JP2004111162A - Manufacturing method of coated conductive fine particle and coated conductive fine particle - Google Patents

Manufacturing method of coated conductive fine particle and coated conductive fine particle Download PDF

Info

Publication number
JP2004111162A
JP2004111162A JP2002270630A JP2002270630A JP2004111162A JP 2004111162 A JP2004111162 A JP 2004111162A JP 2002270630 A JP2002270630 A JP 2002270630A JP 2002270630 A JP2002270630 A JP 2002270630A JP 2004111162 A JP2004111162 A JP 2004111162A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
particles
coated conductive
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002270630A
Other languages
Japanese (ja)
Inventor
Masahiro Takechi
武智 昌裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002270630A priority Critical patent/JP2004111162A/en
Publication of JP2004111162A publication Critical patent/JP2004111162A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of coated conductive fine particles having a good single particulate property without being aggregated and the coated conductive particles obtained by the manufacturing method, in conductive fine particles with their surface covered with an insulating resin. <P>SOLUTION: After the coated conductive fine particles are dispersed in a dispersion medium, the conductive fine particles are made superbly single-grained by freeze-drying. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
【0001】
本発明は、表面が絶縁樹脂にて被覆されている導電性微粒子において、凝集のない単粒子化度の優れた被覆導電性微粒子の製造方法及びその製造方法により得られることを特徴とする被覆導電性微粒子に関する。
【0002】
【従来技術】
導電性微粒子は、バインダー樹脂等と混合させるなどして、異方導電性フィルム、導電性ペースト、導電性接着剤、導電性粘着材等の異方性導電材料の主要構成材料として広く用いられている。これらの導電材料は液晶表示ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接着したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。
【0003】
この導電性微粒子としては、金、銀、ニッケル等の金属粒子が用いられてきたが、比重が大きく形状も不定形であるため基板同士を一定の間隔で狭持することが困難であったり、硬度が高く弾力性に乏しかったため基板に損傷を与え導通性の不具合を来す場合があった。このため近年では金属粒子の代わりに、粒径が均一で適度な強度を有するプラスチックボール等の非導電性粒子の表面に金属導電層を施した導電性微粒子が広く用いられるようになってきている。
【0004】
しかしながら、電子部品の小型化とファインピッチ化が進むにつれ、同一基板上で隣接する電極間にこれらの導電性微粒子が入り込んだ場合、該電極間で短絡が生じるという問題があった。これらの問題を解決するため、導電性微粒子の表面に絶縁層を設け、異方性導電材料中においては絶縁性を示すが、基板間に設置して加熱圧縮することにより絶縁層が破壊され本来の導電性を発現するようにした種々の被覆導電性微粒子が提案されている。例えば、特開昭63−237372号公報にはホットメルト性の樹脂により導電性微粒子を被覆した被覆導電性微粒子が開示されている。絶縁材料で被覆する方法としても種々の提案がなされており、例えば特開平8―335407号公報にはマイクロカプセルを用いる方法が提案されている。更には、特開平7−105716号公報のようにその被覆が完全に導電性微粒子を被覆していないような被覆導電性微粒子も提案されている。
【0005】
これらの被覆導電性微粒子を用いることにより隣接する電極での短絡は大きく改善されるようになったが、いずれの被覆導電性微粒子も加熱圧着時に溶融破壊するような樹脂を被覆絶縁材料としているため、絶縁材料同士が溶融・合着しやすく、その製造時に粒子間の凝集・合着を生じるという問題点があった。被覆導電性微粒子に凝集・短絡があると、これを異方性導電材料に使用した場合、バインダーの中に均一に分散しないので、基板を一定の間隔で狭持することができなくなったり、加熱圧着が不十分となり絶縁材料を破壊できなくなったりして導通不良を発生する原因になりうる。
【0006】
このため、ボールミルのような機械的な力を直接凝集した粒子塊に加え、粉砕する方法や、分散媒中で超音波等を用いて単粒子化するなどの方法を用いて、被覆導電性微粒子を解砕することが一般的に行われている。
【0007】
しかしながら、凝集・合着したメッキ粒子に直接機械的な力を加えたり、粒子同士を強く衝突させたりして単粒子化する場合においては、被覆導電性微粒子表面に形成されている絶縁被覆層、及びその下層にある金属導電層を傷つける恐れがあった。また、分散媒中で超音波等を用いて単粒子化する場合においても当該粒子を分散媒から回収する際、濾過や遠心分離を行う必要があり、更には分散媒を除去する際には加熱処理を行う必要があり、この作業中に絶縁材料が再び溶融・合着し凝集を発生するという問題点があった。
【0008】
【発明が解決しようとする課題】
本発明は上記問題点を解決するものであり、その目的とするところは、表面が絶縁樹脂にて被覆されている導電性微粒子において、凝集のない単粒子化度の優れた被覆導電性微粒子の製造方法及びその製造方法により得られることを特徴とする被覆導電性微粒子を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は鋭意検討した結果、被覆導電性微粒子を分散媒に分散させたのち凍結乾燥させることにより、該導電性微粒子を良好に単粒子化できることを見出し、本発明を完成させるに至った。
【0010】
以下に本発明を詳説する。
本発明の被覆導電性微粒子は表面が絶縁材料によって被覆されてなる導電性微粒子であればいずれの形態を有していてもよく、特に限定されるものではないが、これを分散媒に分散させたのち凍結乾燥させることにより単粒子化されていることを特徴とするものである。
【0011】
該導電性微粒子としては、例えば、金、銀、ニッケル等の金属微粒子、アルミナ、シリカ等の無機物微粒子や、プラスチック等の有機物微粒子に金属導電層を設けたものなどが挙げられるが、導電性微粒子として使用した際に必要とされる粒子均一性や圧縮強度を考えると有機物からなる芯材微粒子を用いることが最も好ましい。
【0012】
芯材として使用される有機物微粒子としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が用いられる。例えば、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させることにより、導電材料に適した任意の圧縮時の物性を有する芯材微粒子を設計・合成することができる。
【0013】
該芯材微粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体があり、非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体、(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類、2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類、 (メタ)アクリロニトリル等のニトリル含有単量体、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類、酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類、エチレン、プロビレン、イソプレン、ブタジエン等の不飽和炭化水素、及びトリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のそれらのハロゲン含有単量体等が挙げられる。
【0014】
また、架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、及びグリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレート類、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、および、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等、γ―(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体が挙げられる。
【0015】
上述のエチレン性不飽和基を有する重合性単量体を、公知の方法、例えば、ラジカル重合開始剤の存在下、懸濁重合する方法(特開平6−273774号公報)、非架橋の種粒子にラジカル重合開始剤とともに単量体を膨潤させて重合する方法(特開平1−81810号公報)等により重合することにより種々の芯材微粒子を得ることができる。
【0016】
これらの芯材微粒子は平均粒径が0.5〜100μmであるものが好ましく、特に1〜20μmの範囲であるものがより好ましい。芯材微粒子が0.5μm未満であると、導電性被覆層を形成する際に凝集が生じやすく、この粒子を用いて製造される導電性微粒子は隣接電極間のショートを引き起こすという問題を発生することがある。芯材微粒子の平均粒径が100μmを超えると、この粒子を用いて製造される導電性微粒子の導電性被覆層が剥がれ易くなり信頼性が低下するという問題が発生することがある。
【0017】
また、粒子径分布から得られる標準偏差を平均粒径で除して得られる変動係数が10%以下であるものがより好ましい。また、変動係数が10%を超える芯材微粒子を用いて導電性微粒子を製造すると、相対向する電極間隔を任意に制御することが困難になる。
【0018】
導電性微粒子は上記の芯材微粒子の表面に導電性をもたらす金属導電層を設けることにより得ることができる。導電性金属としては、例えば、Au,Ag,Cu,Zn,Al,Sb、Pt,Pd,Ni,Cd,Ga、Pb、Rh、Ru、Co,Sn等が挙げられる。また、該金属被覆層は既知の種々の方法、例えば、物理的な金属蒸着法、化学的な無電解メッキ法等を用いて形成することができ、特に限定されないが、金属被覆の均一性、金属被覆密度、工程の簡便さ等から無電解メッキ法を用いることが好ましい。該金属被覆層を無電解メッキ法にて形成させる場合、例えばAu,Ag,Cu,Pt,Pd,Ni,Rh、Ru、Co,Sn及びこれらの合金等が挙げられる。これらの金属は単一で用いられても2種類以上を用いてもかまわない。
【0019】
該金属導電層の厚みとしては0.005〜1μmであることが好ましく、更には0.01〜0.3μmであることがより好ましい。該金属導電層の厚みが0.005μm未満であると金属導電層としての十分な効果が得られず好ましくない。また、金属導電層が1μmを超えると粒子比重が高くなりすぎたり、芯材の機械的強度や回復率等の粒子物性の特性を失ったりするのであまり好ましくない。
【0020】
被覆導電性微粒子は上記の導電性微粒子の表面に絶縁材料による被覆層を形成することにより得ることができる。
【0021】
絶縁材料としては種々の樹脂材料を用いることができ、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、ポリビニルアルコール等のポリオレフィン、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレングリコール等が挙げられる。この場合、特に加熱圧着した際に溶融破壊しやすいガラス転移点の低い樹脂材料を用いることが被覆導電性微粒子の性能を最も効果的に発現させるので好適であり、先に列挙した非架橋性の重合単量体を適宜混合して重合することで任意のガラス転移点を有する絶縁樹脂を得ることができる。本発明の単粒子化方法は特に絶縁樹脂のガラス転移点が低いものを使用した際最も有効である。
【0022】
このような樹脂を芯材微粒子に被覆する方法としては特に限定されず、既知の種々の方法を用いることができる。例えば導電性微粒子を樹脂溶液に浸漬し、その後濾取して乾燥させコーティングする方法、マイクロカプセル化を用いる方法、スプレードライ法、コアセルベーション法、絶縁樹脂で構成される微粒子を導電性微粒子の表面に吸着させる方法等が挙げられる。
【0023】
本発明はこれらの被覆導電性微粒子を分散媒に分散させたのち、凍結乾燥させることにより単粒子化することを特徴とするものである。
【0024】
本発明の凍結乾燥に用いられる分散媒としては、純水、ジオキサン、ベンゼン、シクロヘキサン、p−キシレン等の凝固点が―50〜室温の範囲内である溶媒が使用可能である。これらは単独でも2種以上を混合してもよい。
【0025】
これらの分散媒に被覆導電性微粒子を分散させる際、被覆されている絶縁材料によって溶媒中の分散状態が最も好ましいものを選択する必要がある。例えば、当該絶縁材料が親水性の強い物質である場合は純水やジオキサン等の親水性溶媒、疎水性の強い場合はベンゼンやシクロヘキサンのような疎水性溶媒を選択する。分散媒中で充分な分散状態が得られない場合は凍結乾燥しても単粒子化することはできない。また、被覆導電性微粒子の分散を補助するために微量の界面活性剤や分散剤、ポリエチレングリコール、糖類などの添加剤を含有させても良い。
【0026】
被覆導電性微粒子を分散媒に分散させる際の濃度としては、被覆導電性微粒子の分散重量の分散媒体積に対する割合で2〜60w/v%が好ましく、より好ましくは5〜50w/v%である。被覆導電性微粒子を分散媒に分散させる際の濃度が2w/v%未満であると、凍結乾燥後の粉体が飛散してしまう恐れがあり、60w/v%を超えると分散媒中に充分に分散させることが困難となる。
【0027】
被覆導電性微粒子を分散媒に分散させる方法としては、攪拌バネ、ホモジナイザー等の機械的な攪拌、超音波処理機を用いた分散方法、及びそれらの併用が挙げられ、特に限定されないが、被覆されている絶縁樹脂や金属導電層に損傷を与えないような手法を用いることが好ましい。この様にして充分に分散させることにより、分散媒中で単粒子化することができれば、この分散媒を溶媒の凝固点以下に冷却して凍結乾燥する。
【0028】
この場合、分散媒を分散処理後直ちにディープフリーザー等へ投入する等、完全かつ急速な予備凍結を実施することで分散媒中の分散状態が良好に保持でき好ましい。
【0029】
凍結乾燥する場合の真空度としては2000Pa以下が好ましく、より好ましくは200Pa以下である。真空度が2000Paを超えると凍結乾燥スピードが遅すぎ、凝集が生じる恐れがあり好ましくない。凍結乾燥中に乾燥速度を速めるために分散媒を温めてもよい。昇華熱が確認出来なくなった時点を凍結乾燥の終了とし、この様にしてなされた凍結乾燥により被覆導電性微粒子の単粒子化を行うことができる。
【0030】
【作用】
本発明により得られた被覆導電性微粒子は解砕工程による絶縁被覆層や金属導電層の損傷がなく、凝集のない単粒子化度の優れた被覆導電性微粒子であり、本発明の製造方法を用いることにより絶縁被覆層や金属導電層に損傷を与えることなく凝集のない単粒子化度の優れた被覆導電性微粒子を得ることができる。
【0031】
(実施例)
以下に実施例を上げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
金属被覆層が0.067μm(670Å)のNi下地層と0.043μm(430Å)のAu表面層を有し、平均粒径が5.0μm、変動係数が4.9%である導電性微粒子ミクロパールAU−205(積水化学社製)10gを、平均分子量100000のポリメチルメタクリレートを含有するTHF溶液に均一に分散させた。その後、徐々に溶媒を気散させながらこの粒子を乾燥させ、導電性微粒子の表面に絶縁被覆層を施した。光学顕微鏡にて粒子の凝集状態を確認したところ、殆どの粒子が5個以上の凝集となって存在していた。
【0032】
この被覆導電性微粒子を単粒子化すべく、超音波処理機を用いて40mlのジオキサンに再度均一に分散させた。さらに、この分散液を棚温度−40度の凍結槽に入れて凍結させ、真空度10〜100Paで真空乾燥させた。得られた被覆導電性微粒子をエポキシ樹脂に埋没させ、ミクロトームで薄くスライスしたものをRu染色下で透過型電子顕微鏡(TEM)で観察したところ、0.1〜0.2μmの厚みで絶縁樹脂がほぼ均一に被覆されていた。
【0033】
この被覆導電性微粒子をエポキシ系接着剤(古川化工社製、SE−4500)に5W/W%の割合で混合し、ホモジナイザーで十分に分散させて異方性導電接着剤を作製した。この異方性導電接着剤を配線幅50μm、ピッチ50μmで40本のITO電極をエッチングしたガラス基板(50×50mm)に塗布し、この上から同じ基板をITOのクロス部分が2mmとなるように重ね合わせ、20kg/cmの圧力を加えながら150℃で10分間加熱して圧着硬化させた。基板を冷却後、重ね合わせ部分の粒子の凝集度合いを光学顕微鏡で確認(約2万個)し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について大きな差違は認められなかった。
【0034】
また、各電極の抵抗値を測定したところ接続抵抗値はすべて0.01Ωと充分低く、大きなバラツキも認められなかった。
【0035】
(実施例2)
実施例1においてジオキサンの代わりにt−ブタノールを用いたこと以外は同様の操作を行い、被覆導電性微粒子を得た。この粒子について実施例1と同様にして粒子の凝集度合いを光学顕微鏡で確認し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について大きな差違は認められなかった。また、実施例1と同様にして各電極の抵抗値を測定したところ接続抵抗値はすべて0.01Ωと充分低く、大きなバラツキも認められなかった。
【0036】
(実施例3)
実施例1と同様にして得た導電性微粒子を含有するテトラハイドロフラン(THF)溶液をスプレードライ器にて噴霧乾燥させ、導電性微粒子の表面に絶縁被覆層を施した。その後、実施例1と同様にして凍結乾燥処理による単粒子化を行った。得られた被覆導電性微粒子を実施例1と同様にTEMにて観察したところ、0.1〜0.2μmの厚みで絶縁樹脂がほぼ均一に被覆されていた。この粒子について実施例1と同様にして粒子の凝集度合いを光学顕微鏡で確認し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について大きな差違は認められなかった。また、実施例1と同様にして各電極の抵抗値を測定したところ接続抵抗値はすべて0.01Ωと充分低く、大きなバラツキも認められなかった。
【0037】
(比較例1)
実施例1において凍結乾燥による単粒子化処理のかわりにナイロン性のボールミルに入れ、200rpmで5時間回転させて単粒子化処理を行ったこと以外は実施例1と同様の操作を行い被覆導電性微粒子を得た。この粒子について実施例1と同様にして粒子の凝集度合いを光学顕微鏡で確認し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について若干の増加が認められた。また、実施例1と同様にして各電極の抵抗値を測定したところの2.5%の電極で0.02Ωを上回る抵抗値が確認された。
【0038】
(比較例2)
実施例3において、凍結乾燥による単粒子化処理を行う前の粒子について実施例1と同様にして粒子の粒子の凝集度合いを光学顕微鏡で確認し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について大きな差違は認められなかった。また、実施例1と同様にして各電極の抵抗値を測定したところの5%の電極で0.02Ωを上回る抵抗値が確認された。
【0039】
(比較例3)
実施例3において凍結乾燥による単粒子化処理のかわりにナイロン性のボールミルに入れ、200rpmで5時間回転させて単粒子化処理を行ったこと以外は実施例1と同様の操作を行い被覆導電性微粒子を得た。この粒子について実施例1と同様にして粒子の凝集度合いを光学顕微鏡で確認し、その結果を表1に示した。また、光学顕微鏡により解砕前後の被覆層の状態を観察したところ、割れ、カケ等の被覆層の損傷について若干の増加が認められた。また、実施例1と同様にして各電極の抵抗値を測定したところの2.5%の電極で0.02Ωを上回る抵抗値が確認された。
【0040】
以上のように、本発明の単粒子化方法を用いた実施例1〜3の場合は本発明の単粒子化方法を用いていない比較例1〜3の場合と比べて単粒子化率が高く、また、被覆層の損傷が少ないことがわかる。また、導電材料として使用した場合もその導通性に影響を及ぼさないことがわかる。
【0041】
【発明の効果】
本発明により得られた被覆導電性微粒子は解砕工程による絶縁被覆層や金属導電層の損傷がなく、凝集のない単粒子化度の優れた被覆導電性微粒子であり、本発明の製造方法を用いることにより絶縁被覆層や金属導電層に損傷を与えることなく凝集のない単粒子化度の優れた被覆導電性微粒子を得ることができる。これらの被覆導電性微粒子を異方導電材料に使用した場合、バインダー中に均一に分散するので、導電不良を生じることがなく、信頼性の高い電子部品を得ることができる。
【0042】
【表1】

Figure 2004111162
TECHNICAL FIELD OF THE INVENTION
[0001]
The present invention provides a method for producing coated conductive fine particles having excellent degree of single particle formation without aggregation in conductive fine particles whose surface is coated with an insulating resin, and a coated conductive particle obtained by the method. Related to conductive fine particles.
[0002]
[Prior art]
Conductive fine particles are widely used as a main constituent material of anisotropic conductive materials such as anisotropic conductive films, conductive pastes, conductive adhesives, and conductive adhesives by mixing with binder resins and the like. I have. These conductive materials are used in electronic devices such as a liquid crystal display, a personal computer, and a mobile phone to electrically connect substrates to each other and to electrically bond small components such as semiconductor elements to the substrates. It is used sandwiched between facing substrates and electrode terminals.
[0003]
As the conductive fine particles, metal particles such as gold, silver, and nickel have been used.However, since the specific gravity is large and the shape is indefinite, it is difficult to hold the substrates at regular intervals, Due to high hardness and poor elasticity, the substrate may be damaged, resulting in poor conductivity. Therefore, in recent years, instead of metal particles, conductive fine particles in which a metal conductive layer is applied to the surface of non-conductive particles such as plastic balls having a uniform particle size and appropriate strength have been widely used. .
[0004]
However, with the progress of miniaturization and fine pitch of electronic components, when these conductive fine particles enter between adjacent electrodes on the same substrate, there is a problem that a short circuit occurs between the electrodes. In order to solve these problems, an insulating layer is provided on the surface of the conductive fine particles, and shows an insulating property in the anisotropic conductive material. Various kinds of coated conductive fine particles that exhibit the conductivity of the above have been proposed. For example, JP-A-63-237372 discloses coated conductive fine particles in which conductive fine particles are coated with a hot-melt resin. Various proposals have also been made as a method of coating with an insulating material. For example, Japanese Patent Application Laid-Open No. 8-335407 proposes a method using microcapsules. Furthermore, coated conductive fine particles whose coating does not completely cover the conductive fine particles as disclosed in JP-A-7-105716 have been proposed.
[0005]
By using these coated conductive fine particles, the short circuit between adjacent electrodes has been greatly improved.However, since the coated insulating fine particles are made of resin that melts and breaks down at the time of heating and compression bonding. In addition, there has been a problem that the insulating materials are easily melted and coalesced with each other, and agglomeration and coalescence of particles occur during the production. If the coated conductive fine particles are agglomerated or short-circuited, if they are used as an anisotropic conductive material, they will not be evenly dispersed in the binder. Insufficient crimping may result in failure to break the insulating material, which may cause poor conduction.
[0006]
Therefore, by applying a mechanical force such as a ball mill to directly agglomerated particle agglomerates, a method of pulverizing, or a method of forming single particles using ultrasonic waves or the like in a dispersion medium is used to coat the coated conductive fine particles. Crushing is generally performed.
[0007]
However, when a mechanical force is directly applied to the aggregated and coalesced plating particles, or when the particles are strongly collided into a single particle, the insulating coating layer formed on the surface of the coated conductive fine particles, In addition, there is a risk of damaging the metal conductive layer thereunder. Further, even when the particles are formed into single particles by using ultrasonic waves or the like in the dispersion medium, it is necessary to perform filtration or centrifugal separation when collecting the particles from the dispersion medium. It is necessary to perform a treatment, and there is a problem that the insulating material is melted and coalesced again during this operation to cause agglomeration.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and the purpose thereof is to provide a conductive fine particle whose surface is coated with an insulating resin, and that the coated conductive fine particles having an excellent degree of single particle formation without aggregation are used. An object of the present invention is to provide a production method and coated conductive fine particles obtained by the production method.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that by dispersing the coated conductive fine particles in a dispersion medium and then freeze-drying the conductive fine particles, the conductive fine particles can be favorably converted into single particles, and have completed the present invention.
[0010]
Hereinafter, the present invention will be described in detail.
The coated conductive fine particles of the present invention may have any form as long as the conductive fine particles have a surface coated with an insulating material, and are not particularly limited. After that, it is characterized in that it is made into single particles by freeze-drying.
[0011]
Examples of the conductive fine particles include metal fine particles such as gold, silver, and nickel; inorganic fine particles such as alumina and silica; and organic fine particles such as plastics provided with a metal conductive layer. In view of the required particle uniformity and compressive strength when used as a core material, it is most preferable to use core material fine particles made of an organic substance.
[0012]
Examples of organic fine particles used as the core material include, for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, polyolefins such as polybutadiene, polymethyl methacrylate, acrylic resins such as polymethyl acrylate, and polymethyl acrylate. Alkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like are used. For example, by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group, designing and synthesizing core fine particles having physical properties at the time of compression suitable for a conductive material. Can be.
[0013]
When the core material fine particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and a crosslinkable monomer. Examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and α-methylstyrene, and carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride. Monomer, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) A) alkyl (meth) acrylates such as acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate Oxygen-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate; and nitrile-containing monomer such as (meth) acrylonitrile , Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate; unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; and Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene.
[0014]
Examples of the crosslinking monomer include, for example, tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, Pentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, and glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, etc. Functional (meth) acrylates, triallyl (iso) cyanurate, triallyl trimellitate, and divinylbenzene, diallyl phthalate, diallyl acrylamide, dia Ethers such as, .gamma. (meth) acryloxy propyl trimethoxy silane, trimethoxy silyl styrene, include silane-containing monomers such as vinyltrimethoxysilane.
[0015]
Non-crosslinked seed particles are prepared by subjecting the above-mentioned polymerizable monomer having an ethylenically unsaturated group to suspension polymerization in a known method, for example, in the presence of a radical polymerization initiator (JP-A-6-273774). Various types of core material fine particles can be obtained by polymerizing the monomer by swelling the monomer together with a radical polymerization initiator (Japanese Patent Application Laid-Open No. 1-81810).
[0016]
These core material fine particles preferably have an average particle size of 0.5 to 100 μm, and more preferably have an average particle size of 1 to 20 μm. If the core material fine particles are less than 0.5 μm, agglomeration is likely to occur when forming the conductive coating layer, and the conductive fine particles manufactured using these particles cause a problem of causing a short circuit between adjacent electrodes. Sometimes. If the average particle diameter of the core fine particles exceeds 100 μm, there may be a problem that the conductive coating layer of the conductive fine particles manufactured using the particles is easily peeled off, and the reliability is reduced.
[0017]
Further, it is more preferable that the coefficient of variation obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size is 10% or less. In addition, when conductive fine particles are manufactured using core fine particles having a coefficient of variation exceeding 10%, it is difficult to arbitrarily control the distance between the opposed electrodes.
[0018]
The conductive fine particles can be obtained by providing a metal conductive layer that provides conductivity on the surface of the core fine particles. Examples of the conductive metal include Au, Ag, Cu, Zn, Al, Sb, Pt, Pd, Ni, Cd, Ga, Pb, Rh, Ru, Co, and Sn. Further, the metal coating layer can be formed using various known methods, for example, a physical metal vapor deposition method, a chemical electroless plating method, and the like. It is preferable to use the electroless plating method from the viewpoint of the metal coating density and the simplicity of the process. When the metal coating layer is formed by an electroless plating method, for example, Au, Ag, Cu, Pt, Pd, Ni, Rh, Ru, Co, Sn, and alloys thereof are exemplified. These metals may be used alone or in combination of two or more.
[0019]
The thickness of the metal conductive layer is preferably from 0.005 to 1 μm, and more preferably from 0.01 to 0.3 μm. When the thickness of the metal conductive layer is less than 0.005 μm, a sufficient effect as the metal conductive layer cannot be obtained, which is not preferable. On the other hand, if the metal conductive layer exceeds 1 μm, the specific gravity of the particles becomes too high, or the properties of the particle properties such as the mechanical strength and the recovery rate of the core material are lost.
[0020]
The coated conductive fine particles can be obtained by forming a coating layer of an insulating material on the surface of the conductive fine particles.
[0021]
As the insulating material, various resin materials can be used, and there is no particular limitation.For example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyisobutylene, polybutadiene, polyolefin such as polyvinyl alcohol, polymethyl, etc. Examples include acrylic resins such as methacrylate and polymethyl acrylate, and polyethylene glycol. In this case, it is preferable to use a resin material having a low glass transition point that is easily melted and broken when heated and pressed particularly, since the performance of the coated conductive fine particles is most effectively expressed, and the non-crosslinking properties listed above are preferable. An insulating resin having an arbitrary glass transition point can be obtained by appropriately mixing and polymerizing a polymerizable monomer. The method for forming single particles of the present invention is most effective especially when an insulating resin having a low glass transition point is used.
[0022]
The method for coating the core particles with such a resin is not particularly limited, and various known methods can be used. For example, a method in which conductive fine particles are immersed in a resin solution, then filtered, dried and coated, a method using microencapsulation, a spray drying method, a coacervation method, and a fine particle composed of an insulating resin. A method of causing the surface to be adsorbed and the like can be mentioned.
[0023]
The present invention is characterized in that these coated conductive fine particles are dispersed in a dispersion medium and then freeze-dried to form single particles.
[0024]
As the dispersion medium used in the freeze-drying of the present invention, a solvent having a freezing point in the range of −50 to room temperature, such as pure water, dioxane, benzene, cyclohexane, and p-xylene, can be used. These may be used alone or in combination of two or more.
[0025]
When dispersing the coated conductive fine particles in such a dispersion medium, it is necessary to select a dispersion state in the solvent that is most preferable depending on the insulating material to be coated. For example, when the insulating material is a substance having strong hydrophilicity, a hydrophilic solvent such as pure water or dioxane is selected, and when the insulating material is strong in hydrophobicity, a hydrophobic solvent such as benzene or cyclohexane is selected. When a sufficient dispersion state cannot be obtained in the dispersion medium, the particles cannot be formed into single particles by freeze-drying. In order to assist the dispersion of the coated conductive fine particles, a small amount of a surfactant, a dispersant, an additive such as polyethylene glycol or a saccharide may be contained.
[0026]
The concentration at which the coated conductive fine particles are dispersed in the dispersion medium is preferably from 2 to 60 w / v%, more preferably from 5 to 50 w / v%, in terms of the ratio of the dispersed weight of the coated conductive fine particles to the volume of the dispersion medium. . If the concentration at which the coated conductive fine particles are dispersed in the dispersion medium is less than 2 w / v%, the powder after freeze-drying may be scattered. It is difficult to disperse them in
[0027]
Examples of the method of dispersing the coated conductive fine particles in the dispersion medium include a stirring spring, mechanical stirring such as a homogenizer, a dispersion method using an ultrasonic processor, and a combination thereof, and are not particularly limited. It is preferable to use a method that does not damage the insulating resin or the metal conductive layer. If the particles can be formed into single particles in the dispersion medium by sufficiently dispersing in this manner, the dispersion medium is cooled to a temperature lower than the freezing point of the solvent and freeze-dried.
[0028]
In this case, it is preferable to carry out complete and rapid preliminary freezing, such as putting the dispersion medium into a deep freezer or the like immediately after the dispersion treatment, since the dispersion state in the dispersion medium can be favorably maintained.
[0029]
The degree of vacuum in freeze-drying is preferably 2000 Pa or less, more preferably 200 Pa or less. If the degree of vacuum exceeds 2000 Pa, the freeze-drying speed is too slow, and aggregation may occur, which is not preferable. The dispersion medium may be warmed during lyophilization to increase the drying rate. The point at which the heat of sublimation can no longer be confirmed is the end of freeze-drying, and the freeze-drying performed in this way can make the coated conductive fine particles into single particles.
[0030]
[Action]
The coated conductive fine particles obtained by the present invention are coated conductive fine particles having no damage to the insulating coating layer or the metal conductive layer due to the crushing step, and excellent in the degree of single particle formation without aggregation. By using this, it is possible to obtain coated conductive fine particles having an excellent degree of single particle formation without aggregation without damaging the insulating coating layer or the metal conductive layer.
[0031]
(Example)
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(Example 1)
Conductive microparticles having a Ni underlayer of 0.067 μm (670 °) and an Au surface layer of 0.043 μm (430 °) with an average particle size of 5.0 μm and a coefficient of variation of 4.9%. 10 g of Pearl AU-205 (manufactured by Sekisui Chemical Co., Ltd.) was uniformly dispersed in a THF solution containing polymethyl methacrylate having an average molecular weight of 100,000. Thereafter, the particles were dried while gradually evaporating the solvent, and an insulating coating layer was applied to the surfaces of the conductive fine particles. When the state of aggregation of the particles was confirmed with an optical microscope, most of the particles were present as aggregates of 5 or more.
[0032]
The coated conductive fine particles were uniformly dispersed again in 40 ml of dioxane using an ultrasonic treatment machine in order to make the coated conductive fine particles into single particles. Furthermore, this dispersion liquid was put in a freezing tank at a shelf temperature of −40 ° C., frozen, and dried under vacuum at a degree of vacuum of 10 to 100 Pa. The obtained coated conductive fine particles were buried in an epoxy resin, and a thin slice obtained with a microtome was observed with a transmission electron microscope (TEM) under Ru staining, and the thickness of the insulating resin was 0.1 to 0.2 μm. It was almost uniformly coated.
[0033]
The coated conductive fine particles were mixed with an epoxy-based adhesive (SE-4500, manufactured by Furukawa Chemical Co., Ltd.) at a ratio of 5 W / W%, and sufficiently dispersed with a homogenizer to prepare an anisotropic conductive adhesive. This anisotropic conductive adhesive is applied to a glass substrate (50 × 50 mm) in which 40 ITO electrodes are etched at a wiring width of 50 μm and a pitch of 50 μm, and the same substrate is placed on the glass substrate so that the cross section of the ITO becomes 2 mm. The sheets were superposed and heated at 150 ° C. for 10 minutes while applying a pressure of 20 kg / cm 2 to be cured by press bonding. After cooling the substrate, the degree of aggregation of the particles in the overlapped portion was confirmed by an optical microscope (about 20,000 particles), and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, no significant difference was observed in the damage of the coating layer such as cracks and chips.
[0034]
When the resistance value of each electrode was measured, the connection resistance values were all sufficiently low at 0.01Ω, and no large variation was observed.
[0035]
(Example 2)
In the same manner as in Example 1, except that t-butanol was used instead of dioxane, coated conductive fine particles were obtained. The degree of aggregation of the particles was confirmed with an optical microscope in the same manner as in Example 1, and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, no significant difference was observed in the damage of the coating layer such as cracks and chips. Further, when the resistance value of each electrode was measured in the same manner as in Example 1, the connection resistance values were all sufficiently low at 0.01Ω, and no large variation was recognized.
[0036]
(Example 3)
A tetrahydrofuran (THF) solution containing conductive fine particles obtained in the same manner as in Example 1 was spray-dried with a spray dryer, and an insulating coating layer was applied to the surfaces of the conductive fine particles. After that, single particles were formed by freeze-drying in the same manner as in Example 1. Observation of the obtained coated conductive fine particles with a TEM in the same manner as in Example 1 showed that the insulating resin was coated almost uniformly with a thickness of 0.1 to 0.2 μm. The degree of aggregation of the particles was confirmed with an optical microscope in the same manner as in Example 1, and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, no significant difference was observed in the damage of the coating layer such as cracks and chips. Further, when the resistance value of each electrode was measured in the same manner as in Example 1, the connection resistance values were all sufficiently low at 0.01Ω, and no large variation was recognized.
[0037]
(Comparative Example 1)
In the same manner as in Example 1, except that the particles were put into a nylon ball mill instead of freeze-drying and then rotated at 200 rpm for 5 hours to perform the particle forming treatment, the same operation as in Example 1 was carried out to perform the coating conductivity. Fine particles were obtained. The degree of aggregation of the particles was confirmed with an optical microscope in the same manner as in Example 1, and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, a slight increase in damage to the coating layer such as cracks and chips was observed. When the resistance of each electrode was measured in the same manner as in Example 1, a resistance of more than 0.02Ω was confirmed for 2.5% of the electrodes.
[0038]
(Comparative Example 2)
In Example 3, the degree of aggregation of the particles before being subjected to freeze-drying into single particles was confirmed by an optical microscope in the same manner as in Example 1, and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, no significant difference was observed in the damage of the coating layer such as cracks and chips. When the resistance of each electrode was measured in the same manner as in Example 1, a resistance of more than 0.02Ω was confirmed for 5% of the electrodes.
[0039]
(Comparative Example 3)
The procedure of Example 3 was repeated, except that the particles were placed in a nylon ball mill and rotated at 200 rpm for 5 hours to perform the particle-forming treatment instead of freeze-drying. Fine particles were obtained. The degree of aggregation of the particles was confirmed with an optical microscope in the same manner as in Example 1, and the results are shown in Table 1. Further, when the state of the coating layer before and after crushing was observed with an optical microscope, a slight increase in damage to the coating layer such as cracks and chips was observed. When the resistance of each electrode was measured in the same manner as in Example 1, a resistance of more than 0.02Ω was confirmed for 2.5% of the electrodes.
[0040]
As described above, in the case of Examples 1 to 3 using the monoparticle method of the present invention, the monoparticle ratio is higher than in Comparative Examples 1 to 3 not using the monoparticle method of the present invention. Also, it is understood that the damage of the coating layer is small. Also, it can be seen that the use of a conductive material does not affect its conductivity.
[0041]
【The invention's effect】
The coated conductive fine particles obtained by the present invention are coated conductive fine particles having no degree of damage to the insulating coating layer or the metal conductive layer due to the crushing step, and having excellent degree of single particle formation without aggregation. By using this, it is possible to obtain coated conductive fine particles having excellent degree of single particle formation without aggregation without damaging the insulating coating layer or the metal conductive layer. When these coated conductive fine particles are used as an anisotropic conductive material, they are uniformly dispersed in a binder, so that a conductive failure does not occur and a highly reliable electronic component can be obtained.
[0042]
[Table 1]
Figure 2004111162

Claims (2)

表面が絶縁材料にて被覆されている導電性微粒子を分散媒に分散させたのち凍結乾燥させ、該導電性微粒子を単粒子化することを特徴とする被覆導電性微粒子の製造方法。A method for producing coated conductive fine particles, comprising dispersing conductive fine particles, the surface of which is coated with an insulating material, in a dispersion medium, followed by freeze-drying to make the conductive fine particles into single particles. 請求項1記載の被覆導電性微粒子の製造方法により得られることを特徴とする被覆導電性微粒子。A coated conductive fine particle obtained by the method for producing coated conductive fine particles according to claim 1.
JP2002270630A 2002-09-17 2002-09-17 Manufacturing method of coated conductive fine particle and coated conductive fine particle Pending JP2004111162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270630A JP2004111162A (en) 2002-09-17 2002-09-17 Manufacturing method of coated conductive fine particle and coated conductive fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270630A JP2004111162A (en) 2002-09-17 2002-09-17 Manufacturing method of coated conductive fine particle and coated conductive fine particle

Publications (1)

Publication Number Publication Date
JP2004111162A true JP2004111162A (en) 2004-04-08

Family

ID=32268200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270630A Pending JP2004111162A (en) 2002-09-17 2002-09-17 Manufacturing method of coated conductive fine particle and coated conductive fine particle

Country Status (1)

Country Link
JP (1) JP2004111162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046923A1 (en) * 2010-10-08 2012-04-12 제일모직 주식회사 Anisotropic conductive film
US10141084B2 (en) 2010-10-08 2018-11-27 Cheil Industries, Inc. Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046923A1 (en) * 2010-10-08 2012-04-12 제일모직 주식회사 Anisotropic conductive film
US10141084B2 (en) 2010-10-08 2018-11-27 Cheil Industries, Inc. Electronic device

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
US6352775B1 (en) Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
TWI601158B (en) Conductive particles, a conductive material, and a connecting structure
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
CA2460045A1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JP7036872B2 (en) Conductive particles, conductive materials, and connecting structures
CN112313758B (en) Conductive particle, conductive material, and connection structure
JP2003026813A (en) Anisotropic electroconductive material
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP2010033911A (en) Conductive particle and conductive material
JP2004111162A (en) Manufacturing method of coated conductive fine particle and coated conductive fine particle
JP7463069B2 (en) Conductive particles, conductive material, connection structure, and method for producing connection structure
JP5535507B2 (en) Conductive particles and manufacturing method thereof
JP4391836B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
CN112384994A (en) Coated particles
JP2004362838A (en) Conductive particulate and anisotropic conductive material
JP2022022293A (en) Conductive particle, conductive material, and connection structure
JP5996806B2 (en) Conductive particles, conductive materials, and connection structures
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
TW201717217A (en) Connection structure production method, conductive particles, conductive film, and connection structure
JP2008171594A (en) Projecting particulate, projecting conductive particulate, and manufacturing method of projecting particulate
KR102345705B1 (en) Insulated particles, insulated particles production method, particle-containing composition, and anisotropic conductive adhesive
JPH04147513A (en) Electrically conductive particulates and manufacture thereof