JP2004101369A - 水分検出装置 - Google Patents
水分検出装置 Download PDFInfo
- Publication number
- JP2004101369A JP2004101369A JP2002263638A JP2002263638A JP2004101369A JP 2004101369 A JP2004101369 A JP 2004101369A JP 2002263638 A JP2002263638 A JP 2002263638A JP 2002263638 A JP2002263638 A JP 2002263638A JP 2004101369 A JP2004101369 A JP 2004101369A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- measured
- amount
- sensor element
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
【課題】被測定ガスの結露状態に大きく影響されることなく、被測定ガス中の水分量を連続的に安定して検出できる水分検出装置を提供する。
【解決手段】ジルコニア式酸素センサであるガスセンサ101A,101Bは、その保護体101cが、センサ素子101aに内蔵のヒータ101fによって100℃以上に加熱される。ガスセンサ101Aには、ガイド体102aによる被測定ガスの案内によって被測定ガス中の液水が到達せず、ガスセンサ101Aの出力は、水蒸気分にのみ対応する。一方、ガスセンサ101Bには、ガイド体102bによって被測定ガス中の液水が到達し、該液水は保護体101cの熱で蒸発して拡散するから、ガスセンサ101Bの出力は、水蒸気分と液水分との総和に対応する。
【選択図】 図1
【解決手段】ジルコニア式酸素センサであるガスセンサ101A,101Bは、その保護体101cが、センサ素子101aに内蔵のヒータ101fによって100℃以上に加熱される。ガスセンサ101Aには、ガイド体102aによる被測定ガスの案内によって被測定ガス中の液水が到達せず、ガスセンサ101Aの出力は、水蒸気分にのみ対応する。一方、ガスセンサ101Bには、ガイド体102bによって被測定ガス中の液水が到達し、該液水は保護体101cの熱で蒸発して拡散するから、ガスセンサ101Bの出力は、水蒸気分と液水分との総和に対応する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、水及び水蒸気の制御を必要とする燃料電池システム等における水蒸気濃度(湿度)及び液水検出に好適な水分検出装置に関する。
【0002】
【従来の技術】
従来、被測定ガス中の水蒸気濃度を検出する方法としては、電解質膜に吸着される水分量によって変動する電気抵抗や静電容量等の変化から、被測定ガス中の水分量(湿度)を検知するセンサが広く知られている(例えば、特許文献1参照)。
【0003】
また、プロトン伝導性固体電解質や酸素イオン伝導性固体電解質を利用した水蒸気濃度の検出方法なども知られている(例えば、特許文献2,3参照)。
【0004】
【特許文献1】
特開平11−2616号公報
【特許文献2】
特開2001−50933号公報
【特許文献3】
特開平7−333193号公報
【0005】
【発明が解決しようとする課題】
ところで、電解質膜への水の吸着を利用して水分量を検知するセンサの場合、被測定ガスが結露状態(液水が飛散してくる状態)になると、電解質膜が液水に浸って測定不能となってしまうと共に、測定可能な状態に復帰するのに長時間を要する(数時間にも及ぶことがある)という問題があった。
【0006】
更に、電解質膜への水の吸着を利用するセンサでは、正常な測定状態においても、90%変化応答時間が10秒以上と遅く、充分な検出応答性を確保できないという問題があった。
また、プロトン伝導性固体電解質を利用したものも、前記センサと同様に、被測定ガスが結露状態(液水が飛散してくる状態)になると、電解質が液水に浸って測定不能となってしまうため、被測定ガスが結露状態になる場合は適用できないという問題があった。
【0007】
一方、酸素イオン伝導性固体電解質を利用したものは、ドライ状態での被測定ガスの酸素濃度を基準に、被測定ガス中の水分濃度を求めるもので、センサ素子が高温(600℃以上)で作動しているため、少々の結露状態であれば測定可能である。
しかしながら、結露水(液水)が増えてくると、センサ素子まで液水が到達してセンサ素子温度の急激な低下を招き、これによって測定精度が著しく悪化するという問題があり、最悪の場合には、熱衝撃によりセンサ素子(セラミックス)が破損することがあった。
【0008】
このように、従来の検出装置は、結露状態(液水発生状態)を避けた使用を前提にしたものであって、結露状態で充分な検出性能を確保できるものではなかった。
本発明は、被測定ガスの結露状態に大きく影響されることなく、被測定ガス中の水分量を連続的に安定して検出できる水分検出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
そのため、本発明に係る水分検出装置は、被測定ガス中の特定成分に反応するガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を検出する水分検出装置であって、前記ガス濃度検出器のセンサ素子の周囲で被測定ガスを加熱する加熱手段を設ける構成とした。
【0010】
【発明の効果】
上記構成によると、ガス濃度検出器のセンサ素子の周囲で被測定ガスが加熱されるから、被測定ガス中の水蒸気(気体)を凝縮させず(液体にさせないで)気体のまま、センサ素子へ導くことができ、また、被測定ガス中の液体分がセンサ素子周囲で蒸発し、水蒸気となってセンサ素子に導かれる。
【0011】
従って、被測定ガス中の水分が気体と液体との混合状態であっても、被測定ガス中の水分量を安定して検出することができる。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
尚、以下に示す図面は、現実のセンサの大きさを表すものではなく、構成及び作用を解り易く説明するためのものである。
図1は、第1の実施形態における水分検出装置の基本構成を示すものである。
【0013】
この図1において、被測定ガスが流れる配管102の途中に、該配管102内に臨む筒状のセンサ取り付け部102cが2箇所形成されている。
該センサ取り付け部102cには、それぞれガスセンサ101A,101B(ガス濃度検出器)がガスケット101eを挟んで取り付けてある。
前記ガスセンサ101A,101Bは、被測定ガス中の酸素濃度に応じた検出信号を出力する公知のジルコニア式酸素センサである。
【0014】
前記ガスセンサ101A,101Bのセンサ素子101aは、断熱保持部101bを介してセンサ本体101gに保持される一方、このセンサ素子101aを囲むように多孔質のセンサ素子保護体101cが装着されている。
また、前記センサ素子101aには、ヒータ101f(加熱手段)が内蔵され、このヒータ101fによってセンサ素子101aが所定の温度(600〜850℃)に加熱される。
【0015】
前記2つのガスセンサ101A,101Bのうち、ガスセンサ101A(第1のガス濃度検出器)の検出信号は、リード線101dを介して気体分算出手段200Aに出力され、ガスセンサ101Bの検出信号は、リード線101dを介して総量算出手段200Bに出力される。
前記気体分算出手段200A及び総量算出手段200Bの出力は、飽和状態判断手段300に出力される。
【0016】
また、ガスセンサ101Aが装着されるセンサ取り付け部102cの配管102側開放端には、配管102内を流れる被測定ガスが、センサ取り付け部102c側(センサ素子101a側)に流れ込むのを抑止するように、被測定ガスの流れを案内するガイド体102aを設けてあり、被測定ガスはセンサ素子101aを避けて流れるようにしてある(図1中の流れA参照)。
【0017】
前記ガイド体102aは、具体的には、少なくとも配管102内の被測定ガスの流れ方向において、センサ取り付け部102cの中空部の内径よりも狭い開口を形成する部材であり、センサ取り付け部102cの内周壁から、図で斜め下向きに対向して延設される。
一方、ガスセンサ101B(第2のガス濃度検出器)が装着されるセンサ取り付け部102cの配管102側開放端には、配管102内の被測定ガスの流れの一部を、取り付け部102c側(センサ素子101a側)に向けて導くガイド体102bを設けてあり、被測定ガスはセンサ素子101aに向けて流れるようにしてある。
【0018】
前記ガイド体102bは、具体的には、センサ取り付け部102cの開放端縁に対して所定隙間を有して配設され、センサ取り付け部102cに向けて凸で、配管102内の被測定ガスの流れ方向前後に傾斜面をもつ部材であり、前記傾斜面の下側が配管102の内周壁よりも配管102の中心寄りに配置され、傾斜面に衝突した被測定ガスの流れを、傾斜面に沿ってセンサ素子101a側に導くようになっている(図1中の流れB参照)。
【0019】
以上の構成における作用を、以下に説明する。
前記センサ素子101aを構成するジルコニア式酸素センサは、被測定ガス中の酸素濃度に反応し、水(水蒸気)には反応しない。
この特性を利用して、乾燥した被測定ガスの酸素濃度が既知であれば、実際の被測定ガスの酸素濃度から間接的に水分量(水蒸気濃度)を求めることができる。
【0020】
上記関係は下式に示される。
水蒸気濃度%=(1−(実酸素濃度/基準酸素濃度))×100…(1)
例えば、被測定ガスが空気の場合、乾燥空気中の酸素濃度は21%と既知である。
ここで、被測定ガスにおける実際の酸素濃度が18%だったとすると、この酸素濃度差(3%分)は水蒸気によって生じたもので、前記数式(1)によって、そのときの被測定ガス内の水蒸気濃度が14.3%と算出される。
【0021】
更に、被測定ガスの温度が既知であれば、一般に知られる温度と飽和水蒸気分圧の関係式を用いて相対湿度を算出することもできる。
前記気体分算出手段200Aは、ガスセンサ101Aの検出信号(測定酸素濃度)に基づき、前記数式(1)に従って水分濃度を算出する手段であるが、ガイド体102aによって被測定ガス中の液水がセンサ部分を素通りするようにしてあり、酸素濃度の測定に液水が関与しないので、被測定ガス中の水分量を気体分のみの量として算出する(気体分算出手段)。
【0022】
一方、前記総量算出手段200Bは、ガスセンサ101Bの検出信号(測定酸素濃度)に基づき、前記数式(1)に従って水分濃度を算出する手段であるが、ガイド体102bによって被測定ガス中の液水もセンサ素子保護体101cに接触するようにしてあるため、被測定ガス中の水分量を気体分及び液体分の総量として算出する(総量算出手段)。
【0023】
上記液水の検出について詳しく説明する。
本実施形態では、ヒータ101fで加熱されるセンサ素子101aの熱を利用して、センサ素子保護体101cが少なくとも100℃以上になるよう設定されている。
これにより、センサ素子保護体101c付近に流入した液水は、センサ素子保護体101cの熱で蒸発し、この水蒸気はセンサ素子保護体101c内を拡散し、センサ素子101aの検出雰囲気を形成する。
【0024】
従って、ガスセンサ101Bで検出される酸素濃度は、被測定ガス中に含まれていた水蒸気(気体分)と、液水(結露水)が蒸発した水蒸気分との総和に影響されることになり、前記総量算出手段200Bは、被測定ガス中の水分量を気体分及び液体分の総量として算出する。
尚、ガスセンサ101Aの場合、前記ガイド体102aによって、液水が流入することが殆どないが、センサ素子保護体101cによって被測定ガスが加熱されることで、被測定ガス中の水蒸気(気体)を凝縮させず(液体にさせないで)、気体のままセンサ素子101aへ導くことができ、被測定ガス中に水蒸気として含まれる水分量を精度良く検出できる。
【0025】
また、上記のように、センサ素子保護体101cにおいて被測定ガス中の液水が蒸発するようにしてあれば、液水がセンサ素子101aに接触して、温度を急激に低下させることがなく、安定した検出特性が得られると共に、熱衝撃による素子の破損を未然に防止でき、センサの耐久性を格段に向上させることができる。
【0026】
ここで、この総量算出手段200Bによって求められる水分量(水蒸気濃度)をWb、先に述べた気体分算出手段200Aによって求められる水分量(水蒸気濃度)をWaとすると、以下の判断を行うことができる。
Wa<Wbのとき→被測定ガスが過飽和水蒸気(結露あり)状態
Wa=Wbのとき→被測定ガスが飽和水蒸気以下(結露なし)状態
前記飽和状態判断手段300では、上記判断を実行し、該判断結果を、例えば後述する燃料電池システム制御器に出力する。
【0027】
上記のようにして、被測定ガス内の水分が飽和状態(100%湿度)を超えた結露状態を簡単な計算で検出することが可能となるため、被測定ガスへの加湿制御において、過剰な加湿や加湿量の不足を未然に防止できる。
特に、燃料電池システムにおいては、燃料ガス(水素)及び酸化ガス(空気)の湿度(水分量)の過不足が電池性能を大きく左右することから、本実施形態の水分検出装置は、この燃料電池システムの性能を維持向上するために有効である。
【0028】
尚、水分量Wa,Wbは、それぞれ用いるガスセンサ101A,101B(ジルコニア式酸素センサ)の感度特性を予め求めておくことで、精度良く検出することができ、また、既知の水蒸気量と既知の液水量を発生できる気液発生装置を用意し、この気液発生装置にてそれぞれ校正するとさらに好ましい。
また、上記実施形態では、ヒータ101fによって加熱されたセンサ素子101aからの伝熱でセンサ素子保護体101cが100℃以上の温度になるように設定したが、これに限定されるものではなく、例えばセンサ素子保護体101cを直接加熱するヒータを設けるようにしても良い。
【0029】
次に、第2実施形態を図2に示す。
尚、図2において、第1実施形態を示す前記図1と同一の構成部位には同一符号を付けて説明を省略する。
図2に示す第2実施形態では、1つのガスセンサ101Cが、被測定ガス中の水分量のうち気体分のみを検出する特性と、気体分及び液体分の総量を検出する特性とのいずれかに切換えられるようにしてある。
【0030】
具体的には、センサ取り付け部102c側(センサ素子101a側)に向けて被測定ガスの流れを案内する位置と、被測定ガスの流れがセンサ取り付け部102cを避けて素通りするように被測定ガスの流れを案内する位置とに切換えられるガイド体102xを設けてある。
前記ガイド体102xは、前記センサ取り付け部102cの配管102側の開口端に、径方向を軸として回転可能に支持され、前記開口端の上流側の略半分を閉塞する位置と、該閉塞位置から図2で反時計回りに回転して、被測定ガスの流れに対して斜めに交差し、下流側ほどセンサ取り付け部102cに近くなる位置とに、図示省略したアクチュエータで切換えられる。
【0031】
前記センサ取り付け部102cの開口端の上流側が閉塞される状態では、配管102内を流れる被測定ガスは、前記センサ取り付け部102cへの流れ込みが阻止され、被測定ガス中の液水は、センサ取り付け部102cを通り過ぎて下流に流れることになる(図2中の流れA参照)。
従って、このときのガスセンサ101Cの出力は、被測定ガスに含まれる水分のうちの気体分(水蒸気)にのみに対応することになる。
【0032】
一方、ガイド体102xが前記閉塞位置から図2で反時計回りに回転すると、ガイド体102xに閉塞されたセンサ取り付け部102cの開口が開放されると共に、ガイド体102xに被測定ガスの流れが衝突して、センサ取り付け部102c側に向けて被測定ガスが流れ(図2中の流れB参照)、被測定ガスに含まれる液水はセンサ素子保護体101cに到達して蒸発することになる。
【0033】
従って、このときのガスセンサ101Cの出力は、被測定ガスに含まれる水分のうちの気体分(水蒸気)と液体分(液水)との総量に対応することになる。
即ち、第2実施形態では、気体分(水蒸気)のみの検出と、気体分と液水分との総量の検出とを、1つのガスセンサ101Cによって行え、ガスセンサの数を削減できるだけでなく、気液の水分を同一のセンサで検出することから、センサ間の特性ばらつき等の問題を排除でき、検出精度を向上できる。
【0034】
前記ガイド体102xの位置(アクチュエータ)を制御する流れ方向切換手段103は、前記ガイド体102xの位置を周期的に交互に切換え制御し、前記ガスセンサ101Cからの検出信号を入力する水分量算出手段200では、前記数式(1)に基づいて水蒸気濃度%を逐次演算する。
尚、前記ガイド体102xの位置の切換周波数は、センサの検出応答が速いことから1〜5Hz程度とすることができる。
【0035】
前記流れ方向切換手段103による切換え制御信号、及び、前記水分量算出手段200の演算結果を入力する飽和状態判断手段300では、前記ガイド体102xの切換え位置に応じて、水分量算出手段200の演算結果が、気体分のみの水分量Waであるのか、気体分と液体分との総量Wbを示すものであるかを判別し、前記水分量Wa,Wbから、下記のようにして飽和状態の判別を行う。
【0036】
Wa<Wbのとき→被測定ガスが過飽和水蒸気(結露あり)状態
Wa=Wbのとき→被測定ガスが飽和水蒸気以下(結露なし)状態
次に第3実施形態を図3に示す。
尚、図3において、第1実施形態を示す前記図1と同一の構成部位には同一符号を付けて説明を省略する。
【0037】
図3に示す水分検出装置では、図1に示したガスセンサ101B、即ち、被測定ガスの流れを取り付け部102c側(センサ素子101a側)に向けて導くガイド体102bが設けられたガスセンサ101Bを備え、該ガスセンサ101Bの検出信号を入力する総量算出手段200Bで、水分量を気体分及び液体分の総量として算出する。
【0038】
一方、水分量を気体分のみの量として検出するための構成として、配管102内で被測定ガスの温度を検出するガス温度検出器200xを設けると共に、該ガス温度検出器200xからの検出信号に基づいて、前記被測定ガス中の水分量を飽和水蒸気濃度での水分量として算出する飽和水蒸気量算出手段200AAを設けてある。
【0039】
そして、前記総量算出手段200B及び飽和水蒸気量算出手段200AAでの算出結果を入力する飽和状態判断手段300では、飽和水蒸気量算出手段200AAで算出される水分量をWc、総量算出手段200Bで算出される水分量をWdとして、
Wc<Wdのとき、被検流体が過飽和水蒸気(結露あり)状態
Wc≧Wdのとき、被検流体が飽和水蒸気以下(結露なし)状態
と判断し、この判断結果を、例えば燃料電池システム制御器等に出力する。
【0040】
上記構成によると、簡単な構成で水分飽和状態を判断できると共に、Wc≧Wdのときには、水分量Wdと被測定ガスの温度とから被測定ガスの相対湿度を算出することが可能である。
尚、水分量Wc,Wdに基づく飽和状態の判断においては、それぞれ用いるガスセンサ101B、及び、ガス温度検出器200xの感度・応答特性を考慮し、特に、この両者の応答特性を一致させておくことが好ましいことは明らかである。
【0041】
次に、図4は上記水分検出装置が適用される燃料電池システムを示す。
図4において、燃料電池本体10は、電解質膜11の両面に、触媒及びガス拡散電極が形成された触媒電極層12a,13aが密着的に形成され、一方が酸化ガス極12、他方が燃料極13となる。
そして、それぞれの極側に酸化ガスである空気20と燃料ガスである水素30が供給され、両極間に発生する電気を外部の電気負荷40で電力として取り出す構成となっている。
【0042】
ここで、酸化ガス極12に空気を供給する空気ラインには、加湿装置21が装着され、この加湿装置21の下流位置(燃料電池入り口)に、前記第3実施形態の水分検出装置を構成するガスセンサ101B及びガス温度検出器200xが介装される。
尚、第1,第2実施形態に係る水分検出装置を同様に適用できることは明らかである。
【0043】
上記構成によると、酸化ガス極12に供給される加湿空気の加湿量(水分量)を常時検出でき、また、検出応答も1秒程度の高応答であるため、例えば燃料電池の過渡運転時にも追従した最適な酸化ガス供給(加湿制御)を実現できる。
更には、燃料極13に燃料ガスを供給する水素ラインでも同様の効果を出すことが可能であり、空気ラインと同様に、加湿装置21,ガスセンサ101B及びガス温度検出器200xを介装させてある。
【0044】
上記ジルコニア式酸素センサを用いたガスセンサ101では、酸素濃度をトレースとして水分量を間接的に求める作用を有するが、ジルコニア式酸素センサは、酸素同様に水素にも反応するから、反応成分が水素のみの燃料電池システムの燃料(水素)ラインでは、供給水素ガスの乾燥状態濃度が既知ならば、空気ラインと同様に水分量を検出可能であり、空気ラインに加え、水素ラインにおいても最適な燃料ガス供給(加湿制御)を実現できる。
【図面の簡単な説明】
【図1】第1の実施形態の水分検出装置を示すシステム構成図。
【図2】第2の実施形態の水分検出装置を示すシステム構成図。
【図3】第3の実施形態の水分検出装置を示すシステム構成図。
【図4】上記水分検出装置の燃料電池システムへの適用例を示すシステム構成図。
【符号の説明】
101A,101B,101C…ガスセンサ(ガス濃度検出器)
101c…センサ素子保護体(保護体)
101f…ヒータ(加熱手段)
102…配管
102a,102b,102x…ガイド体
103…流れ方向切換手段
200…水分量算出手段
200A…気体分算出手段
200AA…飽和水蒸気量算出手段
200B…総量算出手段
200x…ガス温度検出器
300…飽和状態判断手段
【発明の属する技術分野】
本発明は、水及び水蒸気の制御を必要とする燃料電池システム等における水蒸気濃度(湿度)及び液水検出に好適な水分検出装置に関する。
【0002】
【従来の技術】
従来、被測定ガス中の水蒸気濃度を検出する方法としては、電解質膜に吸着される水分量によって変動する電気抵抗や静電容量等の変化から、被測定ガス中の水分量(湿度)を検知するセンサが広く知られている(例えば、特許文献1参照)。
【0003】
また、プロトン伝導性固体電解質や酸素イオン伝導性固体電解質を利用した水蒸気濃度の検出方法なども知られている(例えば、特許文献2,3参照)。
【0004】
【特許文献1】
特開平11−2616号公報
【特許文献2】
特開2001−50933号公報
【特許文献3】
特開平7−333193号公報
【0005】
【発明が解決しようとする課題】
ところで、電解質膜への水の吸着を利用して水分量を検知するセンサの場合、被測定ガスが結露状態(液水が飛散してくる状態)になると、電解質膜が液水に浸って測定不能となってしまうと共に、測定可能な状態に復帰するのに長時間を要する(数時間にも及ぶことがある)という問題があった。
【0006】
更に、電解質膜への水の吸着を利用するセンサでは、正常な測定状態においても、90%変化応答時間が10秒以上と遅く、充分な検出応答性を確保できないという問題があった。
また、プロトン伝導性固体電解質を利用したものも、前記センサと同様に、被測定ガスが結露状態(液水が飛散してくる状態)になると、電解質が液水に浸って測定不能となってしまうため、被測定ガスが結露状態になる場合は適用できないという問題があった。
【0007】
一方、酸素イオン伝導性固体電解質を利用したものは、ドライ状態での被測定ガスの酸素濃度を基準に、被測定ガス中の水分濃度を求めるもので、センサ素子が高温(600℃以上)で作動しているため、少々の結露状態であれば測定可能である。
しかしながら、結露水(液水)が増えてくると、センサ素子まで液水が到達してセンサ素子温度の急激な低下を招き、これによって測定精度が著しく悪化するという問題があり、最悪の場合には、熱衝撃によりセンサ素子(セラミックス)が破損することがあった。
【0008】
このように、従来の検出装置は、結露状態(液水発生状態)を避けた使用を前提にしたものであって、結露状態で充分な検出性能を確保できるものではなかった。
本発明は、被測定ガスの結露状態に大きく影響されることなく、被測定ガス中の水分量を連続的に安定して検出できる水分検出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
そのため、本発明に係る水分検出装置は、被測定ガス中の特定成分に反応するガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を検出する水分検出装置であって、前記ガス濃度検出器のセンサ素子の周囲で被測定ガスを加熱する加熱手段を設ける構成とした。
【0010】
【発明の効果】
上記構成によると、ガス濃度検出器のセンサ素子の周囲で被測定ガスが加熱されるから、被測定ガス中の水蒸気(気体)を凝縮させず(液体にさせないで)気体のまま、センサ素子へ導くことができ、また、被測定ガス中の液体分がセンサ素子周囲で蒸発し、水蒸気となってセンサ素子に導かれる。
【0011】
従って、被測定ガス中の水分が気体と液体との混合状態であっても、被測定ガス中の水分量を安定して検出することができる。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
尚、以下に示す図面は、現実のセンサの大きさを表すものではなく、構成及び作用を解り易く説明するためのものである。
図1は、第1の実施形態における水分検出装置の基本構成を示すものである。
【0013】
この図1において、被測定ガスが流れる配管102の途中に、該配管102内に臨む筒状のセンサ取り付け部102cが2箇所形成されている。
該センサ取り付け部102cには、それぞれガスセンサ101A,101B(ガス濃度検出器)がガスケット101eを挟んで取り付けてある。
前記ガスセンサ101A,101Bは、被測定ガス中の酸素濃度に応じた検出信号を出力する公知のジルコニア式酸素センサである。
【0014】
前記ガスセンサ101A,101Bのセンサ素子101aは、断熱保持部101bを介してセンサ本体101gに保持される一方、このセンサ素子101aを囲むように多孔質のセンサ素子保護体101cが装着されている。
また、前記センサ素子101aには、ヒータ101f(加熱手段)が内蔵され、このヒータ101fによってセンサ素子101aが所定の温度(600〜850℃)に加熱される。
【0015】
前記2つのガスセンサ101A,101Bのうち、ガスセンサ101A(第1のガス濃度検出器)の検出信号は、リード線101dを介して気体分算出手段200Aに出力され、ガスセンサ101Bの検出信号は、リード線101dを介して総量算出手段200Bに出力される。
前記気体分算出手段200A及び総量算出手段200Bの出力は、飽和状態判断手段300に出力される。
【0016】
また、ガスセンサ101Aが装着されるセンサ取り付け部102cの配管102側開放端には、配管102内を流れる被測定ガスが、センサ取り付け部102c側(センサ素子101a側)に流れ込むのを抑止するように、被測定ガスの流れを案内するガイド体102aを設けてあり、被測定ガスはセンサ素子101aを避けて流れるようにしてある(図1中の流れA参照)。
【0017】
前記ガイド体102aは、具体的には、少なくとも配管102内の被測定ガスの流れ方向において、センサ取り付け部102cの中空部の内径よりも狭い開口を形成する部材であり、センサ取り付け部102cの内周壁から、図で斜め下向きに対向して延設される。
一方、ガスセンサ101B(第2のガス濃度検出器)が装着されるセンサ取り付け部102cの配管102側開放端には、配管102内の被測定ガスの流れの一部を、取り付け部102c側(センサ素子101a側)に向けて導くガイド体102bを設けてあり、被測定ガスはセンサ素子101aに向けて流れるようにしてある。
【0018】
前記ガイド体102bは、具体的には、センサ取り付け部102cの開放端縁に対して所定隙間を有して配設され、センサ取り付け部102cに向けて凸で、配管102内の被測定ガスの流れ方向前後に傾斜面をもつ部材であり、前記傾斜面の下側が配管102の内周壁よりも配管102の中心寄りに配置され、傾斜面に衝突した被測定ガスの流れを、傾斜面に沿ってセンサ素子101a側に導くようになっている(図1中の流れB参照)。
【0019】
以上の構成における作用を、以下に説明する。
前記センサ素子101aを構成するジルコニア式酸素センサは、被測定ガス中の酸素濃度に反応し、水(水蒸気)には反応しない。
この特性を利用して、乾燥した被測定ガスの酸素濃度が既知であれば、実際の被測定ガスの酸素濃度から間接的に水分量(水蒸気濃度)を求めることができる。
【0020】
上記関係は下式に示される。
水蒸気濃度%=(1−(実酸素濃度/基準酸素濃度))×100…(1)
例えば、被測定ガスが空気の場合、乾燥空気中の酸素濃度は21%と既知である。
ここで、被測定ガスにおける実際の酸素濃度が18%だったとすると、この酸素濃度差(3%分)は水蒸気によって生じたもので、前記数式(1)によって、そのときの被測定ガス内の水蒸気濃度が14.3%と算出される。
【0021】
更に、被測定ガスの温度が既知であれば、一般に知られる温度と飽和水蒸気分圧の関係式を用いて相対湿度を算出することもできる。
前記気体分算出手段200Aは、ガスセンサ101Aの検出信号(測定酸素濃度)に基づき、前記数式(1)に従って水分濃度を算出する手段であるが、ガイド体102aによって被測定ガス中の液水がセンサ部分を素通りするようにしてあり、酸素濃度の測定に液水が関与しないので、被測定ガス中の水分量を気体分のみの量として算出する(気体分算出手段)。
【0022】
一方、前記総量算出手段200Bは、ガスセンサ101Bの検出信号(測定酸素濃度)に基づき、前記数式(1)に従って水分濃度を算出する手段であるが、ガイド体102bによって被測定ガス中の液水もセンサ素子保護体101cに接触するようにしてあるため、被測定ガス中の水分量を気体分及び液体分の総量として算出する(総量算出手段)。
【0023】
上記液水の検出について詳しく説明する。
本実施形態では、ヒータ101fで加熱されるセンサ素子101aの熱を利用して、センサ素子保護体101cが少なくとも100℃以上になるよう設定されている。
これにより、センサ素子保護体101c付近に流入した液水は、センサ素子保護体101cの熱で蒸発し、この水蒸気はセンサ素子保護体101c内を拡散し、センサ素子101aの検出雰囲気を形成する。
【0024】
従って、ガスセンサ101Bで検出される酸素濃度は、被測定ガス中に含まれていた水蒸気(気体分)と、液水(結露水)が蒸発した水蒸気分との総和に影響されることになり、前記総量算出手段200Bは、被測定ガス中の水分量を気体分及び液体分の総量として算出する。
尚、ガスセンサ101Aの場合、前記ガイド体102aによって、液水が流入することが殆どないが、センサ素子保護体101cによって被測定ガスが加熱されることで、被測定ガス中の水蒸気(気体)を凝縮させず(液体にさせないで)、気体のままセンサ素子101aへ導くことができ、被測定ガス中に水蒸気として含まれる水分量を精度良く検出できる。
【0025】
また、上記のように、センサ素子保護体101cにおいて被測定ガス中の液水が蒸発するようにしてあれば、液水がセンサ素子101aに接触して、温度を急激に低下させることがなく、安定した検出特性が得られると共に、熱衝撃による素子の破損を未然に防止でき、センサの耐久性を格段に向上させることができる。
【0026】
ここで、この総量算出手段200Bによって求められる水分量(水蒸気濃度)をWb、先に述べた気体分算出手段200Aによって求められる水分量(水蒸気濃度)をWaとすると、以下の判断を行うことができる。
Wa<Wbのとき→被測定ガスが過飽和水蒸気(結露あり)状態
Wa=Wbのとき→被測定ガスが飽和水蒸気以下(結露なし)状態
前記飽和状態判断手段300では、上記判断を実行し、該判断結果を、例えば後述する燃料電池システム制御器に出力する。
【0027】
上記のようにして、被測定ガス内の水分が飽和状態(100%湿度)を超えた結露状態を簡単な計算で検出することが可能となるため、被測定ガスへの加湿制御において、過剰な加湿や加湿量の不足を未然に防止できる。
特に、燃料電池システムにおいては、燃料ガス(水素)及び酸化ガス(空気)の湿度(水分量)の過不足が電池性能を大きく左右することから、本実施形態の水分検出装置は、この燃料電池システムの性能を維持向上するために有効である。
【0028】
尚、水分量Wa,Wbは、それぞれ用いるガスセンサ101A,101B(ジルコニア式酸素センサ)の感度特性を予め求めておくことで、精度良く検出することができ、また、既知の水蒸気量と既知の液水量を発生できる気液発生装置を用意し、この気液発生装置にてそれぞれ校正するとさらに好ましい。
また、上記実施形態では、ヒータ101fによって加熱されたセンサ素子101aからの伝熱でセンサ素子保護体101cが100℃以上の温度になるように設定したが、これに限定されるものではなく、例えばセンサ素子保護体101cを直接加熱するヒータを設けるようにしても良い。
【0029】
次に、第2実施形態を図2に示す。
尚、図2において、第1実施形態を示す前記図1と同一の構成部位には同一符号を付けて説明を省略する。
図2に示す第2実施形態では、1つのガスセンサ101Cが、被測定ガス中の水分量のうち気体分のみを検出する特性と、気体分及び液体分の総量を検出する特性とのいずれかに切換えられるようにしてある。
【0030】
具体的には、センサ取り付け部102c側(センサ素子101a側)に向けて被測定ガスの流れを案内する位置と、被測定ガスの流れがセンサ取り付け部102cを避けて素通りするように被測定ガスの流れを案内する位置とに切換えられるガイド体102xを設けてある。
前記ガイド体102xは、前記センサ取り付け部102cの配管102側の開口端に、径方向を軸として回転可能に支持され、前記開口端の上流側の略半分を閉塞する位置と、該閉塞位置から図2で反時計回りに回転して、被測定ガスの流れに対して斜めに交差し、下流側ほどセンサ取り付け部102cに近くなる位置とに、図示省略したアクチュエータで切換えられる。
【0031】
前記センサ取り付け部102cの開口端の上流側が閉塞される状態では、配管102内を流れる被測定ガスは、前記センサ取り付け部102cへの流れ込みが阻止され、被測定ガス中の液水は、センサ取り付け部102cを通り過ぎて下流に流れることになる(図2中の流れA参照)。
従って、このときのガスセンサ101Cの出力は、被測定ガスに含まれる水分のうちの気体分(水蒸気)にのみに対応することになる。
【0032】
一方、ガイド体102xが前記閉塞位置から図2で反時計回りに回転すると、ガイド体102xに閉塞されたセンサ取り付け部102cの開口が開放されると共に、ガイド体102xに被測定ガスの流れが衝突して、センサ取り付け部102c側に向けて被測定ガスが流れ(図2中の流れB参照)、被測定ガスに含まれる液水はセンサ素子保護体101cに到達して蒸発することになる。
【0033】
従って、このときのガスセンサ101Cの出力は、被測定ガスに含まれる水分のうちの気体分(水蒸気)と液体分(液水)との総量に対応することになる。
即ち、第2実施形態では、気体分(水蒸気)のみの検出と、気体分と液水分との総量の検出とを、1つのガスセンサ101Cによって行え、ガスセンサの数を削減できるだけでなく、気液の水分を同一のセンサで検出することから、センサ間の特性ばらつき等の問題を排除でき、検出精度を向上できる。
【0034】
前記ガイド体102xの位置(アクチュエータ)を制御する流れ方向切換手段103は、前記ガイド体102xの位置を周期的に交互に切換え制御し、前記ガスセンサ101Cからの検出信号を入力する水分量算出手段200では、前記数式(1)に基づいて水蒸気濃度%を逐次演算する。
尚、前記ガイド体102xの位置の切換周波数は、センサの検出応答が速いことから1〜5Hz程度とすることができる。
【0035】
前記流れ方向切換手段103による切換え制御信号、及び、前記水分量算出手段200の演算結果を入力する飽和状態判断手段300では、前記ガイド体102xの切換え位置に応じて、水分量算出手段200の演算結果が、気体分のみの水分量Waであるのか、気体分と液体分との総量Wbを示すものであるかを判別し、前記水分量Wa,Wbから、下記のようにして飽和状態の判別を行う。
【0036】
Wa<Wbのとき→被測定ガスが過飽和水蒸気(結露あり)状態
Wa=Wbのとき→被測定ガスが飽和水蒸気以下(結露なし)状態
次に第3実施形態を図3に示す。
尚、図3において、第1実施形態を示す前記図1と同一の構成部位には同一符号を付けて説明を省略する。
【0037】
図3に示す水分検出装置では、図1に示したガスセンサ101B、即ち、被測定ガスの流れを取り付け部102c側(センサ素子101a側)に向けて導くガイド体102bが設けられたガスセンサ101Bを備え、該ガスセンサ101Bの検出信号を入力する総量算出手段200Bで、水分量を気体分及び液体分の総量として算出する。
【0038】
一方、水分量を気体分のみの量として検出するための構成として、配管102内で被測定ガスの温度を検出するガス温度検出器200xを設けると共に、該ガス温度検出器200xからの検出信号に基づいて、前記被測定ガス中の水分量を飽和水蒸気濃度での水分量として算出する飽和水蒸気量算出手段200AAを設けてある。
【0039】
そして、前記総量算出手段200B及び飽和水蒸気量算出手段200AAでの算出結果を入力する飽和状態判断手段300では、飽和水蒸気量算出手段200AAで算出される水分量をWc、総量算出手段200Bで算出される水分量をWdとして、
Wc<Wdのとき、被検流体が過飽和水蒸気(結露あり)状態
Wc≧Wdのとき、被検流体が飽和水蒸気以下(結露なし)状態
と判断し、この判断結果を、例えば燃料電池システム制御器等に出力する。
【0040】
上記構成によると、簡単な構成で水分飽和状態を判断できると共に、Wc≧Wdのときには、水分量Wdと被測定ガスの温度とから被測定ガスの相対湿度を算出することが可能である。
尚、水分量Wc,Wdに基づく飽和状態の判断においては、それぞれ用いるガスセンサ101B、及び、ガス温度検出器200xの感度・応答特性を考慮し、特に、この両者の応答特性を一致させておくことが好ましいことは明らかである。
【0041】
次に、図4は上記水分検出装置が適用される燃料電池システムを示す。
図4において、燃料電池本体10は、電解質膜11の両面に、触媒及びガス拡散電極が形成された触媒電極層12a,13aが密着的に形成され、一方が酸化ガス極12、他方が燃料極13となる。
そして、それぞれの極側に酸化ガスである空気20と燃料ガスである水素30が供給され、両極間に発生する電気を外部の電気負荷40で電力として取り出す構成となっている。
【0042】
ここで、酸化ガス極12に空気を供給する空気ラインには、加湿装置21が装着され、この加湿装置21の下流位置(燃料電池入り口)に、前記第3実施形態の水分検出装置を構成するガスセンサ101B及びガス温度検出器200xが介装される。
尚、第1,第2実施形態に係る水分検出装置を同様に適用できることは明らかである。
【0043】
上記構成によると、酸化ガス極12に供給される加湿空気の加湿量(水分量)を常時検出でき、また、検出応答も1秒程度の高応答であるため、例えば燃料電池の過渡運転時にも追従した最適な酸化ガス供給(加湿制御)を実現できる。
更には、燃料極13に燃料ガスを供給する水素ラインでも同様の効果を出すことが可能であり、空気ラインと同様に、加湿装置21,ガスセンサ101B及びガス温度検出器200xを介装させてある。
【0044】
上記ジルコニア式酸素センサを用いたガスセンサ101では、酸素濃度をトレースとして水分量を間接的に求める作用を有するが、ジルコニア式酸素センサは、酸素同様に水素にも反応するから、反応成分が水素のみの燃料電池システムの燃料(水素)ラインでは、供給水素ガスの乾燥状態濃度が既知ならば、空気ラインと同様に水分量を検出可能であり、空気ラインに加え、水素ラインにおいても最適な燃料ガス供給(加湿制御)を実現できる。
【図面の簡単な説明】
【図1】第1の実施形態の水分検出装置を示すシステム構成図。
【図2】第2の実施形態の水分検出装置を示すシステム構成図。
【図3】第3の実施形態の水分検出装置を示すシステム構成図。
【図4】上記水分検出装置の燃料電池システムへの適用例を示すシステム構成図。
【符号の説明】
101A,101B,101C…ガスセンサ(ガス濃度検出器)
101c…センサ素子保護体(保護体)
101f…ヒータ(加熱手段)
102…配管
102a,102b,102x…ガイド体
103…流れ方向切換手段
200…水分量算出手段
200A…気体分算出手段
200AA…飽和水蒸気量算出手段
200B…総量算出手段
200x…ガス温度検出器
300…飽和状態判断手段
Claims (10)
- 被測定ガス中の特定成分に反応するガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を検出する水分検出装置において、
前記ガス濃度検出器のセンサ素子の周囲で被測定ガスを加熱する加熱手段を設けたことを特徴とする水分検出装置。 - 前記加熱手段が、前記センサ素子を囲む多孔質の保護体を加熱し、該保護体の熱で被測定ガスを加熱する構成であることを特徴とする請求項1記載の水分検出装置。
- 前記加熱手段が、前記保護体を100℃以上に加熱することを特徴とする請求項2記載の水分検出装置。
- 前記加熱手段が、前記センサ素子を加熱し、該センサ素子の熱で前記保護体を加熱することを特徴とする請求項2又は3記載の水分検出装置。
- 前記センサ素子に向けて被測定ガスの流れを導くガイド体を備えると共に、
前記ガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を気体分及び液体分の総量として算出する総量算出手段を備えたことを特徴とする請求項1〜4のいずれか1つに記載の水分検出装置。 - 前記センサ素子を避けるように被測定ガスの流れを導くガイド体を備えると共に、
前記ガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を気体分のみの量として算出する気体分算出手段を備えたことを特徴とする請求項1〜4のいずれか1つに記載の水分検出装置。 - 前記被測定ガスの温度を検出するガス温度検出器を備えると共に、
該ガス温度検出器で検出される被測定ガスの温度に基づいて、前記被測定ガス中の水分量を飽和水蒸気濃度での水分量として算出する飽和水蒸気量算出手段を備えたことを特徴とする請求項5記載の水分検出装置。 - 前記センサ素子に向けて被測定ガスの流れを導く位置と、前記センサ素子を避けるように被測定ガスの流れを導く位置とに切換えられるガイド体を備えると共に、
前記センサ素子に向けて被測定ガスの流れが導かれるときには、前記ガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を気体分及び液体分の総量として算出し、
前記センサ素子を避けるように被測定ガスの流れが導かれるときには、前記被測定ガス中の水分量を気体分のみの量として算出する水分量算出手段を備えたことを特徴とする請求項1〜4のいずれか1つに記載の水分検出装置。 - 前記ガス濃度検出器として、
前記センサ素子を避けるように被測定ガスの流れを導くガイド体を備える第1のガス濃度検出器と、
前記センサ素子に向けて被測定ガスの流れを導くガイド体を備える第2のガス濃度検出器と、
を備える一方、
前記第1のガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を気体分のみの量として算出する気体分算出手段と、
前記第2のガス濃度検出器の測定結果に基づき、前記被測定ガス中の水分量を気体分及び液体分の総量として算出する総量算出手段と、
を備えたことを特徴とする請求項1〜4のいずれか1つに記載の水分検出装置。 - 前記気体分のみの量として算出された水分量と、前記気体分及び液体分の総量として算出された水分量とに基づいて、前記被測定ガス中の水分量が飽和状態であるか否かを判断する飽和状態判断手段を備えたことを特徴とする請求項7〜9のいずれか1つに記載の水分検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002263638A JP2004101369A (ja) | 2002-09-10 | 2002-09-10 | 水分検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002263638A JP2004101369A (ja) | 2002-09-10 | 2002-09-10 | 水分検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004101369A true JP2004101369A (ja) | 2004-04-02 |
Family
ID=32263303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002263638A Pending JP2004101369A (ja) | 2002-09-10 | 2002-09-10 | 水分検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004101369A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007040756A (ja) * | 2005-08-01 | 2007-02-15 | Honda Motor Co Ltd | ガスセンサおよびガスセンサシステム |
KR100764557B1 (ko) | 2006-07-14 | 2007-10-08 | (주)엠오텍 | 압력차를 이용한 산소 및 수분 농도 측정 시스템을 갖는글로브 박스용 가스정제 장치 |
JP2008145288A (ja) * | 2006-12-11 | 2008-06-26 | Denso Corp | ガスセンサ取付構造 |
WO2010058781A1 (ja) | 2008-11-19 | 2010-05-27 | トヨタ自動車株式会社 | ガスセンサの制御装置 |
JP2012026885A (ja) * | 2010-07-23 | 2012-02-09 | Ngk Spark Plug Co Ltd | プロテクタの被水確認方法 |
CN103837577A (zh) * | 2014-03-05 | 2014-06-04 | 上海应用技术学院 | 稠油含水率电脱测试装置 |
-
2002
- 2002-09-10 JP JP2002263638A patent/JP2004101369A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007040756A (ja) * | 2005-08-01 | 2007-02-15 | Honda Motor Co Ltd | ガスセンサおよびガスセンサシステム |
JP4598622B2 (ja) * | 2005-08-01 | 2010-12-15 | 本田技研工業株式会社 | ガスセンサ |
KR100764557B1 (ko) | 2006-07-14 | 2007-10-08 | (주)엠오텍 | 압력차를 이용한 산소 및 수분 농도 측정 시스템을 갖는글로브 박스용 가스정제 장치 |
JP2008145288A (ja) * | 2006-12-11 | 2008-06-26 | Denso Corp | ガスセンサ取付構造 |
WO2010058781A1 (ja) | 2008-11-19 | 2010-05-27 | トヨタ自動車株式会社 | ガスセンサの制御装置 |
US8731861B2 (en) | 2008-11-19 | 2014-05-20 | Toyota Jidosha Kabushiki Kaisha | Gas sensor control device |
JP2012026885A (ja) * | 2010-07-23 | 2012-02-09 | Ngk Spark Plug Co Ltd | プロテクタの被水確認方法 |
CN103837577A (zh) * | 2014-03-05 | 2014-06-04 | 上海应用技术学院 | 稠油含水率电脱测试装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2485605C (en) | Method of starting, stopping and operating gas sensor with built-in heater | |
US7342505B2 (en) | Gas detection apparatus and method for controlling gas sensor | |
JP2003297408A (ja) | 水分量センサおよびこの水分量センサを用いた燃料電池システム | |
US11428655B2 (en) | Gas sensor | |
JP4606948B2 (ja) | ガスセンサ | |
US20060048562A1 (en) | Gas sensor and control method therefor | |
JP4571002B2 (ja) | ガスセンサ | |
JP4568140B2 (ja) | ガス検出装置 | |
JP2004101369A (ja) | 水分検出装置 | |
US20070186619A1 (en) | Humidity measuring device and method | |
JP2008175623A (ja) | 硫黄成分検出装置 | |
JP2004138595A (ja) | ガス流量測定装置及びガス流量測定方法 | |
JP2005091324A (ja) | ガスセンサの制御装置 | |
JP4083652B2 (ja) | ガスセンサの制御装置 | |
JP4308107B2 (ja) | ガスセンサ | |
JP3836403B2 (ja) | ガス検出方法 | |
JP5021400B2 (ja) | 可燃性ガス検出装置 | |
JP4784445B2 (ja) | 排気温度測定装置及び排気温度測定方法 | |
JP5442984B2 (ja) | 燃料電池システムおよび燃料電池評価装置 | |
JP3875164B2 (ja) | ガスセンサ | |
JP4021827B2 (ja) | ガスセンサ | |
JP2004069436A (ja) | ガスセンサの結露防止構造 | |
JP2006010622A (ja) | ガス検出システムおよび燃料電池車両 | |
JP2005172655A (ja) | ガスセンサとそれを用いた燃料電池システムおよび自動車 | |
JP2006147151A (ja) | 燃料電池システム |