JP2004101143A - Vapor compression type refrigerator - Google Patents

Vapor compression type refrigerator Download PDF

Info

Publication number
JP2004101143A
JP2004101143A JP2002266946A JP2002266946A JP2004101143A JP 2004101143 A JP2004101143 A JP 2004101143A JP 2002266946 A JP2002266946 A JP 2002266946A JP 2002266946 A JP2002266946 A JP 2002266946A JP 2004101143 A JP2004101143 A JP 2004101143A
Authority
JP
Japan
Prior art keywords
compressor
flow rate
refrigerant flow
refrigerant
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266946A
Other languages
Japanese (ja)
Other versions
JP4063023B2 (en
Inventor
Kiyoji Kutsuna
沓名 喜代治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002266946A priority Critical patent/JP4063023B2/en
Publication of JP2004101143A publication Critical patent/JP2004101143A/en
Application granted granted Critical
Publication of JP4063023B2 publication Critical patent/JP4063023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reduction of the amount of refrigerating machine oil to be returned to a compressor. <P>SOLUTION: The state of a large refrigerant flow rate is forcibly switched from the state of a small refrigerant flow rate when a state that the refrigerant flow rate Gr is below a predetermined value G1 lasts for a predetermined time. Accordingly, even when the refrigerant flow rate Gr is below the predetermined value G1, and the refrigerant flow speed is reduced, the refrigerant flow rate is forcibly increased/decreased, and the refrigeration machine oil staying at outlets of evaporators 5a and 5b and in a low-pressure pipe or the like can be sufficiently circulated to a suction side of a compressor 1 by the refrigerant flow. Therefore, reduction of the amount of the refrigeration machine oil returned to the compressor 1 can be prevented in advance, occurrence of seizure or the like of the compressor 1 can be prevented, and the durability of the compressor 1 can be improved thereby. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、第1、第2蒸発器を有する蒸気圧縮式冷凍機に関するもので、特に車室内前席側の領域を空調する前席側空調ユニットと、車室内後席側の領域を空調する後席側空調ユニットとを備える車両用空調装置に適用して好適である。
【0002】
【従来の技術】
従来、前席側空調ユニット及び後席側空調ユニットを備えるデュアルエアコンでは、圧縮機の連続稼動時間が所定時間を超えたときに、電磁クラッチを強制的に断続させることにより圧縮機の吸入側圧力を強制変動させて、後席側の蒸発器や低圧冷媒配管に滞留した冷凍機油を圧縮機に戻すようにしている(例えば、特許文献1参照)。
【0003】
なお、冷凍機油とは圧縮機内の摺動部を潤滑する潤滑油であり、通常、蒸気圧縮式冷凍機では、冷媒中に潤滑油を混合することにより圧縮機内の摺動部に潤滑油(冷凍機油)を供給している。
【0004】
【特許文献1】
特開2000−283576号公報
【0005】
【発明が解決しようとする課題】
ところで、本発明者の実験検討によると、例えば空調装置において、冷凍機内を循環する冷媒流量が所定流量未満となって冷媒流速が低下すると、蒸発器出口や低圧配管等に停滞する冷凍機油を冷媒流れによって圧縮機吸入側に十分還流させることができず、圧縮機に戻すことができる冷凍機油量が低下してしまうことが解った。
【0006】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、圧縮機に戻る冷凍機油量が低下してしまうことを防止することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、第1、2蒸発器(5a、5b)、放熱器(2)、減圧手段(4a、4b)及び圧縮機(1)を備える蒸気圧縮式冷凍機であって、循環する冷媒流量が所定流量(G1)未満となる状態が所定時間継続したときに、大冷媒流量状態と小冷媒流量状態とを強制的に切り替える流量切替制御手段(S130)を有し、所定流量(G1)は、第1、2蒸発器(5a、5b)の両者で吸熱能力を発生させるときと第1、2蒸発器(5a、5b)のうちいずれか一方の蒸発器のみで吸熱能力を発生させるときとで相違することを特徴とする。
【0008】
これにより、冷媒流量が所定流量(G1)未満となり冷媒流速が低下しても、冷媒流量が強制的に増減し、蒸発器(5a、5b)出口の低圧配管等に停滞していた冷凍機油を冷媒流れによって圧縮機(1)の吸入側に十分還流させることができるので、圧縮機(1)に戻ってくる冷凍機油量が減少してしまうことを未然に防止できる。延いては、圧縮機(1)が焼き付く等の不具合が発生することを防止できるので、圧縮機(1)の耐久性を向上させることができる。
【0009】
請求項2に記載の発明では、圧縮機(1)は、吐出容量を変化させることができる可変容量型圧縮機であり、流量切替制御手段(S130)は、吐出容量を変化させることにより大冷媒流量状態と小冷媒流量状態とを強制的に切り替えることを特徴とするものである。
【0010】
請求項3に記載の発明では、圧縮機(1)の吐出容量を最大とすることにより大冷媒流量状態とし、圧縮機(1)の吐出容量を最小とすることにより小冷媒流量状態とすることを特徴とするものでる。
【0011】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0012】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を車両用空調装置に適用したものであって、図1は本実施形態に係る蒸気圧縮式冷凍機の模式図である。
【0013】
圧縮機1は走行用エンジンから動力を受けて冷媒を吸入圧縮するもので、本実施形態では、斜板室(クランク室)内の圧力を制御することにより斜板の傾斜角を連続的に変化させて吐出容量を連続的に変化させることができる可変容量型の圧縮機を採用している。
【0014】
具体的には、斜板室内の圧力を制御バルブを制御することにより圧縮機1の吐出容量を制御しており、本実施形態では、吐出容量を増大させるときには制御バルブへの通電電流値又は通電デューティ比(以下、制御電流値と呼ぶ。)を大きくし、吐出容量を減少させるときには制御電流値を小さくする。
【0015】
因みに、吐出容量とは、圧縮機のシャフトが一回転する際に吐出される理論(幾何学的)な体積吐出流量を言う。
【0016】
凝縮器2は圧縮機1から吐出した高温・高圧冷媒を冷却する放熱器であり、レシーバ3は凝縮器2から流出した冷媒を気相冷媒と液相冷媒とに分離して余剰冷媒を液相冷媒として蓄える気液分離器であり、本実施形態では、液相冷媒を後述する減圧器4a、4b側に供給する。
【0017】
第1、2減圧器4a、4bは、高圧冷媒を等エンタルピ膨脹させる膨脹弁であり、第1、2蒸発器5a、5bは、減圧された冷媒と室内に吹き出す空気とを熱交換して室内に吹き出す空気から吸熱して冷媒を蒸発させる熱交換器であり、第1蒸発器5aは前席側空調ユニット内に収納されて主に前席側に吹き出す空気を冷却し、第2蒸発器5bは後席側空調ユニット内に収納されて主に後席側に吹き出す空気を冷却する。
【0018】
なお、第1減圧器4aは、第1蒸発器5aの冷媒出口における冷媒過熱度が所定値となるように絞り開度を可変制御する周知の温度式膨脹弁であり、第2減圧器4bは、第1減圧器4aと同様な構造を有するもので、第2蒸発器5bの冷媒出口における冷媒過熱度が所定値となるように絞り開度を制御する。
【0019】
第1送風機6aは前席側空調ユニット用の送風機であり、第2送風機6bは後席側空調ユニット用の送風機である。なお、図1では、第1、2送風機6a、6bを軸流ファンのように描かれているが、図1は模式的な図であり、実際の送風機の形状を示すものはない。因みに、本実施形態では、送風機として遠心ファンを用いている。
【0020】
電子制御装置(ECU)7は、圧縮機1の吐出容量、つまり斜板室内の圧力を制御するバルブ(図示せず。)を制御する制御装置であり、このECU7には、圧縮機1の吐出圧Pdを検出圧力センサ7a、第1蒸発器6aを通過した直後の空気温度、つまり第1蒸発器6aの温度を検出するエバ後温度センサ7b、室外空気温度を検出する外気温度センサ7c、室内空気温度を検出する内気温度センサ7d及び乗員が希望する室内温度を設定する温度設定装置7eの検出温度等が入力されている。
【0021】
なお、圧縮機1の吐出容量は、エバ後温度センサ7bが検出した温度が所定値(例えば、3℃〜4℃)となるように制御される。
【0022】
次に、本実施形態に係る車両用空調装置の作動を述べる。
【0023】
1.シングル運転とデュアル運転との切り換え
シングル運転、つまり前席側空調ユニット及び後席側空調ユニットのいずれか一方のユニットを稼動させる際には、稼動させるユニットの送風機を稼動させた状態で冷媒を循環させる。一方、デュアル運転、つまり前席側空調ユニット及び後席側空調ユニットの両者を稼動させる際には、両送風機6a、6bを稼動させた状態で冷媒を循環させる。なお、両空調ユニットを停止させる場合には、両送風機6a、6bを停止させた状態で、圧縮機1の吐出容量を最小(0%)容量とする。
【0024】
2.圧縮機1に戻る冷凍機油量の制御
この制御モードは、圧縮機1に戻ってくる冷凍機油量が過度に低下することを防止するための制御モードであり、この制御モードは、シングル運転時及びデュアル運転時のいずれの運転時においても実行される。以下、図2に示すフローチャートに基づいて、この制御モードの作動を述べる。
【0025】
空調装置の始動スイッチ(図示せず。)が投入されると、循環する冷媒流量Grが所定流量G1未満であるか否かを判定し(S100)、冷媒流量Grが所定流量G1未満となる状態が所定時間継続したときには、大冷媒流量状態と小冷媒流量状態とを強制的に切り替える(S110〜S130)。なお、本実施形態では、冷媒流量Gr及び所定流量G1とは、質量流量を意味している。
【0026】
このとき、しきい値である所定流量G1は、第1、2蒸発器5a、5bの両者で吸熱能力を発生させるデュアル運転時と第1、2蒸発器5a、5bのうちいずれか一方の蒸発器のみで吸熱能力を発生させるシングル運転時とで相違しており、本実施形態では、デュアル運転時の所定流量G1がシングル運転時の所定流量G1より大きな値が設定される。
【0027】
因みに、蒸発器の形式及び必要とする空調能力によって所定流量G1は、変化するものの、本実施形態では、デュアル運転時の所定流量G1を40〜80kg/hとし、シングル運転時の所定流量G1を20〜40kg/hとしている。
【0028】
また、「大冷媒流量状態と小冷媒流量状態とを強制的に切り替える」に当たって、本実施形態では、図3に示すように、最大(100%)容量運転と最小(0%)容量運転とを10秒毎に3回切り換えている。
【0029】
また、本実施形態では、図4に示す特性図、つまり制御電流(吐出容量)と吐出圧pdとから冷媒流量Grを求めているが、本発明はこれに限定されるものではない。
【0030】
次に、本実施形態の作用効果を述べる。
【0031】
本実施形態では、冷媒流量Grが所定流量G1未満となる状態が所定時間継続したときに、大冷媒流量状態と小冷媒流量状態とを強制的に切り替えるので、冷媒流量Grが所定流量G1未満となり冷媒流速が低下しても、冷媒流量が強制的に増減し、蒸発器5a、5b出口や低圧配管等に停滞していた冷凍機油を冷媒流れによって圧縮機1の吸入側に十分還流させることができる。
【0032】
したがって、圧縮機1に戻ってくる冷凍機油量が減少してしまうことを未然に防止できるので、圧縮機1が焼き付く等の不具合が発生することを防止でき、圧縮機1の耐久性を向上させることができる。
【0033】
なお、図5は圧縮機1に戻ってくる冷媒量及びオイル循環率(=冷凍機油循環量/(冷凍機油循環量+冷媒循環量))の変化を示す試験結果であり、この試験結果から明らかなように、所定時間Tx継続後に大冷媒流量状態と小冷媒流量状態とを強制的に切り替えれば、オイル循環率が増大し、圧縮機1に戻ってくる冷凍機油量が増大することが判る。
【0034】
因みに、本実施形態では、所定時間Txは、オイル循環率が1.5%以下となる時間を基準として選定されている。
【0035】
また、シングル運転とデュアル運転とでしきい値である所定流量G1を相違させるので、運転状態に適したオイル戻し制御を行うことができる。
【0036】
(第2実施形態)
第1実施形態では、冷媒流量Grを直接的に計測することによりが冷媒流量Grが所定流量G1未満であるか否かを判定したが、蒸発器への送風量と冷媒流量Grとが相関関係を有していることから、本実施形態では、図6に示すように、S100では、送風量が所定送風量未満であるか否か判定して間接的に冷媒流量Grが所定流量G1未満であるか否かを判定する。
【0037】
(その他の実施形態)
上述の実施形態では可変容量型の圧縮機を用いたが、本発明はこれに限定されるものではなく、例えば固定容量型の圧縮機を採用してもよい。なお、この場合には、吐出容量を変化させることができないので、圧縮機1を停止させる、又は回転数を低下させる等して大冷媒流量状態と小冷媒流量状態とを強制的に切り替える必要がある。
【0038】
また、上述の実施形態では、最大(100%)容量運転と最小(0%)容量運転とを10秒毎に切り換えたが、本発明は、「冷媒流量Grが所定流量G1未満となる状態が所定時間継続したときに、強制的に流量を増減させるものであるので、その吐出容量又は流量は、最大と最小とに限定されるものではない。
【0039】
また、冷媒流量Grは質量流量に限定されるものではなく、体積流量に判定してもよい。
【0040】
また、冷媒流量Grの計測方法は、上述の実施形態に示された方法に限定されうものではない。
【0041】
また、上述の実施形態では、送風機6a、6bによりシングル運転とデュアル運転とを切り換えたが、本発明はこれに限定されるものではなく、例えば電磁弁等のバルブにより冷媒流れそのものを制御してシングル運転とデュアル運転とを切り換えてもよい。
【0042】
また、上述の実施形態では空調装置に本発明を適用したが、本発明の適用はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図2】本発明の第1実施形態に係る蒸気圧縮式冷凍機の制御フローを示すフローチャートである。
【図3】本発明の第1実施形態に係る制御の特徴を示す特性図である。
【図4】制御電流(吐出容量)及び吐出圧pdと冷媒流量Grとの関係を示す特性図である。
【図5】圧縮機に戻ってくる冷凍機油量及びオイル循環率と冷媒流量Grとの関係を示す図である
【図6】本発明の第2実施形態に係る蒸気圧縮式冷凍機の制御フローを示すフローチャートである。
【符号の説明】
1…圧縮機、2…凝縮器、3…レシーバ、4a、4b…減圧器(膨脹弁)、
5a、5b…蒸発器、6a、6b…送風機。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigerator having first and second evaporators, and more particularly, to a front seat air conditioning unit for air conditioning a front seat side area of a vehicle compartment, and air conditioning for a rear seat side area of a passenger compartment. The present invention is suitably applied to a vehicle air conditioner including a rear seat side air conditioning unit.
[0002]
[Prior art]
Conventionally, in a dual air conditioner having a front seat air conditioning unit and a rear seat air conditioning unit, when the continuous operation time of the compressor exceeds a predetermined time, the electromagnetic clutch is forcibly turned on and off to thereby control the suction side pressure of the compressor. Is forcedly changed so that the refrigerating machine oil retained in the evaporator or the low-pressure refrigerant pipe on the rear seat side is returned to the compressor (for example, see Patent Document 1).
[0003]
The refrigerating machine oil is a lubricating oil for lubricating a sliding portion in a compressor. In a vapor compression refrigerating machine, lubricating oil (refrigerating oil) is usually added to a sliding portion in a compressor by mixing lubricating oil in a refrigerant. Machine oil).
[0004]
[Patent Document 1]
JP 2000-283576 A
[Problems to be solved by the invention]
By the way, according to the experimental study of the present inventor, for example, in an air conditioner, when the flow rate of the refrigerant circulating in the refrigerator becomes less than a predetermined flow rate and the flow rate of the refrigerant decreases, the refrigerant oil stagnant at the evaporator outlet or the low-pressure pipe or the like is cooled. It was found that the flow could not sufficiently recirculate to the compressor suction side, and the amount of refrigerating machine oil that could be returned to the compressor was reduced.
[0006]
In view of the above points, the present invention firstly provides a new vapor compression type refrigerator different from the conventional one, and secondly, prevents a reduction in the amount of refrigerating machine oil returning to the compressor. With the goal.
[0007]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, the first and second evaporators (5a, 5b), the radiator (2), the pressure reducing means (4a, 4b), and the compressor ( A vapor compression refrigerator including the above (1), wherein when a state in which the circulating refrigerant flow rate is less than a predetermined flow rate (G1) continues for a predetermined time, a large refrigerant flow state and a small refrigerant flow state are forcibly switched. A flow rate switching control means (S130) is provided, and the predetermined flow rate (G1) is determined when both the first and second evaporators (5a, 5b) generate heat absorption capability and when the first and second evaporators (5a, 5b) are used. It is characterized in that it is different from the case where only one of the evaporators generates the heat absorbing ability.
[0008]
As a result, even if the refrigerant flow rate becomes lower than the predetermined flow rate (G1) and the refrigerant flow rate decreases, the refrigerant flow rate is forcibly increased and decreased, and the refrigerating machine oil stagnated in the low-pressure pipe at the outlet of the evaporator (5a, 5b) is removed. Since the refrigerant can be sufficiently recirculated to the suction side of the compressor (1) by the refrigerant flow, it is possible to prevent the amount of refrigerating machine oil returning to the compressor (1) from decreasing. As a result, it is possible to prevent the occurrence of problems such as seizure of the compressor (1), so that the durability of the compressor (1) can be improved.
[0009]
According to the second aspect of the present invention, the compressor (1) is a variable displacement compressor capable of changing the discharge capacity, and the flow rate switching control means (S130) changes the discharge capacity to change the large refrigerant. It is characterized in that the flow state and the small refrigerant flow state are forcibly switched.
[0010]
According to the third aspect of the present invention, a large refrigerant flow state is set by maximizing the discharge capacity of the compressor (1), and a small refrigerant flow state is set by minimizing the discharge capacity of the compressor (1). It is characterized by the following.
[0011]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the vapor compression refrigerator according to the present invention is applied to an air conditioner for a vehicle, and FIG. 1 is a schematic diagram of the vapor compression refrigerator according to the embodiment.
[0013]
The compressor 1 receives power from a traveling engine to suck and compress refrigerant, and in the present embodiment, controls the pressure in a swash plate chamber (crank chamber) to continuously change the inclination angle of the swash plate. The compressor employs a variable displacement compressor that can continuously change the discharge capacity.
[0014]
More specifically, the discharge capacity of the compressor 1 is controlled by controlling the pressure in the swash plate chamber by a control valve. In the present embodiment, when the discharge capacity is increased, the current value or the current supplied to the control valve is controlled. When the duty ratio (hereinafter, referred to as a control current value) is increased, and the discharge capacity is reduced, the control current value is decreased.
[0015]
Incidentally, the discharge capacity means a theoretical (geometric) volume discharge flow rate discharged when the shaft of the compressor makes one rotation.
[0016]
The condenser 2 is a radiator for cooling the high-temperature and high-pressure refrigerant discharged from the compressor 1, and the receiver 3 separates the refrigerant flowing out of the condenser 2 into a gaseous refrigerant and a liquid-phase refrigerant and converts the surplus refrigerant into a liquid-phase refrigerant. The gas-liquid separator stores the refrigerant as a refrigerant. In the present embodiment, the liquid-phase refrigerant is supplied to the decompressors 4a and 4b described later.
[0017]
The first and second decompressors 4a and 4b are expansion valves for expanding the high-pressure refrigerant by isenthalpy, and the first and second evaporators 5a and 5b exchange heat between the depressurized refrigerant and air blown into the room to exchange heat. The first evaporator 5a is a heat exchanger that absorbs heat from the air that is blown out and evaporates the refrigerant. The first evaporator 5a cools the air that is housed in the front seat side air conditioning unit and mainly blows out to the front seat side, and the second evaporator 5b Cools air that is housed in the rear air conditioning unit and blows out mainly to the rear seat side.
[0018]
The first decompressor 4a is a well-known temperature-type expansion valve that variably controls a throttle opening so that a refrigerant superheat degree at a refrigerant outlet of the first evaporator 5a becomes a predetermined value. , Having a structure similar to that of the first decompressor 4a, and controls the throttle opening so that the refrigerant superheat degree at the refrigerant outlet of the second evaporator 5b becomes a predetermined value.
[0019]
The first blower 6a is a blower for a front seat air conditioning unit, and the second blower 6b is a blower for a rear seat air conditioning unit. In FIG. 1, the first and second blowers 6a and 6b are depicted as axial fans, but FIG. 1 is a schematic diagram and does not show the actual shape of the blower. Incidentally, in this embodiment, a centrifugal fan is used as a blower.
[0020]
An electronic control unit (ECU) 7 controls a discharge capacity of the compressor 1, that is, a valve (not shown) for controlling a pressure in the swash plate chamber. The pressure sensor 7a detects the pressure Pd, the air temperature immediately after passing through the first evaporator 6a, that is, the post-evaporation temperature sensor 7b for detecting the temperature of the first evaporator 6a, the outside air temperature sensor 7c for detecting the outdoor air temperature, and the room. The detected temperature of the inside air temperature sensor 7d for detecting the air temperature and the temperature setting device 7e for setting the room temperature desired by the occupant are input.
[0021]
The discharge capacity of the compressor 1 is controlled so that the temperature detected by the post-evaporation temperature sensor 7b becomes a predetermined value (for example, 3 ° C. to 4 ° C.).
[0022]
Next, the operation of the vehicle air conditioner according to the present embodiment will be described.
[0023]
1. Switching between single operation and dual operation Single operation, that is, when operating either the front air conditioning unit or the rear air conditioning unit, the refrigerant is circulated while the blower of the operating unit is operating. Let it. On the other hand, in the dual operation, that is, when both the front seat side air conditioning unit and the rear seat side air conditioning unit are operated, the refrigerant is circulated in a state where both the blowers 6a and 6b are operated. When both air conditioning units are stopped, the discharge capacity of the compressor 1 is set to the minimum (0%) capacity with both the blowers 6a and 6b stopped.
[0024]
2. Control of refrigerating machine oil amount returning to compressor 1 This control mode is a control mode for preventing the refrigerating machine oil amount returning to compressor 1 from excessively decreasing. It is executed in any operation of the dual operation. Hereinafter, the operation of this control mode will be described based on the flowchart shown in FIG.
[0025]
When a start switch (not shown) of the air conditioner is turned on, it is determined whether the circulating refrigerant flow rate Gr is less than a predetermined flow rate G1 (S100), and the refrigerant flow rate Gr is less than the predetermined flow rate G1. Is continued for a predetermined time, the large refrigerant flow state and the small refrigerant flow state are forcibly switched (S110 to S130). In the present embodiment, the coolant flow rate Gr and the predetermined flow rate G1 mean a mass flow rate.
[0026]
At this time, the predetermined flow rate G1, which is the threshold value, is determined during the dual operation in which both the first and second evaporators 5a and 5b generate the heat absorbing capability, and between one of the first and second evaporators 5a and 5b. In the present embodiment, the predetermined flow rate G1 in the dual operation is set to a value larger than the predetermined flow rate G1 in the single operation.
[0027]
Incidentally, although the predetermined flow rate G1 varies depending on the type of the evaporator and the required air conditioning capacity, in the present embodiment, the predetermined flow rate G1 in the dual operation is set to 40 to 80 kg / h, and the predetermined flow rate G1 in the single operation is set. It is 20 to 40 kg / h.
[0028]
In the “forceful switching between the large refrigerant flow state and the small refrigerant flow state”, in the present embodiment, as shown in FIG. 3, the maximum (100%) capacity operation and the minimum (0%) capacity operation are performed. Switching is performed three times every 10 seconds.
[0029]
In the present embodiment, the refrigerant flow rate Gr is obtained from the characteristic diagram shown in FIG. 4, that is, the control current (discharge capacity) and the discharge pressure pd, but the present invention is not limited to this.
[0030]
Next, the operation and effect of the present embodiment will be described.
[0031]
In the present embodiment, when the state in which the refrigerant flow rate Gr is less than the predetermined flow rate G1 continues for a predetermined time, the large refrigerant flow state and the small refrigerant flow state are forcibly switched, so that the refrigerant flow rate Gr becomes less than the predetermined flow rate G1. Even if the flow rate of the refrigerant is reduced, the flow rate of the refrigerant is forcibly increased and decreased, and the refrigerating machine oil stagnated at the outlets of the evaporators 5a and 5b and the low-pressure pipe and the like can be sufficiently returned to the suction side of the compressor 1 by the refrigerant flow. it can.
[0032]
Therefore, since it is possible to prevent the amount of the refrigerating machine oil returning to the compressor 1 from being reduced, it is possible to prevent a problem such as the seizure of the compressor 1 and to improve the durability of the compressor 1. be able to.
[0033]
FIG. 5 is a test result showing changes in the amount of refrigerant returning to the compressor 1 and the oil circulation rate (= refrigeration oil circulation amount / (refrigeration oil circulation amount + refrigeration circulation amount)). Thus, if the large refrigerant flow state and the small refrigerant flow state are forcibly switched after the continuation of the predetermined time Tx, it can be seen that the oil circulation rate increases, and the amount of refrigerating machine oil returning to the compressor 1 increases.
[0034]
Incidentally, in the present embodiment, the predetermined time Tx is selected based on the time when the oil circulation rate becomes 1.5% or less.
[0035]
Further, since the predetermined flow rate G1, which is the threshold value, is made different between the single operation and the dual operation, the oil return control suitable for the operation state can be performed.
[0036]
(2nd Embodiment)
In the first embodiment, whether or not the refrigerant flow rate Gr is less than the predetermined flow rate G1 is determined by directly measuring the refrigerant flow rate Gr. However, the correlation between the amount of air blown to the evaporator and the refrigerant flow rate Gr is determined. Accordingly, in the present embodiment, as shown in FIG. 6, in S100, it is determined in S100 whether the blowing amount is less than the predetermined blowing amount, and the refrigerant flow Gr is indirectly determined to be less than the predetermined flow G1. It is determined whether or not there is.
[0037]
(Other embodiments)
In the above-described embodiment, a variable displacement compressor is used. However, the present invention is not limited to this. For example, a fixed displacement compressor may be employed. In this case, since the discharge capacity cannot be changed, it is necessary to forcibly switch between the large refrigerant flow state and the small refrigerant flow state by stopping the compressor 1 or reducing the rotation speed. is there.
[0038]
Further, in the above-described embodiment, the maximum (100%) capacity operation and the minimum (0%) capacity operation are switched every 10 seconds. However, the present invention provides a “condition in which the refrigerant flow rate Gr is less than the predetermined flow rate G1. Since the flow rate is forcibly increased and decreased when the predetermined time is continued, the discharge capacity or the flow rate is not limited to the maximum and the minimum.
[0039]
Further, the coolant flow rate Gr is not limited to the mass flow rate, and may be determined as a volume flow rate.
[0040]
Further, the method of measuring the refrigerant flow rate Gr is not limited to the method described in the above embodiment.
[0041]
In the above-described embodiment, the single operation and the dual operation are switched by the blowers 6a and 6b. However, the present invention is not limited to this. For example, the refrigerant flow itself is controlled by a valve such as an electromagnetic valve. You may switch between single operation and dual operation.
[0042]
Further, in the above embodiment, the present invention is applied to the air conditioner, but the application of the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vapor compression refrigerator according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing a control flow of the vapor compression refrigerator according to the first embodiment of the present invention.
FIG. 3 is a characteristic diagram showing characteristics of control according to the first embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a relationship between a control current (discharge capacity), a discharge pressure pd, and a refrigerant flow rate Gr.
FIG. 5 is a diagram showing a relationship between a refrigerant oil amount and an oil circulation rate returned to a compressor and a refrigerant flow rate Gr. FIG. 6 is a control flow of a vapor compression refrigerator according to a second embodiment of the present invention. It is a flowchart which shows.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... Receiver, 4a, 4b ... Decompressor (expansion valve),
5a, 5b: evaporator, 6a, 6b: blower.

Claims (3)

第1、2蒸発器(5a、5b)、放熱器(2)、減圧手段(4a、4b)及び圧縮機(1)を備える蒸気圧縮式冷凍機であって、
循環する冷媒流量が所定流量(G1)未満となる状態が所定時間継続したときに、大冷媒流量状態と小冷媒流量状態とを強制的に切り替える流量切替制御手段(S130)を有し、
前記所定流量(G1)は、前記第1、2蒸発器(5a、5b)の両者で吸熱能力を発生させるときと前記第1、2蒸発器(5a、5b)のうちいずれか一方の蒸発器のみで吸熱能力を発生させるときとで相違することを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator including first and second evaporators (5a, 5b), a radiator (2), a pressure reducing means (4a, 4b), and a compressor (1),
A flow switching control means (S130) for forcibly switching between a large refrigerant flow state and a small refrigerant flow state when a state in which the circulating refrigerant flow rate is less than a predetermined flow rate (G1) continues for a predetermined time;
The predetermined flow rate (G1) is determined when the first and second evaporators (5a and 5b) generate heat absorption capacity and when the heat is absorbed by one of the first and second evaporators (5a and 5b). A vapor compression refrigerator characterized in that it differs only when it generates heat absorption capacity only by itself.
前記圧縮機(1)は、吐出容量を変化させることができる可変容量型圧縮機であり、
前記流量切替制御手段(S130)は、吐出容量を変化させることにより大冷媒流量状態と小冷媒流量状態とを強制的に切り替えることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。
The compressor (1) is a variable displacement compressor capable of changing a discharge capacity,
2. The vapor compression refrigerator according to claim 1, wherein the flow rate switching control means (S130) forcibly switches between a large refrigerant flow state and a small refrigerant flow state by changing a discharge capacity.
前記圧縮機(1)の吐出容量を最大とすることにより前記大冷媒流量状態とし、前記圧縮機(1)の吐出容量を最小とすることにより前記小冷媒流量状態とすることを特徴とする請求項2に記載の蒸気圧縮式冷凍機。The large refrigerant flow state is set by maximizing the discharge capacity of the compressor (1), and the small refrigerant flow state is set by minimizing the discharge capacity of the compressor (1). Item 3. A vapor compression refrigerator according to item 2.
JP2002266946A 2002-09-12 2002-09-12 Vapor compression refrigerator Expired - Fee Related JP4063023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266946A JP4063023B2 (en) 2002-09-12 2002-09-12 Vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266946A JP4063023B2 (en) 2002-09-12 2002-09-12 Vapor compression refrigerator

Publications (2)

Publication Number Publication Date
JP2004101143A true JP2004101143A (en) 2004-04-02
JP4063023B2 JP4063023B2 (en) 2008-03-19

Family

ID=32265616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266946A Expired - Fee Related JP4063023B2 (en) 2002-09-12 2002-09-12 Vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP4063023B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029180A2 (en) * 2005-09-05 2007-03-15 Arcelik Anonim Sirketi A cooling device
JP2007071529A (en) * 2006-09-08 2007-03-22 Denso Corp Refrigerating cycle device
JP2007107815A (en) * 2005-10-13 2007-04-26 Hoshizaki Electric Co Ltd Cooling storage and operation method thereof
EP2336674A1 (en) * 2008-10-23 2011-06-22 Sanden Corporation Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system
WO2011121634A1 (en) * 2010-03-29 2011-10-06 三菱電機株式会社 Air conditioning apparatus
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
JP2016176609A (en) * 2015-03-18 2016-10-06 株式会社デンソー Refrigeration cycle device
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device
JPWO2018163346A1 (en) * 2017-03-09 2019-11-07 三菱電機株式会社 Air conditioner
DE102009040796B4 (en) * 2008-09-12 2021-02-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method for removing oil accumulations from refrigerant lines of a vehicle heating, ventilation and air conditioning system with several refrigerant circuits

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569478B1 (en) 2009-08-28 2015-11-16 한온시스템 주식회사 Dual type air conditioning system for automotive vehicles
CN104180563B (en) * 2013-05-27 2017-06-20 珠海格力电器股份有限公司 Oil return method when multiple on-line system is heated

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029180A2 (en) * 2005-09-05 2007-03-15 Arcelik Anonim Sirketi A cooling device
WO2007029180A3 (en) * 2005-09-05 2007-10-18 Arcelik As A cooling device
JP2007107815A (en) * 2005-10-13 2007-04-26 Hoshizaki Electric Co Ltd Cooling storage and operation method thereof
JP4584107B2 (en) * 2005-10-13 2010-11-17 ホシザキ電機株式会社 Cooling storage
JP2007071529A (en) * 2006-09-08 2007-03-22 Denso Corp Refrigerating cycle device
US8209991B2 (en) 2007-03-13 2012-07-03 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method of operating the same
DE102009040796B4 (en) * 2008-09-12 2021-02-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method for removing oil accumulations from refrigerant lines of a vehicle heating, ventilation and air conditioning system with several refrigerant circuits
EP2336674A4 (en) * 2008-10-23 2012-01-04 Sanden Corp Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system
EP2336674A1 (en) * 2008-10-23 2011-06-22 Sanden Corporation Refrigeration cycle system and automotive air conditioning system using said refrigeration cycle system
EP2554926A4 (en) * 2010-03-29 2013-12-18 Mitsubishi Electric Corp Air conditioning apparatus
EP2554926A1 (en) * 2010-03-29 2013-02-06 Mitsubishi Electric Corporation Air conditioning apparatus
JPWO2011121634A1 (en) * 2010-03-29 2013-07-04 三菱電機株式会社 Air conditioner
WO2011121634A1 (en) * 2010-03-29 2011-10-06 三菱電機株式会社 Air conditioning apparatus
JP5709844B2 (en) * 2010-03-29 2015-04-30 三菱電機株式会社 Air conditioner
US9163864B2 (en) 2010-03-29 2015-10-20 Mitsubishi Electric Corporation Air-conditioning apparatus with oil return in a transcritical cycle
CN102844631A (en) * 2010-03-29 2012-12-26 三菱电机株式会社 Air conditioning apparatus
JP2016176609A (en) * 2015-03-18 2016-10-06 株式会社デンソー Refrigeration cycle device
JPWO2018163346A1 (en) * 2017-03-09 2019-11-07 三菱電機株式会社 Air conditioner
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP4063023B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4511393B2 (en) Air conditioner for vehicles
JP4417064B2 (en) Air conditioner for vehicles
JP3931899B2 (en) Ejector cycle
JP3861451B2 (en) Supercritical refrigeration cycle
JP3356142B2 (en) Refrigeration cycle device
JP2004324955A (en) Vapor compression type refrigerating machine
JP4063023B2 (en) Vapor compression refrigerator
JP2004338447A (en) Air conditioner
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2018083581A (en) Air conditioner for vehicle
JP2003127632A (en) Air conditioner for vehicle
JP2007078349A (en) Ejector cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP6116810B2 (en) Refrigeration cycle equipment
JP3961107B2 (en) Torque prediction device for externally controlled variable displacement compressor and automobile engine control device using the same
JP4259605B2 (en) Ejector refrigeration cycle
JP2992818B1 (en) Compressor protection device for vehicle air conditioner
JP2008057848A (en) Vapor compression type refrigerating cycle using ejector
JP2019035520A (en) Refrigeration cycle device
JP4089630B2 (en) Refrigeration cycle for vehicles
JPH11201560A (en) Supercritical refrigerating cycle
WO2023008088A1 (en) Refrigeration cycle apparatus
JP2003028516A (en) Refrigerating cycle controller
JP2004101145A (en) Vapor compression type refrigerator and sticking detector for compressor
JP2005081965A (en) Air conditioning system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees