JP2004109038A - Inspection method and apparatus for breaking of wire - Google Patents

Inspection method and apparatus for breaking of wire Download PDF

Info

Publication number
JP2004109038A
JP2004109038A JP2002274888A JP2002274888A JP2004109038A JP 2004109038 A JP2004109038 A JP 2004109038A JP 2002274888 A JP2002274888 A JP 2002274888A JP 2002274888 A JP2002274888 A JP 2002274888A JP 2004109038 A JP2004109038 A JP 2004109038A
Authority
JP
Japan
Prior art keywords
conductor pattern
glass plate
disconnection
inspection
thermal image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274888A
Other languages
Japanese (ja)
Other versions
JP4200423B2 (en
Inventor
Mikio Takano
高野 幹男
Torateru Fudo
不動 寅輝
Tetsuo Tajima
田島 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002274888A priority Critical patent/JP4200423B2/en
Publication of JP2004109038A publication Critical patent/JP2004109038A/en
Application granted granted Critical
Publication of JP4200423B2 publication Critical patent/JP4200423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and reliably inspect the disconnection of wires and to automate inspection. <P>SOLUTION: The inspection apparatus for the disconnection of wires is provided with a heat ray camera 7 for photographing a glass sheet 1 in which a conductor pattern is formed in a glass surface; a transfer robot 2 for moving the glass sheet by, for example, adhering to the glass surface by suction on the opposite side of the conductor pattern; a clamp device 3 for holding the glass sheet 1 at an inspection location; a feeder system 4 for providing a prescribed inspection voltage for the the conductor pattern of the glass sheet 1; and a CPU 6 for determining the breaking of wires from a heat image photographed by the heat ray camera 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導体パターンが形成されたガラス板の断線検査方法及び装置に関する。
【0002】
【従来の技術】
自動車のリアウィンドウに霜取り用ヒータが銀ペースト等の導電材の印刷によりパターン形成される。このようなヒータ等の導体パターンは、通常複数本の横の導体ライン(素線)を左右両端の縦の電極線(バスバー)で連結したグリッド形状である。このような導体パターンを形成した自動車用窓ガラス板は、製造工程中に断線検査が行われる。
【0003】
従来この断線検査として金属ローラをガラス面上で転がす方法が用いられていた。この方法は、2つの金属ローラを導体パターン上で転がして、金属ローラに接続された検査回路によりパターン素線の導通を検査し、その本数を計測して断線を判別するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、金属ローラを転がす検査方法では、金属ローラと導体パターンとの電気的接触状態がガラス表面の塵埃等に影響されやすく、製品に対しての接触傷の発生等検査及び品質に対しての信頼性を低下させるおそれがある。また、人手により確実に電気的導通をとりながら金属ローラをガラス面上で転がすために自動化ができず検査時間が多くかかり作業効率が悪かった。
【0005】
本発明は上記従来技術を考慮したものであって、効率よく確実に断線を検査でき、検査の自動化が可能な断線検査方法及び装置の提供を目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するため、本発明では、ガラス面に導体パターンが形成されたガラス板を熱線カメラで撮影してその熱画像から前記導体パターンの断線を判定する断線検査方法であって、8〜14μmの波長を前記熱線カメラの測定波長として前記導体パターンの形成面側から撮影し、その熱画像を予め登録された基準パターンの熱画像と比較することにより断線を判定することを特徴とする断線検査方法を提供する。
【0007】
この構成によれば、ガラス板の導体パターンが形成された表面側から、このガラス板を熱線カメラを用いてガラス板の裏面側の熱画像が透過しない所定の波長(8〜14μm)で撮影することにより、ガラス板裏面側の搬送ロボット等の熱的影響を受けずに導体パターンの熱画像を得ることができる。この熱画像を正常な導体パターンの熱画像と比較することにより、断線状態を正確に判別することができる。
【0008】
本発明では、上記断線検査方法を実施するための検査装置として、ガラス面に導体パターンが形成されたガラス板を撮影する熱線カメラと、ガラス板を移動させる搬送ロボットと、ガラス板を検査位置に保持するクランプ装置と、ガラス板の導体パターンに所定の検査電圧を付加する給電装置と、前記熱線カメラで撮影した熱画像から断線を判定する制御装置とを備えたことを特徴とする断線検査装置を提供する。
【0009】
この構成によれば、搬送ロボットにより例えばガラス板の裏面側(導体パターンが形成された面と反対側)を吸着して撮像位置に搬送し、ここでガラス板を例えば支持枠上に搭載支持したりあるいはエアシリンダ等のクランプ装置により保持し、保持した状態で導体パターンに対し給電装置から検査条件に応じた所定の電圧を印加して導体パターンを加熱し、ガラス板との温度差を所定温度以上にし、この加熱された導体パターンを熱線カメラで撮影し、その熱画像を制御装置、例えばCPUに送って断線状態が判別される。これにより、信頼性の高い断線検査ができるとともに検査の自動化が可能になり、検査時間の短縮が図られる。
【0010】
【発明の実施の形態】
図1は本発明の実施形態に係る断線検査装置のブロック構成図である。
自動車のリアウィンドウを構成するガラス板1の室内表面側(凹面側)に導体パターン(図2参照)が形成されている。このガラス板1は、真空吸着式の搬送ロボット2のアームにより、ガラス板裏面側の数ヵ所を吸着されて検査位置に運ばれ、支持枠(不図示)上の所定の位置に搭載される。支持枠にはガラス板1を固定保持するクランプ装置3及びガラス板1の導体パターンに通電するための給電装置4が備わる。これらの搬送ロボット2、クランプ装置3、給電装置4は電源装置5とともに制御装置(CPU)6に接続される。さらに、ガラス板1の導体パターン形成面側を撮影する熱線カメラ7及び各種制御プログラムや後述の基準画像のデータ等を記憶保持する記憶装置6aがCPU6に接続される。このCPU6はパソコン本体(不図示)内に収容され、モニタ8及び入力用キーボード9が接続される。
【0011】
CPU6は、予め定められたプログラムにしたがって、搬送ロボット2及びクランプ装置3を駆動してガラス板1を所定の検査位置に搬送して固定保持し、給電装置4により電源装置5から所定の電圧を導体パターンに供給し、温度を上昇させてから熱線カメラ7でガラス板1を撮影する。CPU6は、この撮影した熱画像をモニタ8に表示するとともに、予め登録した基準パターンとの比較により熱画像の断線状態を判別する。導体パターンに印加する検査電圧や通電時間等の検査条件は、キーボード9から入力可能である。このようなCPU6によりプログラムにしたがって検査プロセスのシーケンス制御を行い、断線検査の自動化ができる。
【0012】
熱線カメラ7による測定波長は8〜14μmである。この波長帯はガラス測定可能な周波数帯を外れており、測定した画像は、ガラス板裏面側の像が透過せず表面側のみの撮像データが得られる。したがって、ガラス板の裏面側に例えばロボットハンドが吸着された状態であっても又作業員がいる場合であっても、これらの裏面側の像は熱線カメラが捉えることはできず、CPUに送られる熱画像には表れない。このようにガラス板を透過させない特定の波長を測定波長とすることにより、撮影するガラス板の裏面側の状態に影響されずにガラス板の表面側の導体パターンのみの熱画像が得られ正確な断線判断ができる。
【0013】
図2は導体パターンの熱画像の例を示す。
(A)の例は、ガラス板1の表面に複数の横線(素線)10とそれらを左右両端で連結する共通電極となる縦線(バスバー)11とからなる導体パターン12を形成した例である。
【0014】
(B)の例は、横線10の途中に3本の縦線13を形成し、これらの縦線13をラジオ受信用のアンテナとして利用した導体パターン14の例である。25は別のラジオ受信用アンテナであり、26は携帯電話やTV用のアンテナである。
【0015】
(C)の例は、断線のあるパターンの熱画像である。この例は、(A)の導体パターン12の一部に断線があった場合の例である。素線10の一部が断線していると、その素線10には通電されないため、その素線全体が発熱しない。このため、その素線は熱画像に表れない(図では破線)。したがって、(A)の熱画像を基準画像として(C)の熱画像と比較することにより、断線した素線(破線)が明確に判別できる。
【0016】
(D)の例は、(B)で示した3本の縦線13を有する導体パターン14の素線の一部(破線)が断線している例を示す。断線部の両側の縦線13間の素線部分には通電されないためその部分の素線は発熱しない。このためその部分の素線は熱画像に表れない(図では破線)。したがって、(B)の熱画像を基準画像として(D)の熱画像と比較することにより、断線した素線(破線)が明確に判別できる。
【0017】
図3は、本発明に係る断線検査装置のガラス板のクランプ部分の例を示す詳細図である。
前述のように、ガラス板1はロボット(不図示)によりその裏面側(図では上側)を吸着されて検査位置に搬送される。検査位置にロータリーアクチュエータ15が備わる。このロータリーアクチュエータ15は、これに連結されたクランプアーム16を、矢印Aのように回動動作させる。クランプアーム16の先端に押えシリンダ17が備わる。この押えシリンダ17は、そのロッド17aが矢印Bのように往復動作してガラス板1の裏面側を押圧する。ロッド17aの先端部にはネオプレンゴム等のクッション材18が備わる。
【0018】
ガラス板1の下面側(導体パターン形成面側)に、押えシリンダ17に対向して給電シリンダ19が備わる。この給電シリンダ19は、そのロッド19aが矢印Cのように往復動作してロッド先端の給電ピン20を上下動作させる。給電ピン20はケーブル21を介してバッテリ等の電源装置(不図示)に接続される。給電ピン20は、ベーク板等の絶縁材22を介してロッド19aの先端に固定される。
【0019】
給電シリンダ19の下側にベースシリンダ24が備わる。このベースシリンダ24は、そのロッド24aの先端に支持板23を有し、この支持板23に給電シリンダ19が固定される。ベースシリンダ24のロッド24aが矢印Dのように往復動作することにより、給電シリンダ19全体が上下動作する。
【0020】
検査すべきガラス板1をセットする場合、ロータリーアクチュエータ15を駆動してクランプアーム16を図の一点鎖線で示す後退位置に移動させる。この状態で、ガラス板1を搬入し、ガラス板1を不図示の支持枠上に搭載する。次に、給電シリンダ19及びベースシリンダ24を駆動して、2段階のシリンダ動作により衝撃を和らげて、給電ピン20をガラス板1の導体パターンに接触させる。
【0021】
次に、ロータリーアクチュエータ15を駆動してクランプアーム16を後退位置から図の実線で示す検査位置に移動させる。この状態で押えシリンダ17を駆動してクッション材18を介してガラス板1を支持枠(不図示)上に押圧し固定保持する。この状態で給電ピン20を介して導体パターンに所定の電圧を所定時間付与して導体パターンを発熱させる。導体パターンが所定温度以上に加熱された状態で熱線カメラで導体パターンを撮影し断線検査を行なう。検査が終了したら、押えシリンダ17のロッド17aを引込ませるとともに、再びロータリーアクチュエータ15を駆動してクランプアーム16を後退位置(一点鎖線)に移動させる。この状態で検査終了したガラス板1をロボットの吸着パッドで吸着して搬出する。
【0022】
図4は本発明に係る断線検査方法のフローチャートである。各ステップの動作は以下の通りである。
ステップS1:
断線のない良品のガラス板を検査状態にセットしてこれを基準ガラス板として熱線カメラで撮影し、熱画像を得る。
【0023】
ステップS2:
上記基準ガラス板の熱画像データを基準パターンとしてCPUのメモリに登録する。なお、この基準パターンデータが予め取得してある場合あるいは設計データから分る場合にはその基準パターンデータをキーボード9(図1)から入力してもよい。
【0024】
ステップS3:
検査すべきガラス板をロボットで搬送し前述(図3)のように検査位置にセットする。セットしたガラス板の導体パターンに対し所定の検査電圧を所定時間通電する。この検査電圧及び通電時間は、ガラス板の温度と導体パターンの温度との差が熱線カメラで識別可能となる所定の温度以上となるように予め設定されている。あるいはキーボードからこれらの検査条件を入力してもよい。
【0025】
ステップS4:
導体パターンが発熱した状態でガラス板を熱線カメラで撮影し、撮影した熱画像データをCPUに送る。
ステップS5:
CPUに送られた熱画像データを登録された基準パターンデータ(ステップS2)と比較して、断線の有無を判別する(図2参照)。
【0026】
ステップS6:
導体パターンに所定電圧を印加したときの電流値を計測し、CPU内で抵抗を算出する。抵抗値が正常な導体パターンの許容値より大あるいは小であればパターン幅欠陥等によるパターン不良と判別する。
【0027】
【発明の効果】
以上説明したように、本発明においては、ガラス板の導体パターンが形成された表面側から、このガラス板を熱線カメラを用いてガラス板の裏面側の熱画像が透過しない所定の波長で撮影することにより、ガラス板裏面側の搬送ロボット等の熱的影響を受けずに導体パターンの熱画像を得ることができる。この熱画像を正常な導体パターンの熱画像と比較することにより、断線状態を正確に判別することができる。
【0028】
また、本発明では、搬送ロボットによりガラス板の裏面側を吸着して撮像位置に搬送し、ここでガラス板を例えば支持枠上に搭載支持したりあるいはエアシリンダ等のクランプ装置により保持し、保持した状態で導体パターンに対し給電装置から検査条件に応じた所定の電圧を印加して導体パターンを加熱し、ガラス板との温度差を所定温度以上にし、この加熱された導体パターンを熱線カメラで撮影し、その熱画像をCPUに送って断線状態が判別される。これにより、信頼性の高い断線検査ができるとともに検査の自動化が可能になり、検査時間の短縮が図られる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る断線検査装置のブロック構成図。
【図2】導体パターンの形状例の説明図。
【図3】本発明に係る断線検査装置の要部構成図。
【図4】本発明に係る断線検査方法のフローチャート。
【符号の説明】
1:ガラス板、2:搬送ロボット、3:クランプ装置、4:給電装置、
5:電源装置、6:CPU、7:熱線カメラ、8:モニタ、9:キーボード、
10:横線(素線)、11:縦線(バスバー)、12:導体パターン、
13:縦線、14:導体パターン、15:ロータリーアクチュエータ、
16:クランプアーム、17:押えシリンダ、17a:ロッド、
18:クッション材、19:給電シリンダ、19a:ロッド、20:給電ピン、
21:ケーブル、22:絶縁材、23:支持板、24:ベースシリンダ、
24a:ロッド、25:ラジオ受信用アンテナ、
26:携帯電話やTV受信用アンテナ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disconnection inspection method and apparatus for a glass plate on which a conductor pattern is formed.
[0002]
[Prior art]
A defrosting heater is patterned on a rear window of an automobile by printing a conductive material such as silver paste. Such a conductor pattern such as a heater has a grid shape in which usually a plurality of horizontal conductor lines (element wires) are connected by vertical electrode lines (bus bars) at both left and right ends. The window glass plate for automobiles having such a conductor pattern is subjected to disconnection inspection during the manufacturing process.
[0003]
Conventionally, a method of rolling a metal roller on a glass surface has been used as this disconnection inspection. In this method, two metal rollers are rolled on a conductor pattern, the continuity of pattern wires is inspected by an inspection circuit connected to the metal roller, and the number of the wires is measured to determine the disconnection.
[0004]
[Problems to be solved by the invention]
However, in the inspection method for rolling the metal roller, the electrical contact state between the metal roller and the conductor pattern is easily affected by dust on the glass surface, and the product is reliable for inspection and quality. There is a risk of reducing the performance. In addition, since the metal roller is rolled on the glass surface while reliably conducting electrical conduction manually, it is impossible to automate, requiring a lot of inspection time and working efficiency.
[0005]
The present invention has been made in consideration of the above-described prior art, and an object of the present invention is to provide a disconnection inspection method and apparatus capable of inspecting disconnection efficiently and reliably and capable of automating the inspection.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a disconnection inspection method for determining a disconnection of a conductor pattern from a thermal image by photographing a glass plate having a conductor pattern formed on a glass surface with a heat ray camera. The disconnection is characterized in that a disconnection is determined by taking a photograph of the conductor pattern forming surface side with a wavelength of 14 μm as a measurement wavelength of the heat ray camera and comparing the thermal image with a thermal image of a reference pattern registered in advance. Provide inspection methods.
[0007]
According to this configuration, the glass plate is photographed from the front surface side where the conductive pattern of the glass plate is formed using a heat ray camera at a predetermined wavelength (8 to 14 μm) that does not transmit a thermal image on the back surface side of the glass plate. Thus, a thermal image of the conductor pattern can be obtained without being affected by the thermal effect of the transfer robot or the like on the back side of the glass plate. By comparing this thermal image with a thermal image of a normal conductor pattern, the disconnection state can be accurately determined.
[0008]
In the present invention, as an inspection apparatus for carrying out the disconnection inspection method, a heat ray camera for photographing a glass plate having a conductor pattern formed on the glass surface, a transfer robot for moving the glass plate, and the glass plate at the inspection position. A disconnection inspection apparatus comprising: a holding clamp apparatus; a power supply apparatus that applies a predetermined inspection voltage to a conductor pattern of a glass plate; and a control apparatus that determines disconnection from a thermal image captured by the heat ray camera. I will provide a.
[0009]
According to this configuration, for example, the back side of the glass plate (the side opposite to the surface on which the conductor pattern is formed) is sucked by the transfer robot and transferred to the imaging position, where the glass plate is mounted and supported on the support frame, for example. Or by holding a clamp device such as an air cylinder, and applying a predetermined voltage according to the inspection conditions from the power feeding device to the conductor pattern in the held state, heating the conductor pattern, and setting the temperature difference from the glass plate to a predetermined temperature As described above, the heated conductor pattern is photographed with a hot-wire camera, and the thermal image is sent to a control device such as a CPU to determine the disconnection state. As a result, a highly reliable disconnection inspection can be performed, and the inspection can be automated, thereby shortening the inspection time.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of a disconnection inspection apparatus according to an embodiment of the present invention.
A conductor pattern (see FIG. 2) is formed on the indoor surface side (concave surface side) of the glass plate 1 constituting the rear window of the automobile. The glass plate 1 is sucked at several positions on the back side of the glass plate by the arm of the vacuum suction type transfer robot 2 and is carried to the inspection position, and is mounted at a predetermined position on a support frame (not shown). The support frame is provided with a clamp device 3 for fixing and holding the glass plate 1 and a power feeding device 4 for energizing the conductor pattern of the glass plate 1. These transfer robot 2, clamping device 3, and power feeding device 4 are connected to a control device (CPU) 6 together with a power supply device 5. Further, a heat ray camera 7 for photographing the conductor pattern forming surface side of the glass plate 1 and a storage device 6 a for storing and holding various control programs, reference image data described later, and the like are connected to the CPU 6. The CPU 6 is accommodated in a personal computer main body (not shown), and a monitor 8 and an input keyboard 9 are connected thereto.
[0011]
The CPU 6 drives the transport robot 2 and the clamp device 3 according to a predetermined program to transport and fix the glass plate 1 to a predetermined inspection position. The power supply device 4 applies a predetermined voltage from the power supply device 5. The glass plate 1 is photographed with the hot-wire camera 7 after being supplied to the conductor pattern and raising the temperature. The CPU 6 displays the captured thermal image on the monitor 8 and determines the disconnection state of the thermal image by comparison with a reference pattern registered in advance. Inspection conditions such as inspection voltage applied to the conductor pattern and energization time can be input from the keyboard 9. Such a CPU 6 controls the sequence of the inspection process in accordance with the program, and the disconnection inspection can be automated.
[0012]
The measurement wavelength by the heat ray camera 7 is 8 to 14 μm. This wavelength band is out of the frequency band where glass can be measured, and the measured image does not transmit the image on the back side of the glass plate, and imaging data only on the front side can be obtained. Therefore, for example, even when a robot hand is attracted to the back side of the glass plate or when an operator is present, these back side images cannot be captured by the heat ray camera and sent to the CPU. Does not appear in the thermal image. In this way, by setting the specific wavelength that does not transmit the glass plate as the measurement wavelength, a thermal image of only the conductive pattern on the front side of the glass plate can be obtained without being affected by the state of the back side of the glass plate to be photographed. Disconnection can be judged.
[0013]
FIG. 2 shows an example of a thermal image of a conductor pattern.
The example of (A) is an example in which a conductor pattern 12 including a plurality of horizontal lines (element wires) 10 and vertical lines (bus bars) 11 serving as common electrodes for connecting them at both left and right ends is formed on the surface of the glass plate 1. is there.
[0014]
The example of (B) is an example of the conductor pattern 14 in which three vertical lines 13 are formed in the middle of the horizontal line 10 and these vertical lines 13 are used as an antenna for radio reception. 25 is another radio receiving antenna, and 26 is an antenna for a mobile phone or a TV.
[0015]
The example of (C) is a thermal image of a pattern with a disconnection. This example is an example in the case where a part of the conductor pattern 12 in FIG. If a part of the strand 10 is disconnected, the strand 10 is not energized, and the entire strand does not generate heat. For this reason, the strand does not appear in the thermal image (broken line in the figure). Therefore, by comparing the thermal image of (A) with the thermal image of (C) as a reference image, a broken wire (broken line) can be clearly identified.
[0016]
The example of (D) shows an example in which a part (broken line) of the strand of the conductor pattern 14 having the three vertical lines 13 shown in (B) is broken. Since the wire portion between the vertical lines 13 on both sides of the disconnected portion is not energized, the wire in that portion does not generate heat. For this reason, the strand of that part does not appear in the thermal image (broken line in the figure). Therefore, by comparing the thermal image of (B) with the thermal image of (D) using the thermal image of (B) as a reference image, the broken strand (broken line) can be clearly identified.
[0017]
FIG. 3 is a detailed view showing an example of a clamp portion of the glass plate of the disconnection inspection apparatus according to the present invention.
As described above, the glass plate 1 is sucked on the back side (upper side in the drawing) by a robot (not shown) and is transported to the inspection position. A rotary actuator 15 is provided at the inspection position. The rotary actuator 15 rotates the clamp arm 16 connected thereto as indicated by an arrow A. A presser cylinder 17 is provided at the tip of the clamp arm 16. In this presser cylinder 17, the rod 17 a reciprocates as indicated by an arrow B to press the back side of the glass plate 1. A cushioning material 18 such as neoprene rubber is provided at the tip of the rod 17a.
[0018]
A power supply cylinder 19 is provided on the lower surface side (conductor pattern forming surface side) of the glass plate 1 so as to face the presser cylinder 17. In the power supply cylinder 19, the rod 19 a reciprocates as indicated by an arrow C to move the power supply pin 20 at the tip of the rod up and down. The power supply pin 20 is connected to a power supply device (not shown) such as a battery via a cable 21. The power feed pin 20 is fixed to the tip of the rod 19a through an insulating material 22 such as a bake plate.
[0019]
A base cylinder 24 is provided below the power supply cylinder 19. The base cylinder 24 has a support plate 23 at the tip of the rod 24 a, and the power supply cylinder 19 is fixed to the support plate 23. As the rod 24a of the base cylinder 24 reciprocates as indicated by an arrow D, the entire power supply cylinder 19 moves up and down.
[0020]
When setting the glass plate 1 to be inspected, the rotary actuator 15 is driven to move the clamp arm 16 to the retracted position indicated by the one-dot chain line in the figure. In this state, the glass plate 1 is carried in and the glass plate 1 is mounted on a support frame (not shown). Next, the power supply cylinder 19 and the base cylinder 24 are driven, the impact is reduced by a two-stage cylinder operation, and the power supply pin 20 is brought into contact with the conductor pattern of the glass plate 1.
[0021]
Next, the rotary actuator 15 is driven to move the clamp arm 16 from the retracted position to the inspection position indicated by the solid line in the figure. In this state, the presser cylinder 17 is driven to press and hold the glass plate 1 on a support frame (not shown) via the cushion material 18. In this state, a predetermined voltage is applied to the conductor pattern through the power supply pin 20 for a predetermined time to cause the conductor pattern to generate heat. In a state where the conductor pattern is heated to a predetermined temperature or higher, the conductor pattern is photographed with a hot wire camera and a disconnection inspection is performed. When the inspection is completed, the rod 17a of the presser cylinder 17 is retracted, and the rotary actuator 15 is driven again to move the clamp arm 16 to the retracted position (dashed line). The glass plate 1 that has been inspected in this state is sucked out by the suction pad of the robot.
[0022]
FIG. 4 is a flowchart of the disconnection inspection method according to the present invention. The operation of each step is as follows.
Step S1:
A good glass plate without disconnection is set in an inspection state, and this is used as a reference glass plate and photographed with a heat ray camera to obtain a thermal image.
[0023]
Step S2:
The thermal image data of the reference glass plate is registered in the CPU memory as a reference pattern. When the reference pattern data is acquired in advance or can be obtained from the design data, the reference pattern data may be input from the keyboard 9 (FIG. 1).
[0024]
Step S3:
The glass plate to be inspected is conveyed by a robot and set at the inspection position as described above (FIG. 3). A predetermined inspection voltage is applied to the conductive pattern of the set glass plate for a predetermined time. The inspection voltage and energization time are set in advance so that the difference between the temperature of the glass plate and the temperature of the conductor pattern is equal to or higher than a predetermined temperature that can be identified by the hot-wire camera. Alternatively, these inspection conditions may be input from a keyboard.
[0025]
Step S4:
The glass plate is photographed with a hot-wire camera while the conductor pattern is heated, and the photographed thermal image data is sent to the CPU.
Step S5:
The thermal image data sent to the CPU is compared with the registered reference pattern data (step S2) to determine the presence or absence of disconnection (see FIG. 2).
[0026]
Step S6:
The current value when a predetermined voltage is applied to the conductor pattern is measured, and the resistance is calculated in the CPU. If the resistance value is larger or smaller than the allowable value of the normal conductor pattern, it is determined that the pattern is defective due to a pattern width defect or the like.
[0027]
【The invention's effect】
As described above, in the present invention, from the front surface side where the conductive pattern of the glass plate is formed, this glass plate is photographed with a heat wave camera at a predetermined wavelength that does not transmit the thermal image on the back surface side of the glass plate. Thus, a thermal image of the conductor pattern can be obtained without being affected by the thermal effect of the transfer robot or the like on the back side of the glass plate. By comparing this thermal image with a thermal image of a normal conductor pattern, the disconnection state can be accurately determined.
[0028]
In the present invention, the back side of the glass plate is sucked by the transfer robot and transferred to the imaging position, where the glass plate is mounted and supported on a support frame or held by a clamp device such as an air cylinder. In this state, a predetermined voltage corresponding to the inspection condition is applied to the conductor pattern from the power feeding device to heat the conductor pattern, and the temperature difference from the glass plate is set to a predetermined temperature or higher. An image is taken and the thermal image is sent to the CPU to determine the disconnection state. As a result, a disconnection inspection with high reliability can be performed, and the inspection can be automated, thereby shortening the inspection time.
[Brief description of the drawings]
FIG. 1 is a block diagram of a disconnection inspection apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory view of a shape example of a conductor pattern.
FIG. 3 is a main part configuration diagram of a disconnection inspection apparatus according to the present invention.
FIG. 4 is a flowchart of a disconnection inspection method according to the present invention.
[Explanation of symbols]
1: glass plate, 2: transport robot, 3: clamping device, 4: power feeding device,
5: power supply device, 6: CPU, 7: heat ray camera, 8: monitor, 9: keyboard,
10: Horizontal line (elementary wire), 11: Vertical line (bus bar), 12: Conductor pattern,
13: Vertical line, 14: Conductor pattern, 15: Rotary actuator,
16: Clamp arm, 17: Presser cylinder, 17a: Rod,
18: cushion material, 19: power supply cylinder, 19a: rod, 20: power supply pin,
21: Cable, 22: Insulating material, 23: Support plate, 24: Base cylinder,
24a: Rod, 25: Radio receiving antenna,
26: Mobile phone or TV receiving antenna.

Claims (2)

ガラス面に導体パターンが形成されたガラス板を熱線カメラで撮影してその熱画像から前記導体パターンの断線を判定する断線検査方法であって、
8〜14μmの波長を前記熱線カメラの測定波長として前記導体パターンの形成面側から撮影し、その熱画像を予め登録された基準パターンの熱画像と比較することにより断線を判定することを特徴とする断線検査方法。
A disconnection inspection method for determining the disconnection of the conductor pattern from the thermal image by photographing a glass plate having a conductor pattern formed on the glass surface with a heat ray camera,
Taking a wavelength of 8 to 14 μm as a measurement wavelength of the heat ray camera, photographing from the surface on which the conductor pattern is formed, and determining the disconnection by comparing the thermal image with a thermal image of a reference pattern registered in advance. Disconnection inspection method.
ガラス面に導体パターンが形成されたガラス板を撮影する熱線カメラと、
ガラス板を移動させる搬送ロボットと、
ガラス板を検査位置に保持するクランプ装置と、
ガラス板の導体パターンに所定の検査電圧を付加する給電装置と、
前記熱線カメラで撮影した熱画像から断線を判定する制御装置とを備えたことを特徴とする断線検査装置。
A heat ray camera for photographing a glass plate having a conductor pattern formed on the glass surface;
A transfer robot that moves the glass plate;
A clamping device for holding the glass plate in the inspection position;
A power feeding device for applying a predetermined inspection voltage to the conductor pattern of the glass plate;
A disconnection inspection apparatus comprising: a control device that determines disconnection from a thermal image captured by the heat ray camera.
JP2002274888A 2002-09-20 2002-09-20 Disconnection inspection method and apparatus Expired - Fee Related JP4200423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274888A JP4200423B2 (en) 2002-09-20 2002-09-20 Disconnection inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274888A JP4200423B2 (en) 2002-09-20 2002-09-20 Disconnection inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004109038A true JP2004109038A (en) 2004-04-08
JP4200423B2 JP4200423B2 (en) 2008-12-24

Family

ID=32271239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274888A Expired - Fee Related JP4200423B2 (en) 2002-09-20 2002-09-20 Disconnection inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4200423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057364A1 (en) * 2004-11-26 2006-06-01 Honda Motor Co., Ltd. Wire disconnection inspecting device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057364A1 (en) * 2004-11-26 2006-06-01 Honda Motor Co., Ltd. Wire disconnection inspecting device and method
GB2434864A (en) * 2004-11-26 2007-08-08 Honda Motor Co Ltd Wire disconnection inspecting device and method
US7537378B2 (en) 2004-11-26 2009-05-26 Honda Motor Co., Ltd Wire disconnection inspecting device and method
GB2434864B (en) * 2004-11-26 2009-11-25 Honda Motor Co Ltd Wire disconnection inspecting device and method

Also Published As

Publication number Publication date
JP4200423B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US7676916B2 (en) Electronic component mounting system and electronic component mounting method
JP6285697B2 (en) Electronic component inspection apparatus and electronic component mounting apparatus
JP2000022188A (en) Soldering system for tab lead
JP2003215081A (en) Method and apparatus for inspecting disconnection of conductive wire formed on plate glass
JP2012162042A (en) Printing operation assisting device
TW201824422A (en) Electronic component transport apparatus and electronic component inspection apparatus
JP4200423B2 (en) Disconnection inspection method and apparatus
US6623577B2 (en) Electric component compression bonding machine and method
JP6244551B2 (en) Component mounting line and component mounting method
JP2004039856A (en) Lead welding apparatus
US6614922B1 (en) Wire pattern test system
JP2007184498A (en) Component mounting processing method and component mounting system
CN107436405B (en) Electrical inspection method and electrical inspection apparatus
CN113905526A (en) Hole plugging device and hole plugging method for circuit board
JP2000241495A (en) Automatic aging inspection device
JPH07237940A (en) Device for soldering electrically conductive terminal to plate glass face
JP3456146B2 (en) Bonding apparatus and bonding method for electronic component with bump
CN113050311A (en) Component pressure welding device and component pressure welding method
JP3570018B2 (en) IC test system
CN216626210U (en) Hole plugging device of circuit board
JP2657205B2 (en) Inspection method using prober
JP2020181970A (en) Inspection device and method of controlling temperature of probe card
CN113036026B (en) Method and apparatus for manufacturing semiconductor device
CN219349010U (en) Air conditioner heating core performance detection equipment
CN113414478B (en) Resistance welding apparatus and method of using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R151 Written notification of patent or utility model registration

Ref document number: 4200423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees