JP2004107430A - Foam molded article and method for producing the same - Google Patents

Foam molded article and method for producing the same Download PDF

Info

Publication number
JP2004107430A
JP2004107430A JP2002269881A JP2002269881A JP2004107430A JP 2004107430 A JP2004107430 A JP 2004107430A JP 2002269881 A JP2002269881 A JP 2002269881A JP 2002269881 A JP2002269881 A JP 2002269881A JP 2004107430 A JP2004107430 A JP 2004107430A
Authority
JP
Japan
Prior art keywords
polylactic acid
based resin
resin composition
molded article
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002269881A
Other languages
Japanese (ja)
Other versions
JP3899303B2 (en
Inventor
Shinichi Fukunaga
福永 真一
Seiji Miyagawa
宮川 政治
Atsushi Kishi
岸 敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2002269881A priority Critical patent/JP3899303B2/en
Publication of JP2004107430A publication Critical patent/JP2004107430A/en
Application granted granted Critical
Publication of JP3899303B2 publication Critical patent/JP3899303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cushioning material which comprises a polylactic acid-based resin foam, scarcely varies the dimension, even when exposed to the conditions of high temperature and high humidity, when transported, can easily be taken out from an outer package such as a cardboard box, and to provide a method for producing the same. <P>SOLUTION: This polylactic acid-based resin composition foam molded article is characterized by having the D- and L-isomers of the polylactic acid component constituting the polylactic acid-based resin composition in a D-isomer / L-isomer ratio of 8/92 to 92/8, an apparent specific gravity of ≤0.05 g/cm<SP>3</SP>, and a coefficient of cubic expansion of ≤15% at 60°C and at a relative humidity of 80% after a week. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性でありながら、高温条件下での耐久性、特に寸法安定性に優れた発泡成形体およびその製造方法に関する。
【0002】
【従来の技術】
従来、家電製品等の緩衝材には、ポリスチレン発泡成形体が主に用いられてきたが、ポリスチレンは、燃焼熱量が40.2kJ/gと非常に高く、一般の焼却炉で焼却すると炉を傷めてしまう上、限りある石油資源を原料としていることなどから、敬遠される傾向にある。近年、こういった諸事情を踏まえ、リサイクルを目的とした同業者組合が発足し、マテリアルリサイクルへの試みが行われているが、マテリアルリサイクルの用途の広がりが遅く回収品はだぶついているのが現状である。
【0003】
燃焼熱量が低く古い焼却設備での焼却処理や、土中に埋設したりコンポスト化することによって処分することができる緩衝発泡体として最近提案されているものとして、脂肪族ジカルボン酸とジオールの縮合によって得られる生分解性脂肪族ポリエステルを原料とする発泡体が提案されているが、この発泡体は、生分解性を有するものの、
▲1▼ 通常使用条件でも常在菌によって分解が進むため、使用環境によって寿命が著しく異なる。
▲2▼ 柔軟性を有するものの、耐荷重が低く、発泡スチロール並みの耐荷重を必要とする緩衝材の代替品としては適さない。
という欠点を有している。しかも、化石資源を原料にしていることなどから、地球資源保護、環境保全の見地からはポリエチレンやポリスチレンと何ら変わりが無い。
【0004】
一方、WO99/21915号公報において、ポリ乳酸を主たる原料とする発泡粒子成形体が提案されているが、これらの発泡成形体は、非石油資源である澱粉を乳酸発酵して得られたを乳酸を原料としているため、通常の使用条件では生分解しないが、コンポスト化が可能で、しかも発泡スチロール並みの耐荷重、緩衝性を有し、高温(60℃)における耐熱性にも優れている。しかし、高温高湿となる輸出時の船倉や真夏の炎天下での密閉空間における耐熱性に乏しく、特に高発泡倍率における寸法変化が著しく、高温高湿条件下に曝されるものの緩衝材には適さない。このため、当該発泡成形体の用途は、高温高湿下にさらされないものに限定されていた。
【0005】
【特許文献1】
国際公開第99/21915号パンフレット
【特許文献2】
特表平9−501456号公報
【0006】
【発明が解決しようとする課題】
本発明は、上述のごとき現状に鑑み為されたものであって、輸送時に高温高湿条件下に曝されても寸法変化が小さく、段ボール箱等の外装からの取出しが容易なポリ乳酸系樹脂発泡体からなる緩衝材を提供することを目的とした。
【0007】
【課題を解決するための手段】
本発明者らは、ポリ乳酸系樹脂組成物を構成するポリ乳酸成分のD体/L体比率が8/92〜92/8であるポリ乳酸系樹脂に有機過酸化物を作用させた後、多官能イソシアネート、多官能エポキシ化合物、無水多塩基酸のいずれか一つまたは2つ以上を作用させたポリ乳酸系樹脂組成物に発泡ガスを含浸し、発泡、成形することによって、高発泡倍率でありながら、高温高湿条件下での体積変化を抑えることに成功し、本発明を完成した。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明に用いるポリ乳酸系樹脂とはモノマー単位として少なくとも60モル%の乳酸を含有するものである。乳酸のD体またはL体の比率が8%に満たないと予備発泡時に結晶化が進んで水蒸気(蒸気圧=〜150kPa)による成形が困難になるので、ポリ乳酸系樹脂のD/L比率は8/92〜92/8であることが必要である。
【0009】
本発明に用いるポリ乳酸系樹脂発泡成形体を構成するポリ乳酸系樹脂組成物は、上記ポリ乳酸系樹脂を51%以上含有していれば特に限定されない。好ましいポリ乳酸系樹脂の含有量は70%以上である。
【0010】
本発明のポリ乳酸系樹脂組成物には、主剤であるポリ乳酸系樹脂にコンパウンド可能であれば、所望の発泡倍率や成形性、を損なわない範囲で、他のコンポスト化可能な合成高分子、天然高分子やその誘導体を混合しても良い。
【0011】
コンパウンド可能な合成高分子としては、例えば、ポリ酢酸ビニル、ポリビニルアルコール等のビニル系樹脂、ポリエチレングリコール、ポリエチレンサクシネート、ポリエチレンサクシネートアジペート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリリンゴ酸、ポリグリコール酸等の脂肪族ポリエステル類、ポリエチレンテレフタレートアジペート、ポリブチレンテレフタレートアジペート、ポリブチレンテレフタレートサクシネート、ポリブチレンテレフタレートサクシネート等の脂肪族芳香族ポリエステル類が挙げられる。また、これらのうち2つ以上をブレンドまたは共重合したものや、架橋増粘した樹脂を用いてもよい。
【0012】
混合し得る天然高分子およびその誘導体としては、例えば、セルロース、アセチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロース、メチルセルロース、キチン、キトサンなどのセルロース誘導体、ポリ−L−ロイシン、ポリ−L−リジン、ポリアスパラギン酸等のポリアミド類、ゼラチン、コラーゲン、グルテン、ゼインの蛋白質等が挙げられる。
【0013】
本発明に用いるポリ乳酸系樹脂組成物には、発泡セルの均一化、細孔化を目的として、無機粉体等の気泡調整剤(発泡核剤)を添加しても良い。具体的には、タルク、雲母、粘土鉱物、炭酸カルシウム、炭酸水素ナトリウム/クエン酸等が使用可能であるが、特にこれらに限定されるものではない。
【0014】
また、本発明に用いるポリ乳酸系樹脂組成物には、コンパウンド時、または発泡性ガス含浸時に着色成分や機能性を付与する成分を併せて添加しても良い。例えば、制電剤、芳香剤、消臭剤、防腐剤、抗菌剤、染料、顔料等をコンパウンドまたは含浸することが可能である。
【0015】
本発明に用いる有機過酸化物としては、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)3−ヘキシン、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−アミルペルオキシ)ヘキサン、4−(t−ブチルペルオキシ)−4−メチル−2−ペンタノール、ビス(t−ブチルペルオキシイソプロピル)ベンゼン、過酸化ジクミル、3,3−ビス(t−ブチルペルオキシ)酪酸エチル、3,3−ビス(t−アミルペルオキシ)酪酸エチル、および過酸化ジベンゾイルなどが挙げられる。
【0016】
架橋効率の観点からは、一分子中に2つ以上のパーオキサイド残基を有する有機過酸化物、具体的には2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)3−ヘキシン、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−アミルペルオキシ)ヘキサン、3,3−ジ(t−ブチルペルオキシ)酪酸エチル、3,3−ビス(t−アミルペルオキシ)酪酸エチルが好ましく、取り扱いの容易さ、危険性の少なさ等の観点から、CaCO等に担持させたものが特に好ましい。市販されているものとしては、日本油脂(株)製のパーヘキサ25B−40(担体中の過酸化物量が40%の2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン)等が挙げられる。
【0017】
特表平9−501456号公報では、シート、フィルム向けのポリマー鎖間に十分な相互作用を達成してネッキングなどを抑制するのに十分であるようにレオロジー(伸び粘度特性)を改善するためには、通常、約0.01:1〜10:1(より好ましくは、0.05/1〜3/1)の有機過酸化物とポリマーのモル比を用いたときに、十分な量のポリマー相互作用が生じてレオロジーの改善が達成されると記述されているが、ポリ乳酸系発泡粒子においては、有機過酸化物単独では十分な発泡性を得るための伸び粘度特性が得られない。このため、本発明においては、求められる発泡倍率、寸法安定性のレベルによって異なるが、添加量は概ね0.02〜1質量%(対樹脂組成物)、好ましくは0.05%〜0.4%の範囲とし、末端基(水酸基、カルボキシル基)反応型の多官能架橋剤を併用して所望する伸び粘度特性を得る。
【0018】
有機過酸化物と併用する末端基反応型の架橋剤としては、有機過酸化物とは架橋機構の異なる樹脂の末端基と反応する架橋剤であれば特にその種類は問わない。例えば、多官能エポキシ化合物、無水多塩基酸類、多官能イソシアネート等が挙げられる。特に、2軸混練機等を用いたドライプロセスにおいては、混練時の機台への負荷が小さく、混練後に水分と徐々に反応してアロファネート結合やユリア結合により後架橋が可能なポリイソシアネート類が好適に用いられる。
【0019】
使用されるポリイソシアネート化合物としては、芳香族、脂環族、脂肪族系のポリイソシアネートがある。例えば、芳香族ポリイソシアネートとしてはトリレン、ジフェニルメタン、ナフチレン、トリジン、キシレン、トリフェニルメタンを骨格とするポリイソシアネート化合物、脂環族ポリイソシアネートとしてはイソホロン、水素化ジフェニルメタンを骨格とするポリイソシアネート化合物、脂肪族ポリイソシアネートとしてはヘキサメチレン、リジンを骨格とするポリイソシアネート化合物があり、いずれも使用可能であるが、汎用性、取扱い性、耐候性等からトリレン、ジフェニルメタン、特にジフェニルメタンのポリイソシアネートが好ましく使用される。
【0020】
本発明のポリ乳酸系樹脂組成物のコンパウンドは、どのような方法を用いて製造しても良いが、混練効率の良い2軸混練機を用いて行うのが最も一般的である。また、有機過酸化物と末端基反応型の架橋剤は、どちらを先に添加しても構わないが、同時添加すると有機過酸化物と末端基反応型架橋剤との直接反応が支配的になり、反応の制御が難しくなるので、何れかを先に添加して、ある程度混練した後に他方を混練する方が好ましい。
【0021】
本発明のポリ乳酸系樹脂組成物の発泡粒子の製造方法は特に限定しない。例えば、WO99/21915号公報と同様に、ポリ乳酸系樹脂組成物に発泡性ガスを含浸した後、蒸気等で加熱して予備発泡粒子とし、成形することが出来る。
【0022】
本発明のポリ乳酸系樹脂組成物の発泡粒子に含浸する発泡ガスとしては、窒素、二酸化炭素等の無機ガス、プロパン、ブタン、イソブタン、ペンタン、イソペンタン等の炭化水素類およびその混合物等が用いられる。フロンガス類も発泡ガスとして好適であるが、環境への配慮が必要な場合は避ける方が好ましい。
【0023】
発泡ガス含浸ビーズの予備発泡は、蒸気や熱風、高周波等によって発泡させる方法が適用できるが、発泡スチロール用の予備発泡機を用いる方法が最も簡便で一般的である。
【0024】
発泡粒子の成形は、予備発泡粒子を発泡スチロールや発泡ポリエチレン、発泡ポリプロピレン等の成形に用いる成形機を用いて行うのが最も簡便で一般的であるが、予備発泡粒子を経ず、金型内で発泡と成形を同時に行う事も出来る。
【0025】
【実施例】
以下、実施例を用いて詳細に説明する。
<発泡粒子の見かけ比重>
発泡粒子の見かけ比重=発泡粒子の質量÷見かけの体積(2L)
とし、2Lの容器に発泡粒子を取り、その質量を測定して小数点以下第4位を四捨五入して小数点以下第三位まで求めた。
【0026】
<成形性>
成形時の水蒸気圧98.1kPa(1kg/cm)、同一条件でで30cm×30cm×3cmのブロックを成形して半分に割ったときの断面を観察し、3cm角、3箇所について
融着率=粒子内で破断している発泡粒子数/断面の発泡粒子数×100%
の3箇所平均を算出、100%〜90%を○、90%〜80%を△、80%以下を×、特に成形ができなかったものを不可とした。
【0027】
<成形体の見かけ比重>
成形体の見かけ比重=質量÷見かけの体積
とし、約15cm×15cm×3cmの小片を切出し、その体積と質量から算出し、小数点以下第4位を四捨五入して小数点以下第三位まで求めた。
【0028】
<成形体の寸法安定性>
約15cm×15cm×3cmの小片を切出し、表裏縦横および厚みを正確に測定した後、60℃×80%RHの条件下に1週間放置した後、同様に表裏縦横および厚みを測定し、縦、横、厚みの寸法変化率を乗じて体積膨脹率を算出し、指標とした。
【0029】
(実施例1〜4および比較例1〜2)
異性体比率の異なる4種のポリ乳酸に各々パーヘキサ25B−40(2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン40%含有:日本油脂(株)製)を所定量樹脂にまぶした後、二軸混練機(TEM35B、東芝機械(株))でシリンダ温度175℃にて混練し、水中カッターを用いて平均粒径1.3mmφの粒子を得た。
【0030】
これらのパーヘキサ架橋ポリ乳酸樹脂粒子にイソシアネート化合物「ミリオネートMR―200」(イソシアネート基2.7〜2.8当量/モル、日本ポリウレタン工業(株))を所定量添加しつつ二軸混練機(TEM35B、東芝機械(株))にてシリンダ温度175℃で混練し、水中カッターを用いて平均粒径1.3mmφの粒子とした後、45℃の温水中で熟成した。
【0031】
(実施例5)
二軸混練機としてBT−30−S2−42−L((株)プラスチック工学研究所,L/D=42)を用い、異性体比率(L/D)=90/10、1質量%クロロホルム溶液の溶液粘度(RV)=3.7のポリ乳酸とパーヘキサ25B−40の混合物をホッパーから投入し、シリンダ途中よりミリオネートMR−200を所定比率になるように添加して連続的に混練、水中カッターを用いて平均粒径2mmφの粒子とした後、45℃の温水中で熟成した。
【0032】
(実施例6)
ホッパーから異性体比率(L/D)=90/10、1質量%クロロホルム溶液の溶液粘度(RV)=3.7のポリ乳酸を、ホッパー脇からミリオネートMR−200を所定速度で添加して、シリンダ途中よりパーヘキサ25B−40を所定の比率になるように添加して混練、架橋反応を行った以外は、実施例5と同様にして、平均粒径2mmφの粒子を得、45℃温水中で熟成した。
【0033】
(実施例7〜9)
二軸混練機としてBT−30−S2−42−L((株)プラスチック工学研究所)を用い、ホッパーからポリ乳酸を投入し、パーヘキサ25B−40とミリオネートMR−200を樹脂に対して所定の比率になるように、シリンダ中央部より同時に添加して混練し、水中カッターを用いて平均粒径2mmφの粒子とした後、45℃の温水中で熟成した。
【0034】
(比較例3)
異性体比率(L/D)=90/10、1質量%クロロホルム溶液の溶液粘度(RV)=3.7のポリ乳酸にミリオネートMR―200を所定の比率になるように添加しつつ二軸混練機(TEM35B、東芝機械(株))にて混練し、水中カッターを用いて平均粒径1.3mmφの粒子とした後、45℃の温水中で熟成した。
【0035】
(比較例4〜7)
異性体比率(L/D)=90/10、1質量%クロロホルム溶液の溶液粘度(RV)=3.7のポリ乳酸に各々パーヘキサ25B−40(2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン40%含有:日本油脂(株)製)を所定量樹脂にまぶした後、二軸混練機(TEM35B、東芝機械(株))でシリンダ温度175℃にて混練し、水中カッターを用いて平均粒径1.3mmφの粒子を得た。
【0036】
オートクレーブにこれらの実施例および比較例で得られたポリ乳酸系樹脂組成物粒子5000部、発泡剤としてイソブタン2000部、含浸助剤としてメタノール250〜500部を耐圧容器に仕込み、攪拌しつつ昇温して、85℃に3時間保持した。その後、25℃に冷却してから樹脂を取り出し、風乾して発泡ガス含浸粒子を得た。
【0037】
次いで発泡剤含浸ペレットを水蒸気(94℃、1分)で予備発泡させて発泡粒子とし、見かけ比重を求めた。
【0038】
実施例、比較例で得られた発泡粒子は、汎用の発泡スチロール用成形機で30cm×30cm×3cmの金型を用いて成形し、成形性を評価すると共に、成形可能なものについては見かけ比重と60℃、80%RHにおける体積膨張率を求めた。結果を表1に示す。
【0039】
【表1】

Figure 2004107430
【0040】
実施例1〜4、比較例1〜2から明らかなように、D体比率が8%以下では、発泡は条件を工夫することによって可能となるものの、成形が困難である。また、実施例1〜3と比較例3および比較例4〜7より、有機過酸化物単独では、添加量を単に増加させても発泡せず、イソシアネート単独では発泡はしても高温高湿下での体積膨張率が著しく大きく、見かけ比重0.05g/cm以下の高倍率発泡と高温高湿下における寸法安定性の両立には有機過酸化物と末端反応型架橋剤の併用が必須であることが明かである。また、実施例4,6および実施例7〜9から、有機過酸化物と末端反応型の架橋剤は添加順によらずほぼ同等の性能が得られるが、これらを同時添加した場合の架橋構造を制御することは、2軸混練機によるドライプロセスでは困難であることがわかる。
【0041】
次に、実施例2および比較例3の発泡粒子を用いて、VHSビデオデッキの緩衝材を成形し、発泡スチロールの緩衝材の代りに用いて元の包材に格納した。これを60℃、80%RHで1週間処理した後、ビデオデッキを取出そうとしたところ、実施例2の成形品を用いた方は容易に取出すことができたが、比較例4の成形品を用いた方は段ボール箱が樽型に変形するほど膨脹しており、段ボール箱を破壊しないと取出せなかった。
【0042】
【発明の効果】
このように、本発明の製造方法に基づき適正な処方を選択することによって、40倍近い発泡倍率(見かけ比重0.025g/cm)でありながら、高い寸法安定性を確保する事が可能となり、該発泡成形体を緩衝材として用いることにより、高温高湿下に曝される輸送条件に曝される用途にも対応できるポリ乳酸系樹脂発泡緩衝材が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a foamed molded article which is biodegradable and has excellent durability under high-temperature conditions, particularly excellent dimensional stability, and a method for producing the same.
[0002]
[Prior art]
Conventionally, foamed polystyrene has been mainly used as a cushioning material for home electric appliances and the like. However, polystyrene has a very high heat of combustion of 40.2 kJ / g, and when burned in a general incinerator, the furnace is damaged. In addition, they tend to be shunned because they use limited petroleum resources as raw materials. In recent years, based on these circumstances, a trade association has been established for the purpose of recycling, and attempts have been made for material recycling.However, the use of material recycling is slow and the collected items are stagnant. It is the current situation.
[0003]
As a recently proposed buffer foam that can be disposed of by incineration in old incinerators with low heat of combustion or buried in the soil or composted, the condensation of aliphatic dicarboxylic acids and diols A foam using the obtained biodegradable aliphatic polyester as a raw material has been proposed, and although this foam has biodegradability,
(1) Even under normal use conditions, the degradation progresses due to resident bacteria, so the service life varies significantly depending on the use environment.
{Circle around (2)} Although it has flexibility, it has a low load-bearing capacity and is not suitable as a substitute for a cushioning material requiring a load-bearing capacity comparable to that of styrene foam.
There is a disadvantage that. In addition, since it uses fossil resources as raw materials, it is no different from polyethylene or polystyrene from the viewpoint of protecting global resources and protecting the environment.
[0004]
On the other hand, in WO99 / 21915, foamed particle molded products using polylactic acid as a main raw material have been proposed, and these foamed molded products are obtained by lactic acid fermentation of starch, a non-petroleum resource, by lactic acid fermentation. Since it is used as a raw material, it does not biodegrade under normal use conditions, but it can be composted, has a load resistance and cushioning property comparable to styrene foam, and has excellent heat resistance at high temperatures (60 ° C.). However, it has poor heat resistance in the cargo space at the time of export, which is hot and humid, and in the enclosed space under the hot sun in the summer, and its dimensional change is particularly remarkable at high foaming ratio. Absent. For this reason, the use of the foamed molded article has been limited to those that are not exposed to high temperature and high humidity.
[0005]
[Patent Document 1]
WO 99/21915 pamphlet [Patent Document 2]
Japanese Unexamined Patent Publication No. Hei 9-501456
[Problems to be solved by the invention]
The present invention has been made in view of the current situation as described above, and has a small dimensional change even when exposed to high-temperature and high-humidity conditions during transportation, and is a polylactic acid-based resin that can be easily taken out of an exterior such as a cardboard box. It was intended to provide a cushioning material made of a foam.
[0007]
[Means for Solving the Problems]
The present inventors have applied an organic peroxide to a polylactic acid-based resin having a D-form / L-form ratio of 8/92 to 92/8 of the polylactic acid component constituting the polylactic acid-based resin composition, By impregnating a foaming gas into a polylactic acid-based resin composition that has been treated with one or more of a polyfunctional isocyanate, a polyfunctional epoxy compound, and a polybasic anhydride, and foaming and molding, a high foaming ratio is obtained. Despite this, the inventors succeeded in suppressing the volume change under high temperature and high humidity conditions, and completed the present invention.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polylactic acid resin used in the present invention contains at least 60 mol% of lactic acid as a monomer unit. If the ratio of the D-form or L-form of lactic acid is less than 8%, crystallization proceeds during pre-foaming and molding with steam (vapor pressure == 150 kPa) becomes difficult, so that the D / L ratio of the polylactic acid-based resin is It is necessary to be 8/92 to 92/8.
[0009]
The polylactic acid-based resin composition constituting the polylactic acid-based resin foam molded article used in the present invention is not particularly limited as long as the composition contains the polylactic acid-based resin in an amount of 51% or more. The preferred content of the polylactic acid-based resin is 70% or more.
[0010]
The polylactic acid-based resin composition of the present invention, as long as it can be compounded with the polylactic acid-based resin as a main component, a desired foaming ratio and moldability, as long as it does not impair the other compostable synthetic polymer, Natural polymers and their derivatives may be mixed.
[0011]
Compoundable synthetic polymers include, for example, polyvinyl acetate, vinyl resins such as polyvinyl alcohol, polyethylene glycol, polyethylene succinate, polyethylene succinate adipate, polybutylene succinate, polybutylene succinate adipate, polymalic acid, and polymalic acid. Examples thereof include aliphatic polyesters such as glycolic acid, and aliphatic aromatic polyesters such as polyethylene terephthalate adipate, polybutylene terephthalate adipate, polybutylene terephthalate succinate, and polybutylene terephthalate succinate. Further, a resin obtained by blending or copolymerizing two or more of these resins, or a resin having a crosslinked thickened material may be used.
[0012]
Examples of natural polymers and derivatives thereof that can be mixed include cellulose, acetyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose, methyl cellulose, chitin, cellulose derivatives such as chitosan, poly-L-leucine, poly-L-lysine, and the like. Examples thereof include polyamides such as polyaspartic acid, and proteins of gelatin, collagen, gluten, and zein.
[0013]
To the polylactic acid-based resin composition used in the present invention, a bubble regulator (foam nucleating agent) such as an inorganic powder may be added for the purpose of making the foam cells uniform and forming pores. Specifically, talc, mica, clay mineral, calcium carbonate, sodium bicarbonate / citric acid, and the like can be used, but are not particularly limited thereto.
[0014]
The polylactic acid-based resin composition used in the present invention may be added with a coloring component or a component imparting functionality at the time of compounding or impregnation with a foaming gas. For example, it is possible to compound or impregnate an antistatic agent, a fragrance, a deodorant, a preservative, an antibacterial agent, a dye, a pigment and the like.
[0015]
Examples of the organic peroxide used in the present invention include 2,5-dimethyl-2,5-di (t-butylperoxy) 3-hexyne and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane. 2,5-dimethyl-2,5-di (t-amylperoxy) hexane, 4- (t-butylperoxy) -4-methyl-2-pentanol, bis (t-butylperoxyisopropyl) benzene, peroxide Dicumyl, ethyl 3,3-bis (t-butylperoxy) butyrate, ethyl 3,3-bis (t-amylperoxy) butyrate, dibenzoyl peroxide, and the like.
[0016]
From the viewpoint of crosslinking efficiency, an organic peroxide having two or more peroxide residues in one molecule, specifically, 2,5-dimethyl-2,5-di (t-butylperoxy) 3-hexyne 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-amylperoxy) hexane, 3,3-di (t-butylperoxy) Ethyl butyrate and ethyl 3,3-bis (t-amylperoxy) butyrate are preferred, and those supported on CaCO 3 or the like are particularly preferred from the viewpoint of ease of handling and low risk. Commercially available products include Perhexa 25B-40 manufactured by NOF Corporation (2,5-dimethyl-2,5-di (t-butylperoxy) hexane having a peroxide content of 40% in the carrier) and the like. Is mentioned.
[0017]
Japanese Patent Application Laid-Open No. 9-501456 discloses a method for improving rheology (elongational viscosity properties) so as to achieve sufficient interaction between polymer chains for sheets and films and to suppress necking and the like. Is usually sufficient when using a molar ratio of organic peroxide to polymer of about 0.01: 1 to 10: 1 (more preferably 0.05 / 1 to 3/1). It is described that an interaction occurs to achieve an improvement in rheology. However, in the case of polylactic acid-based foamed particles, the organic peroxide alone does not provide elongational viscosity properties for obtaining sufficient foamability. For this reason, in the present invention, the addition amount is generally 0.02 to 1% by mass (based on the resin composition), and preferably 0.05% to 0.4%, although it depends on the required expansion ratio and dimensional stability level. %, And a desired elongational viscosity property is obtained by using a polyfunctional crosslinking agent of a terminal group (hydroxyl group, carboxyl group) reaction type in combination.
[0018]
The type of the terminal group reactive cross-linking agent used in combination with the organic peroxide is not particularly limited as long as it is a cross-linking agent that reacts with a terminal group of a resin having a different cross-linking mechanism from the organic peroxide. For example, polyfunctional epoxy compounds, polybasic anhydrides, polyfunctional isocyanates and the like can be mentioned. In particular, in a dry process using a twin-screw kneader or the like, the load on the machine at the time of kneading is small, and polyisocyanates capable of post-crosslinking by allophanate bonds or urea bonds by gradually reacting with moisture after kneading. It is preferably used.
[0019]
Examples of the polyisocyanate compound used include aromatic, alicyclic, and aliphatic polyisocyanates. For example, aromatic polyisocyanates include polyisocyanate compounds having a skeleton of tolylene, diphenylmethane, naphthylene, tolidine, xylene, and triphenylmethane; isophorone and polyisocyanate compounds having a skeleton of hydrogenated diphenylmethane as an alicyclic polyisocyanate; Hexamethylene and polyisocyanate compounds having a lysine skeleton as the group III polyisocyanate can be used, and any of them can be used, but from the viewpoint of versatility, handleability, weather resistance, etc., polyisocyanates of tolylene, diphenylmethane, especially diphenylmethane are preferably used. You.
[0020]
Although the compound of the polylactic acid-based resin composition of the present invention may be produced by any method, it is most commonly carried out by using a twin-screw kneader having high kneading efficiency. Either of the organic peroxide and the terminal group reactive crosslinking agent may be added first, but if added simultaneously, the direct reaction between the organic peroxide and the terminal group reactive crosslinking agent is dominant. This makes it difficult to control the reaction, so it is preferable to add one of them first, knead it to some extent, and then knead the other.
[0021]
The method for producing the expanded particles of the polylactic acid-based resin composition of the present invention is not particularly limited. For example, as in WO99 / 21915, a polylactic acid-based resin composition is impregnated with a foaming gas, and then heated with steam or the like to form pre-expanded particles, which can be molded.
[0022]
As the foaming gas for impregnating the foamed particles of the polylactic acid-based resin composition of the present invention, nitrogen, an inorganic gas such as carbon dioxide, propane, butane, isobutane, pentane, hydrocarbons such as isopentane, and mixtures thereof are used. . Fluorocarbons are also suitable as foaming gases, but should be avoided when environmental considerations are required.
[0023]
Preliminary foaming of the foaming gas-impregnated beads can be performed by a method of foaming with steam, hot air, high frequency, or the like, but a method using a pre-foaming machine for styrofoam is most simple and general.
[0024]
The molding of the foamed particles is most easily and generally performed using a molding machine that uses the pre-foamed particles for molding styrofoam, foamed polyethylene, foamed polypropylene, etc. Foaming and molding can be performed simultaneously.
[0025]
【Example】
Hereinafter, the embodiment will be described in detail.
<Apparent specific gravity of expanded particles>
Apparent specific gravity of expanded particles = mass of expanded particles / apparent volume (2 L)
The foamed particles were placed in a 2 L container, the mass thereof was measured, and the number was rounded to the fourth decimal place and found to the third decimal place.
[0026]
<Moldability>
Under the same conditions of water vapor pressure of 98.1 kPa (1 kg / cm 2 ), a block of 30 cm × 30 cm × 3 cm was molded and cut in half, and the cross section was observed. = Number of foam particles broken in the particles / number of foam particles in cross section x 100%
The three-point average was calculated, and 100% to 90% was evaluated as ○, 90% to 80% as Δ, and 80% or less as ×, and particularly those that could not be molded were regarded as unacceptable.
[0027]
<Apparent specific gravity of molded product>
A small piece of about 15 cm × 15 cm × 3 cm was cut out, calculated from the volume and mass, and the number was rounded to the fourth decimal place and calculated to the third decimal place.
[0028]
<Dimensional stability of molded product>
After cutting out a small piece of about 15 cm x 15 cm x 3 cm, accurately measuring the front, back, side and side, and the thickness, and leaving it for one week under the condition of 60 ° C x 80% RH, the front, back, back, side, and thickness were measured in the same manner. The volume expansion rate was calculated by multiplying the dimensional change rate of the width and thickness, and was used as an index.
[0029]
(Examples 1-4 and Comparative Examples 1-2)
Predetermined amount of perhexa 25B-40 (containing 40% of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane: manufactured by NOF Corporation) in four kinds of polylactic acids having different isomer ratios Then, the mixture was kneaded with a twin-screw kneader (TEM35B, Toshiba Machine Co., Ltd.) at a cylinder temperature of 175 ° C., and particles having an average particle diameter of 1.3 mmφ were obtained using an underwater cutter.
[0030]
A biaxial kneader (TEM35B) is added to these perhexa-crosslinked polylactic acid resin particles while adding a predetermined amount of an isocyanate compound “Millionate MR-200” (2.7 to 2.8 equivalents / mol of isocyanate groups, Nippon Polyurethane Industry Co., Ltd.). The mixture was kneaded at a cylinder temperature of 175 ° C. by means of a Toshiba Machine Co., Ltd., into particles having an average particle diameter of 1.3 mmφ using an underwater cutter, and then aged in hot water at 45 ° C.
[0031]
(Example 5)
BT-30-S2-42-L (Plastics Engineering Laboratory, L / D = 42) was used as a twin-screw kneader, and isomer ratio (L / D) = 90/10, 1% by mass chloroform solution. A mixture of polylactic acid having a solution viscosity (RV) of 3.7 and perhexa 25B-40 was charged from a hopper, and millionate MR-200 was added at a predetermined ratio from the middle of the cylinder to continuously knead and underwater cutter. And then ripened in warm water at 45 ° C.
[0032]
(Example 6)
A polylactic acid having an isomer ratio (L / D) = 90/10 and a solution viscosity (RV) of a 1% by mass chloroform solution = 3.7 was added from a hopper, and a millionate MR-200 was added from a side of the hopper at a predetermined rate. Except that Perhexa 25B-40 was added at a predetermined ratio from the middle of the cylinder and kneaded, and a crosslinking reaction was carried out, particles having an average particle diameter of 2 mmφ were obtained in the same manner as in Example 5, and heated at 45 ° C. in warm water. Matured.
[0033]
(Examples 7 to 9)
Using BT-30-S2-42-L (Plastic Engineering Laboratory Co., Ltd.) as a twin-screw kneader, polylactic acid was charged from a hopper, and Perhexa 25B-40 and Millionate MR-200 were added to the resin in a predetermined manner. The mixture was added at the same time from the center of the cylinder and kneaded so as to obtain the ratio, and the particles were formed into particles having an average particle size of 2 mmφ using an underwater cutter, and then aged in hot water at 45 ° C.
[0034]
(Comparative Example 3)
Biaxial kneading while adding millionate MR-200 to polylactic acid having isomer ratio (L / D) = 90/10, solution viscosity (RV) of 1 mass% chloroform solution = 3.7 so as to have a predetermined ratio. The mixture was kneaded with a mill (TEM35B, Toshiba Machine Co., Ltd.), formed into particles having an average particle diameter of 1.3 mmφ using an underwater cutter, and then aged in hot water at 45 ° C.
[0035]
(Comparative Examples 4 to 7)
Polyhexalactic acid having an isomer ratio (L / D) = 90/10 and a solution viscosity (RV) of a 1% by mass chloroform solution = 3.7 was added to perhexa 25B-40 (2,5-dimethyl-2,5-di ( After a predetermined amount of t-butylperoxy) hexane containing: 40% by Nippon Oil & Fat Co., Ltd. was sprinkled on the resin, the mixture was kneaded with a biaxial kneader (TEM35B, Toshiba Machine Co., Ltd.) at a cylinder temperature of 175 ° C. Particles having an average particle diameter of 1.3 mmφ were obtained using a cutter.
[0036]
In an autoclave, 5000 parts of the polylactic acid-based resin composition particles obtained in these Examples and Comparative Examples, 2,000 parts of isobutane as a foaming agent, and 250 to 500 parts of methanol as an impregnation aid were charged into a pressure-resistant vessel, and the temperature was raised while stirring. And maintained at 85 ° C. for 3 hours. Then, after cooling to 25 ° C., the resin was taken out and air-dried to obtain foamed gas impregnated particles.
[0037]
Next, the foaming agent-impregnated pellets were prefoamed with steam (94 ° C., 1 minute) to form foamed particles, and the apparent specific gravity was determined.
[0038]
The foamed particles obtained in the Examples and Comparative Examples were molded using a mold of 30 cm × 30 cm × 3 cm with a general-purpose styrofoam molding machine, and the moldability was evaluated. The volume expansion coefficient at 60 ° C. and 80% RH was determined. Table 1 shows the results.
[0039]
[Table 1]
Figure 2004107430
[0040]
As is clear from Examples 1 to 4 and Comparative Examples 1 and 2, when the D-form ratio is 8% or less, foaming is possible by devising conditions, but molding is difficult. Further, from Examples 1 to 3 and Comparative Examples 3 and 4 to 7, the organic peroxide alone does not foam even if the added amount is simply increased, and the isocyanate alone foams even under high temperature and high humidity. The combination of organic peroxide and terminal-reaction type cross-linking agent is indispensable in order to achieve both high expansion ratio with an apparent specific gravity of 0.05 g / cm 3 or less and dimensional stability under high temperature and high humidity. It is clear that there is. From Examples 4 and 6 and Examples 7 to 9, the organic peroxide and the terminal-reaction type cross-linking agent can obtain almost the same performance regardless of the order of addition. It can be seen that control is difficult in a dry process using a twin-screw kneader.
[0041]
Next, a cushioning material for a VHS video deck was molded using the foamed particles of Example 2 and Comparative Example 3, and stored in the original packaging material instead of the cushioning material of Styrofoam. After this was treated at 60 ° C. and 80% RH for one week, when the video deck was taken out, the one using the molded product of Example 2 could be easily taken out, but the molded product of Comparative Example 4 The person who used was expanded so that the cardboard box was deformed into a barrel shape, and could not be removed without destroying the cardboard box.
[0042]
【The invention's effect】
As described above, by selecting an appropriate formulation based on the production method of the present invention, it is possible to secure high dimensional stability while maintaining a foaming ratio close to 40 times (apparent specific gravity 0.025 g / cm 3 ). By using the foamed molded article as a cushioning material, a polylactic acid-based resin foamed cushioning material that can be used in applications exposed to transportation conditions exposed to high temperature and high humidity can be obtained.

Claims (2)

ポリ乳酸系樹脂組成物を構成するポリ乳酸成分のD体/L体比率が8/92〜92/8であり、見かけ比重が0.05g/cm以下であって、かつ60℃、相対湿度80%、1週間後における体積膨張率が15%以下であるポリ乳酸系樹脂組成物発泡成形体。The D-form / L-form ratio of the polylactic acid component constituting the polylactic acid-based resin composition is 8/92 to 92/8, the apparent specific gravity is 0.05 g / cm 3 or less, and 60 ° C., relative humidity A foamed molded article of a polylactic acid-based resin composition having a volume expansion coefficient of 80% or one week later is 15% or less. D体/L体比率が8/92〜92/8であるポリ乳酸系樹脂組成物に(a)有機過酸化物、および(b)多官能イソシアネート、多官能エポキシ化合物、無水多塩基酸のいずれか一つまたは2つ以上を作用させた後、発泡ガスを含浸させ、発泡、成形することを特徴とするポリ乳酸系樹脂組成物発泡成形体の製造方法。The polylactic acid-based resin composition having a D-form / L-form ratio of 8/92 to 92/8 contains (a) an organic peroxide and (b) any of a polyfunctional isocyanate, a polyfunctional epoxy compound, and a polybasic anhydride. A method for producing a foamed molded article of a polylactic acid-based resin composition, comprising impregnating a foaming gas, foaming and molding after acting one or two or more.
JP2002269881A 2002-09-17 2002-09-17 Foam molded body and method for producing the same Expired - Fee Related JP3899303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269881A JP3899303B2 (en) 2002-09-17 2002-09-17 Foam molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269881A JP3899303B2 (en) 2002-09-17 2002-09-17 Foam molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004107430A true JP2004107430A (en) 2004-04-08
JP3899303B2 JP3899303B2 (en) 2007-03-28

Family

ID=32267675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269881A Expired - Fee Related JP3899303B2 (en) 2002-09-17 2002-09-17 Foam molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3899303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022242A (en) * 2004-07-09 2006-01-26 Kaneka Corp Polylactic acid-based resin foamed particle and molded form thereof
WO2007049694A1 (en) 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead
US8076381B2 (en) 2005-04-14 2011-12-13 Kaneka Corporation Polyhydroxyalkanoate-based resin foamed particle, molded article comprising the same and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578094B2 (en) * 2002-12-27 2010-11-10 株式会社カネカ Biodegradable foam beads, method for producing the same, and biodegradable foam molded product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022242A (en) * 2004-07-09 2006-01-26 Kaneka Corp Polylactic acid-based resin foamed particle and molded form thereof
JP4570406B2 (en) * 2004-07-09 2010-10-27 株式会社カネカ Polylactic acid-based resin expanded particles and molded articles thereof
US8076381B2 (en) 2005-04-14 2011-12-13 Kaneka Corporation Polyhydroxyalkanoate-based resin foamed particle, molded article comprising the same and process for producing the same
WO2007049694A1 (en) 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Also Published As

Publication number Publication date
JP3899303B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
KR100535258B1 (en) Resin Composition With Biodegradability and Foamability
US5314927A (en) Polyester foamed articles and method for producing the same
JP3802680B2 (en) Expandable resin composition having biodegradability
EP3455294A1 (en) A composition based on polyactic acid
US6573308B1 (en) Biologically degradable foamed material particles
JP4664106B2 (en) Method for producing foamed polylactic acid resin particles
US20220162377A1 (en) Foam sheet, product, and method for producing foam sheet
JP2002155197A (en) Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom
JP2003268143A (en) Aliphatic polyester resin for producing foam and foam produced thereby
JP3871822B2 (en) Expandable resin composition having biodegradability
JP3899303B2 (en) Foam molded body and method for producing the same
JP4954461B2 (en) POLYLACTIC ACID RESIN COMPOSITION, FOAM PARTICLE, AND FOAM MOLDED BODY
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP2000230029A (en) Anti-static resin composition
JP2609795B2 (en) Polyester expandable particles and foam
JP3550782B2 (en) Expandable particles of lactic acid-based polyester
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3737396B2 (en) Expanded particles and molded bodies
JP3777338B2 (en) Non-crosslinked biodegradable polyester resin pre-expanded particles, molded product thereof and method for producing the pre-expanded particles
JP4570406B2 (en) Polylactic acid-based resin expanded particles and molded articles thereof
JP3907047B2 (en) Method for producing foamed molding
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JP2007138097A (en) Polylactic acid-based resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A711 Notification of change in applicant

Effective date: 20050124

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A977 Report on retrieval

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees