
前記課題を解決するための手段として請求項3に係る発明は、第1の基板と、該第1の基板の一方の面側に接着される第2の基板とからなり、前記第1の基板又は第2の基板の少なくも何れか一方に1本以上のマイクロチャネルが形成されており、前記第1の基板は、前記マイクロチャネルのうちの何れか1本に連通する、上部が大気に開口した第1のポートを有し、
前記第1の基板は、前記第1のポートの上流側に、上部が大気に開口した第2のポートを有し、
前記第1のポートは粉体含有液体の導入ポートであり、前記第2のポートは洗流液の注入ポートであり、
前記第1のポートの下部に該ポートの内径よりも大きな内径と平滑な内壁面を有する拡径部が形成されており、
前記第1のポート下部に形成された拡径部と第2のポートはマイクロチャネルにより相互に連通されているマイクロチップの前記第1のポートからマイクロチャネル内に粉体を導入する方法であって、
(1)第1のポートから、該ポート下部の拡径部に該粉体含有液体を導入し、次いで、
(2)第1のポートの上流側の第2のポートから洗流液を、第1のポート下部に形成された拡径部と第2のポートを連通させるマイクロチャネルを介して前記第1のポート下部に形成された拡径部内に送入することにより、該第1のポートの下部の拡径部内壁面上に残留した粉体を、該第1のポートの下流側の粉体導入対象チャネル内に洗い流し出すことを特徴とする粉体導入方法である。
前記課題を解決するための手段として請求項4に係る発明は、前記粉体含有液体を導入するための第1のポートの下部に形成される拡径部の平面形状が真円形、液滴形又は紡錘形の何れかの形状を有することを特徴とする請求項3記載の粉体導入方法である。
本発明のマイクロチップを使用する場合、先ず、粉体含有液体を導入ポートから注入し、試料導入チャネルに送入する。導入ポート内の粉体含有液体が殆ど試料導入チャネル内に送入されたら、洗流液注入ポートから洗流液を注入し、導入ポートの底部内壁面上に残留しているか又は残留しているかもしれない粉体を洗い流して試料導入チャネル内に全て送入させることができる。これにより、導入される粉体量の定量性が確保され、粉体の無駄が無くなり、粉体導入作業に確実性が出るので、人による確認作業が不要となり、マイクロチップへの粉体導入の実用化及び自動化が可能となる。
以下、図面を参照しながら本発明のマイクロチップについて具体的に説明する。図1は本発明のマイクロチップの一例の部分概要平面図である。図2は図1におけるII-II線に沿った断面図である。本発明のマイクロチップ1は従来のマイクロチップと同様に、第1の基板3と第2の基板(対面基板)5との組合せからなる。第1の基板3はPDMSなどの樹脂やガラスなどからなり、第2の基板5はPDMSなどの樹脂やガラスなどからなる。第1の基板3には、粉体含有導入液体などを導入するための導入ポート7と、このポート7に連通する試料導入チャネル9が配設されている。第1の基板3には更に、導入ポート7の上流側に洗流液注入ポート11と、このポート11と導入ポート7を連通させる洗流液流下チャネル13が配設されている。図示されているように、導入ポート7及び洗流液注入ポート11は第1の基板3の上面に開口する貫通孔である。試料導入チャネル9及び/又は洗流液流下チャネル13は第2の基板5側に配設することもできる。洗流液注入ポート11及び洗流液流下チャネル13は、図示されているような導入ポート7と直列状に対向させて配列させる実施態様に限定されず、所定の角度で交差するか、直交状に配列させることもできる。導入ポート7に連設される洗流液注入ポート11及び洗流液流下チャネル13は1個だけでなく、複数個配設することもできる。
洗流液注入ポート11から洗流液を注入する場合、図3に示されるように、ピペット15から落とし込むか、又は図4に示されるように、ポート11にアダプター17を装着し、このアダプター17に送液チューブ19を接続し、洗流液を加圧送入するか、シリンジポンプを接続して加圧送入することができる。図示されていないが、洗流液流下チャネル13の途中にマイクロポンプ及び/又はマイクロバルブなどの流体制御素子を配設することもでき、洗流液の送液手段として有効である。導入ポート7の底部内壁面上に残留した粉体116を効果的に洗い流すには、洗流液を加圧して送入することが好ましい。必要に応じて、試料導入チャネル9の下流側から負圧を印加して洗流液による洗い流しを促進させることもできる。洗流液は導入液体と異なる種類の液体又は同じ種類の液体を使用することができる。洗流液及び導入液体としては例えば、精製水、注射用蒸留水、純水、生理食塩水などを適宜選択して使用することができる。
図5は本発明のマイクロチップにおける粉体含有導入液体の導入方法の一例を説明する模式的工程図である。先ず、ステップ(1)において、導入ポート7に粉体116を含有する導入液体118を注入する。注入手段は限定されない。次に、ステップ(2)において、粉体含有導入液体118を試料導入チャネル9内に移行させる。具体的には、各箇所における圧力の大小関係は洗流液注入ポート11>導入ポート7>試料導入チャネル9となっていることが必要である。このような圧力勾配を発生する手段は特に限定されない。例えば、試料導入チャネル9の下流側に真空ポンプ(図示されていない)などを接続して負圧で粉体含有導入液体118を試料導入チャネル9内に移行させる。ステップ(3)において、粉体含有導入液体118が試料導入チャネル9内に移行するにつれて、導入ポート中央付近より導入液体118が減少し、空(から)の部分(空気部分)が導入ポート7の中央から内壁面側へと拡がってゆき、導入ポート7の底部内壁面上に粉体116が残留する。導入ポート7内から導入液体118が無くなったら、ステップ(4)において、洗流液注入ポート11から洗流液21を注入する。洗流液21の注入手段は限定されない。最後に、ステップ(5)において、洗流液注入ポート11内の洗流液21を洗流液流下チャネル13を介して導入ポート7内に供給する。供給手段は限定されない。洗流液流下チャネル13からの洗流液21供給によって、導入ポート7の底部内周面上にも流れが発生する。そのため、導入ポート7の底部内壁面上に残留していた粉体116を試料導入チャネル9へ完全に導入させることが可能となる。
図6は本発明のマイクロチップにおける粉体含有導入液体の導入方法の別の例を説明する模式的工程図である。先ず、ステップ(1)において、導入ポート7に粉体含有導入液体118を供給し、洗流液注入ポート11には洗流液21を供給する。この場合の洗流液21は粉体116を含有しない導入液体118であってもよい。次いで、ステップ(2)において、粉体を試料導入チャネル9内に移行させる。具体的には、各箇所における圧力の大小関係は洗流液注入ポート11≧導入ポート7>試料導入チャネル9となっていることが必要である。このような圧力勾配を発生する手段は特に限定されない。更に、この場合には、洗流液注入ポート11と導入ポート7を同圧力とし、それよりも試料導入チャネル9を負圧にすること(圧力の大小関係は、洗流液注入ポート11=導入ポート7>試料導入チャネル9)で、粉体116を自然に試料導入チャネル9へ導入することが可能となる。最も単純な例では、洗流液注入ポート11と導入ポート7を大気圧とし、試料導入チャネル9の下流側に真空ポンプ(図示されていない)などを接続して負圧とすることにより達成可能である。
図7は本発明のマイクロチップにおける粉体含有導入液体の導入方法の別の例を説明する模式的工程図である。先ず、ステップ(1)において、洗流液注入ポート11、洗流液流下チャネル13及び導入ポート7に洗流液21を供給する。引き続いて、ステップ(2)において、導入ポート7に粉体116を供給する。次いで、ステップ(3)において、粉体116を洗流液21により試料導入チャネル9へ移行させる。具体的には、各箇所における圧力の大小関係は洗流液注入ポート11≧導入ポート7>試料導入チャネル9となっていることが必要である。このような圧力勾配を発生する手段は特に限定されない。更に、この場合には、洗流液注入ポート11と導入ポート7を同圧力とし、それよりも試料導入チャネル9を負圧にすること(圧力の大小関係は、洗流液注入ポート11=導入ポート7>試料導入チャネル9)で、粉体116を自然に試料導入チャネル9へ導入することが可能となる。最も単純な例では、洗流液注入ポート11と導入ポート7を大気圧とし、試料導入チャネル9の下流側に真空ポンプ(図示されていない)などを接続して負圧とすることにより達成可能である。
図8は図7におけるステップ(2)の概要断面図である。この方法のメリットは、粉体を供給する導入ポート7に予め洗流液21を供給しておくことにより、粉体116が導入ポート7の底部に沈降して集まり、粉体116が一層流れ易くなることである。
図9は本発明のマイクロチップの別の実施態様の部分概要平面図であり、図10は図9におけるX−X線に沿った断面図であり、図11は図9におけるXI−XI線に沿った断面図である。図9〜図11に示されたマイクロチップ1Aでは、導入ポート7の底部に導入ポートの内径よりも大きな内径を有する拡径部23が形成されている。拡径部23の高さは洗流液流下チャネル13及び試料導入チャネル9と同じ高さであることが好ましい。しかし、チャネルと異なる高さを有する拡径部23も実施可能である。
図12は拡径部23を有する導入ポート7に粉体含有導入液体を注入した状態を示す模式的部分概要断面図である。粉体116を含む導入液体118が導入ポート7に落とし込まれると、毛細管現象が働いて導入ポート7内にある粉体含有導入液体118はより狭い空間へと導入される。すなわち、拡径部23の中に粉体含有導入液体118が入り込み、更に粉体116は拡径部23の内壁面上に沿って集まるため、洗流液流下チャネル13から拡径部23に入り込んだ洗流液も拡径部23の内壁面に沿って流れるので、一層スムーズに粉体116を試料導入チャネル9へ移行させることができる。導入ポート7はドリルなどの機械加工により開設されるので内壁面は粗くザラツイているので粉体が内壁面に付着し易いが、拡径部23は微細加工により形成されるので、その内壁面の平滑度は非常に高く、粉体が拡径部内壁面に付着することは殆ど無い。
図13は拡径部23の別の実施態様を示す部分概要平面図である。(A)は拡径部23の平面形状が液滴形のように形成されており、洗流液流下チャネル13との連通側の幅よりも試料導入チャネル9との連通側の幅の方が狭いので、漏斗のように導入方向に向かって収束していく。(B)は拡径部23の平面形状が紡錘形のように形成されており、洗流液流下チャネル13側と試料導入チャネル9の幅が狭く、中央部で幅が最大となっているので、洗流液流下チャネル13から進入した洗流液は内壁面に沿って拡散した後、中央部で加速されて試料導入チャネル9に向かって収束していく。
図14は図13(B)に示された紡錘型拡径部23における洗流液21と粉体116の流動方向を説明する模式図である。洗流液流下チャネル13の連通口から進入した洗流液21は内壁面に沿って拡散され、拡径部23の幅が最大となる中央部から加速されて試料導入チャネル9に向かって流れていく。その結果、洗流液21により拡径部23の内壁面に沿って粉体116が試料導入チャネル9の連通口に効果的に集中され、洗流液21と共に試料導入チャネル9内に導入されていく。従って、真円形の拡径部23に比べて、液滴形又は紡錘形の拡径部23の方が粉体の洗流効率は高い。
以上、本発明のマイクロチップ内への粉体導入機構の好ましい実施態様について具体的に説明してきたが、本発明は開示された実施態様にのみ限定されず、様々な改変を行うことができる。本発明の粉体導入機構はμTASやLab-on-Chipの観点からマイクロチップ内に実装することができる。本発明のマイクロチップは本願明細書に開示され、かつ添付図面に示された粉体導入機構を1個以上適宜組み合わせて内蔵することができる。このような本発明の画期的な粉体導入機構を内部に有するマイクロチップは、その実用性及び経済性が飛躍的に向上される。その結果、本発明のマイクロチップは、医学、獣医学、歯科学、薬学、生命科学、食品、農業、水産など様々な分野で好適に有効利用することができる。特に、本発明のマイクロチップは、蛍光抗体法、in situ Hibridization等に最適なマイクロチップとして、免疫疾患検査、細胞培養、ウィルス固定、病理検査、細胞診、生検組織診、血液検査、細菌検査、タンパク質分析、DNA分析、RNA分析などの広範な領域で安価に使用できる。
本発明のマイクロチップの一例の部分概要平面図である。 図1におけるII-II線に沿った部分概要断面図である。 図1におけるマイクロチップの洗流液注入ポートから洗流液を注入する方法の一例を説明する部分概要断面図である。 図1におけるマイクロチップの洗流液注入ポートから洗流液を注入する方法の別の例を説明する部分概要断面図である。 本発明のマイクロチップにおける粉体含有導入液体の導入方法の一例を説明する模式的工程図である。 本発明のマイクロチップにおける粉体含有導入液体の導入方法の別の例を説明する模式的工程図である。 本発明のマイクロチップにおける粉体含有導入液体の導入方法の他の例を説明する模式的工程図である。 図7におけるステップ(2)の部分概要断面図である。 本発明のマイクロチップの別の例の部分概要平面図である。 図9におけるX−X線に沿った部分概要断面図である。 図9におけるXI−XI線に沿った部分概要断面図である。 拡径部23を有する導入ポート7に粉体含有導入液体を注入した状態を示す模式的部分概要断面図である。 拡径部23の別の実施態様を示す部分概要平面図である。 図13(B)に示された紡錘型拡径部23における洗流液21と粉体116の流動方向を説明する模式図である。 従来のマイクロチップの一例の部分概要断面図である。 図15に示される従来のマイクロチップの導入ポート106へ粉体含有導入液体の注入方法の一例を示す部分概要断面図である。 図15に示される従来のマイクロチップの導入ポート106へ粉体含有導入液体の注入方法の別の例を示す部分概要断面図である。 粉体を含む導入液体をマイクロピペットなどを使って導入ポート106に落とし込み、導入対象チャネル内を移動させる状態を示す模式図である。
符号の説明
1,1A 本発明のマイクロチップ
3 第1の基板
5 第2の基板
7 導入ポート
9 試料導入チャネル
11 洗流液注入ポート
13 洗流液流下チャネル
15,110 ピペット
17,114 アダプター
19,112 送液チューブ
21 洗流液
23 拡径部
100 従来のマイクロチップ
102 第1の基板
104 マイクロチャネル
106 導入ポート
108 第2の基板
116 粉体
118 導入液体

Claims (4)

  1. 第1の基板と、該第1の基板の一方の面側に接着される第2の基板とからなり、前記第1の基板又は第2の基板の少なくも何れか一方に1本以上のマイクロチャネルが形成されており、前記第1の基板は、前記マイクロチャネルのうちの何れか1本に連通する、上部が大気に開口した第1のポートを有するマイクロチップにおいて、
    前記第1の基板は、前記第1のポートの上流側に、上部が大気に開口した第2のポートを有し、
    前記第1のポートは粉体含有液体を導入するためのポートであり、前記第2のポートは洗流液を注入するためのポートであり、
    前記第1のポートの下部に該ポートの内径よりも大きな内径と、平滑な内壁面を有する拡径部が形成されており、
    前記第1のポート下部に形成された拡径部と第2のポートはマイクロチャネルにより相互に連通されていることを特徴とするマイクロチップ。
  2. 前記粉体含有液体を導入するための第1のポートの下部に形成される拡径部の平面形状が真円形、液滴形又は紡錘形の何れかの形状を有することを特徴とする請求項1記載のマイクロチップ。
  3. 第1の基板と、該第1の基板の一方の面側に接着される第2の基板とからなり、前記第1の基板又は第2の基板の少なくも何れか一方に1本以上のマイクロチャネルが形成されており、前記第1の基板は、前記マイクロチャネルのうちの何れか1本に連通する、上部が大気に開口した第1のポートを有し、
    前記第1の基板は、前記第1のポートの上流側に、上部が大気に開口した第2のポートを有し、
    前記第1のポートは粉体含有液体の導入ポートであり、前記第2のポートは洗流液の注入ポートであり、
    前記第1のポートの下部に該ポートの内径よりも大きな内径と平滑な内壁面を有する拡径部が形成されており、
    前記第1のポート下部に形成された拡径部と第2のポートはマイクロチャネルにより相互に連通されているマイクロチップの前記第1のポートからマイクロチャネル内に粉体を導入する方法であって、
    (1)第1のポートから、該ポート下部の拡径部に該粉体含有液体を導入し、次いで、
    (2)第1のポートの上流側の第2のポートから洗流液を、第1のポート下部に形成された拡径部と第2のポートを連通させるマイクロチャネルを介して前記第1のポート下部に形成された拡径部内に送入することにより、該第1のポートの下部の拡径部内壁面上に残留した粉体を、該第1のポートの下流側の粉体導入対象チャネル内に洗い流し出すことを特徴とする粉体導入方法。
  4. 前記粉体含有液体を導入するための第1のポートの下部に形成される拡径部の平面形状が真円形、液滴形又は紡錘形の何れかの形状を有することを特徴とする請求項3記載の粉体導入方法。
JP2005043592A 2005-02-21 2005-02-21 マイクロチップ Expired - Fee Related JP4372701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043592A JP4372701B2 (ja) 2005-02-21 2005-02-21 マイクロチップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043592A JP4372701B2 (ja) 2005-02-21 2005-02-21 マイクロチップ

Publications (2)

Publication Number Publication Date
JP2006226940A JP2006226940A (ja) 2006-08-31
JP4372701B2 true JP4372701B2 (ja) 2009-11-25

Family

ID=36988430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043592A Expired - Fee Related JP4372701B2 (ja) 2005-02-21 2005-02-21 マイクロチップ

Country Status (1)

Country Link
JP (1) JP4372701B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241209B2 (ja) * 2007-11-26 2013-07-17 株式会社日立ハイテクノロジーズ 試料前処理用デバイス及び試料分析方法
CN105074465B (zh) * 2013-02-22 2017-03-29 株式会社日立高新技术 生物分析器件以及生物分子分析装置

Also Published As

Publication number Publication date
JP2006226940A (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
US10239057B2 (en) Microfluidic devices and methods for cell analysis and molecular diagnostics
JP5337912B2 (ja) シース流装置及び方法
DE69634490T2 (de) Vorrichtung und verfahren zum bewegen von fluiden mittels zentrifugalbeschleunigung bei der automatischen laborbehandlung
CN105164246B (zh) 用于分析定义的多细胞组合的方法和设备
JP4888394B2 (ja) マイクロリアクタおよびそれを用いた送液方法
EP2423667B1 (en) Particle processing system
JP3654481B2 (ja) 生化学反応用マイクロリアクタ
WO2006123578A1 (ja) 検体中の標的物質を分析するための検査チップおよびマイクロ総合分析システム
JP2007136322A (ja) 反応物質同士の拡散および反応を効率化したマイクロリアクタ、およびそれを用いた反応方法
JP2009509549A (ja) 磁気ビーズを用いて生体成分を精製するためのマイクロ流体デバイス
JP2018511779A (ja) スペーサによって分離された個別液体体積の配列を供給するためのマイクロ流体プローブ・ヘッド
JP6931540B2 (ja) 検体処理チップを用いた送液方法、検体処理チップの送液装置
WO2017061620A1 (ja) 検体処理チップ、検体処理装置および検体処理方法
Köhler et al. Chip devices for miniaturized biotechnology
WO2018075577A1 (en) Methods of integrated microfluidic processing for preventing sample loss
JP2007083191A (ja) マイクロリアクタ
JP2010531456A (ja) 流体における検体を検出するためのモジュール及び該モジュールを有するチップ
JP2018141689A (ja) 液体送液方法および液体送液装置
JP2023503157A (ja) マイクロ流体チップの使用方法およびマイクロ流体デバイス
JP2018085974A (ja) 検体処理方法および検体処理装置
JP2006025661A (ja) 生化学反応カートリッジ
Liu et al. Integrated microfluidic biochips for DNA microarray analysis
JP4372701B2 (ja) マイクロチップ
JP4687413B2 (ja) マイクロチップにおける2種類以上の液体の混合方法およびマイクロ総合分析システム
JP2019188386A (ja) 高速サンプルローディングマイクロ流体反応器およびシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees