JP6116810B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6116810B2
JP6116810B2 JP2012067997A JP2012067997A JP6116810B2 JP 6116810 B2 JP6116810 B2 JP 6116810B2 JP 2012067997 A JP2012067997 A JP 2012067997A JP 2012067997 A JP2012067997 A JP 2012067997A JP 6116810 B2 JP6116810 B2 JP 6116810B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compressor
refrigeration cycle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067997A
Other languages
Japanese (ja)
Other versions
JP2013200063A (en
Inventor
大介 櫻井
大介 櫻井
押谷 洋
洋 押谷
剛史 脇阪
剛史 脇阪
太郎 小倉
太郎 小倉
智也 石井
智也 石井
高野 義昭
義昭 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012067997A priority Critical patent/JP6116810B2/en
Publication of JP2013200063A publication Critical patent/JP2013200063A/en
Application granted granted Critical
Publication of JP6116810B2 publication Critical patent/JP6116810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷媒を圧縮する圧縮機を備えた冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus including a compressor that compresses a refrigerant.

冷媒を圧縮して冷凍サイクルを循環させる圧縮機として、電動モータで駆動させる圧縮機がある(特許文献1、2参照)。この種の電動圧縮機は、その回転数を、冷凍サイクルの熱負荷に基づき制御するのが一般的である。例えば、冷凍サイクルに設けられた蒸発器の温度を熱負荷の指標として検出し、その蒸発器温度が低下して目標温度に達するまでは、圧縮機を最大回転数で駆動させ、目標温度に達した時点で回転数を低下させる。   As a compressor that compresses a refrigerant and circulates a refrigeration cycle, there is a compressor that is driven by an electric motor (see Patent Documents 1 and 2). Generally, this type of electric compressor controls the number of rotations based on the heat load of the refrigeration cycle. For example, the temperature of the evaporator provided in the refrigeration cycle is detected as an index of heat load, and the compressor is driven at the maximum number of revolutions until the evaporator temperature decreases and reaches the target temperature. At that point, the rotational speed is reduced.

特開2010−126136号公報JP 2010-126136 A 特開2011−126409号公報JP 2011-126409 A

さて、上述した回転数制御によれば、圧縮機を起動させた直後では、蒸発器温度が高温であるため、高回転数で制御(高回転制御)される。そして、蒸発器温度が目標温度にまで低下した時点で、回転数を低下させるよう制御(低回転制御)することになる。   Now, according to the above-described rotation speed control, the evaporator temperature is high immediately after the compressor is started, so that the control is performed at a high rotation speed (high rotation control). And when evaporator temperature falls to target temperature, it controls so that rotation speed may be reduced (low rotation control).

しかしながら、外気温度が目標空調温度に近い場合等、熱負荷が小さい場合にまで高回転制御を実施することは、蒸発器温度の変化が小さくなった定常時の回転数(図4(a)中の一点鎖線参照)に対して、起動直後における回転数が大きくオーバーシュートすることになる(図4(a)中の点線参照)。よって、従来の回転数制御では、熱負荷が小さい場合には無駄に動力を消費していると言える。しかも、起動時には圧縮機の作動音がユーザに聞こえやすい状況であるため、起動時に高回転制御を実施すると、作動音が耳障りになることが懸念される。   However, high rotation control is performed even when the heat load is small, such as when the outside air temperature is close to the target air-conditioning temperature, because the change in the evaporator temperature is small (in FIG. 4A). The rotational speed immediately after startup greatly overshoots (see the dotted line in FIG. 4A). Therefore, it can be said that the conventional rotational speed control wastes power when the heat load is small. Moreover, since the operating sound of the compressor is easily heard by the user at the time of startup, there is a concern that if the high rotation control is performed at the time of startup, the operating sound becomes annoying.

なお、上記課題は、電動圧縮機に限られるものではなく、内燃機関の出力軸で駆動させる圧縮機の場合であっても、吐出容量を可変させる機能を有した圧縮機であれば同様に生じる。つまり、可変容量型圧縮機の起動時において、高回転制御を実施することで内燃機関の動力を無駄に消費し、作動音が耳障りになるとの課題が生じる。   The above-mentioned problem is not limited to the electric compressor, and even in the case of the compressor driven by the output shaft of the internal combustion engine, the same problem occurs if the compressor has a function of changing the discharge capacity. . That is, at the time of starting the variable capacity compressor, there is a problem that the high-speed control is performed to waste the power of the internal combustion engine and the operation noise becomes annoying.

本発明は、上記問題を鑑みてなされたもので、その目的は、無駄な動力消費の抑制と、作動音が耳障りになることの抑制を図った冷凍サイクル装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus that suppresses unnecessary power consumption and suppresses operating noise from becoming annoying.

上記目的を達成する発明は以下の点を特徴とする。すなわち、冷媒を圧縮して冷凍サイクル(10)を循環させる圧縮機(11)と、
圧縮機の吐出量を制御する通常制御手段(S16)と、
冷凍サイクルの高圧側の冷媒圧力を目標圧力にするよう、吐出量をフィードバック制御する高圧制御手段(S15)と、
を備え、
冷凍サイクルは、
圧縮機から吐出した高圧冷媒の熱を放熱する凝縮器(12)と、
凝縮器から流出する高圧冷媒を減圧する膨張弁(13)と、
低圧冷媒を蒸発させる第1蒸発器(16)と、
送風空気流れに対して第1蒸発器(16)の下流に配置され、低圧冷媒を蒸発させる第2蒸発器(18)と、
膨張弁を通過した中間圧力の冷媒を減圧膨張させるノズル部(15a)を有し、ノズル部から噴射する高速の冷媒流により第2蒸発器(18)にて蒸発した気相冷媒を吸引するとともに、冷媒の膨張エネルギを圧力エネルギに変換して第1蒸発器(16)に流出させて、圧縮機の吸入圧を上昇させるエジェクタ(15)と、
を備えるエジェクタ式冷凍サイクルであり、
通常制御手段(S16)は、第2蒸発器(18)によって冷却された冷風の温度である吹出空気温度(Te)に応じて吐出量を制御するようになっており、
圧縮機の起動時または起動直前の外気温度に基づき、目標圧力を設定し、圧縮機の起動開始時点から吹出空気温度(Te)が所定温度まで低下する期間には、冷房要求負荷が所定値未満であることを条件として、高圧制御手段によりエジェクタ式冷凍サイクルの高圧側の冷媒圧力を目標圧力にするよう吐出量を制御することを特徴とする。
The invention for achieving the above object is characterized by the following points. A compressor (11) that compresses refrigerant and circulates the refrigeration cycle (10);
Normal control means (S16) for controlling the discharge amount of the compressor;
High-pressure control means (S15) for feedback-controlling the discharge amount so that the refrigerant pressure on the high-pressure side of the refrigeration cycle becomes the target pressure;
With
The refrigeration cycle
A condenser (12) that dissipates heat of the high-pressure refrigerant discharged from the compressor;
An expansion valve (13) for reducing the pressure of the high-pressure refrigerant flowing out of the condenser;
A first evaporator (16) for evaporating the low-pressure refrigerant ;
A second evaporator (18) disposed downstream of the first evaporator (16) with respect to the blown air flow and evaporating the low-pressure refrigerant ;
It has a nozzle part (15a) for decompressing and expanding the intermediate-pressure refrigerant that has passed through the expansion valve, and sucks the vapor-phase refrigerant evaporated in the second evaporator (18) by the high-speed refrigerant flow injected from the nozzle part. An ejector (15) for converting the expansion energy of the refrigerant into pressure energy and flowing it to the first evaporator (16) to increase the suction pressure of the compressor;
An ejector-type refrigeration cycle comprising:
The normal control means (S16) controls the discharge amount according to the blown air temperature (Te) which is the temperature of the cold air cooled by the second evaporator (18),
The target pressure is set based on the outside air temperature at the time of starting or just before starting the compressor, and the cooling request load is less than the predetermined value during the period when the blown air temperature (Te) decreases from the start of starting the compressor to the predetermined temperature. As a condition, the discharge amount is controlled by the high-pressure control means so that the refrigerant pressure on the high-pressure side of the ejector refrigeration cycle becomes the target pressure.

この発明では要するに、冷房要求負荷が所定値未満である場合には、高圧側の冷媒圧力(高圧側圧力)を目標圧力にするように吐出量をフィードバック制御する。そのため、通常制御手段による制御時の吐出量であって、蒸発器の温度が十分に低下した以降の吐出量(定常時の吐出量)に対し、起動時の吐出量が大きくオーバーシュートすることを回避できる。   In short, in the present invention, when the required cooling load is less than the predetermined value, the discharge amount is feedback-controlled so that the high-pressure side refrigerant pressure (high-pressure side pressure) becomes the target pressure. For this reason, the discharge amount at the time of control by the normal control means, and the discharge amount at the start-up greatly overshoots the discharge amount after the evaporator temperature has sufficiently decreased (the discharge amount at the steady state). Can be avoided.

例えば、先述した電動圧縮機の場合においては、高圧側圧力に応じて起動時の回転数をフィードバック制御するので、定常時の回転数に対して起動時の回転数がオーバーシュートすることを抑制できる。また、可変容量型圧縮機の場合においては、高圧側圧力に応じて起動時の吐出容量をフィードバック制御するので、定常時の吐出容量に対して起動時の吐出容量がオーバーシュートすることを抑制できる。   For example, in the case of the electric compressor described above, since the rotational speed at startup is feedback-controlled according to the high pressure side pressure, it is possible to suppress overshooting of the rotational speed at startup relative to the rotational speed at steady state. . Further, in the case of a variable capacity compressor, since the discharge capacity at the start-up is feedback-controlled according to the high pressure side pressure, it is possible to suppress the discharge capacity at the start-up from overshooting the discharge capacity at the steady state. .

したがって、上記発明によれば、起動時のオーバーシュートを抑制でき、無駄な動力消費を抑制できる。しかも、起動時に懸念される圧縮機の作動音を低減でき、作動音がユーザの耳障りになることを抑制できる。   Therefore, according to the said invention, the overshoot at the time of starting can be suppressed and useless power consumption can be suppressed. In addition, it is possible to reduce the operating noise of the compressor that is a concern at the time of startup, and to suppress the operating noise from being irritating to the user.

なお、上記発明に反して、冷房要求負荷が所定値以上である場合にまで高圧側圧力に応じたフィードバック制御を実施すると、蒸発器温度を迅速に低下させることが妨げられる。よって、起動直後に迅速な冷房が要求される場合に、その要求が妨げられる。これに対し上記発明では、高圧側圧力に応じたフィードバック制御を、冷房要求負荷が所定値未満である場合に実施するので、起動直後に迅速な冷房が要求される場合にはその要求を妨げることは回避される。   Contrary to the above-described invention, when the feedback control according to the high-pressure side pressure is performed until the cooling required load is equal to or higher than the predetermined value, it is prevented that the evaporator temperature is rapidly lowered. Therefore, when quick cooling is requested immediately after startup, the request is hindered. In contrast, in the above invention, the feedback control according to the high pressure side pressure is performed when the cooling request load is less than the predetermined value, so that the request is hindered when quick cooling is required immediately after the start-up. Is avoided.

本発明の一実施形態にかかる冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus concerning one Embodiment of this invention. 図1に示す圧縮機の回転数制御の手順を示すフローチャート。The flowchart which shows the procedure of the rotation speed control of the compressor shown in FIG. 図2の制御を実施した場合の一態様を示すタイムチャート。The time chart which shows the one aspect | mode at the time of implementing control of FIG. 本発明による効果を説明する図であって、(a)は圧縮機回転数、(b)は消費動力、(c)は吹出空気温度の変化を示す図。It is a figure explaining the effect by this invention, Comprising: (a) is a compressor rotation speed, (b) is power consumption, (c) is a figure which shows the change of blowing air temperature. 図1に示す冷凍サイクルの作動線図。The operation diagram of the refrigerating cycle shown in FIG. 高圧制御を実施した場合の中間圧の変化を説明する図。The figure explaining the change of the intermediate pressure at the time of implementing high pressure control. 本発明の各種変形例を示す図。The figure which shows the various modifications of this invention.

以下、本発明にかかる冷凍サイクル装置を車両に搭載した一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment in which a refrigeration cycle apparatus according to the present invention is mounted on a vehicle will be described with reference to the drawings.

図1に示すように、本実施形態にかかる蒸気圧縮式の冷凍サイクル10は、圧縮機11、凝縮器12、膨張弁13、分岐部14、エジェクタ15及び第1蒸発器16が冷媒配管によって環状に接続される。また、分岐部14の下流側には、キャピラリ17及び第2蒸発器18が冷媒配管によって接続される。   As shown in FIG. 1, a vapor compression refrigeration cycle 10 according to this embodiment includes a compressor 11, a condenser 12, an expansion valve 13, a branching section 14, an ejector 15, and a first evaporator 16 that are annularly formed by a refrigerant pipe. Connected to. Further, the capillary 17 and the second evaporator 18 are connected to the downstream side of the branch portion 14 by a refrigerant pipe.

圧縮機11は、第1蒸発器16から流出される冷媒を吸入し、高温高圧に圧縮して凝縮器12側へ吐出する流体機械であり、電動モータ11aにより駆動される。電動モータ11aの駆動は電子制御装置(ECU20)により制御される。つまり、ECU20は、圧縮機11の出力軸が所定時間あたりに回転する回数(圧縮機回転数)を制御し、ひいては、圧縮機11から所定時間あたりに吐出される冷媒の量(吐出量)を制御していると言える。   The compressor 11 is a fluid machine that sucks the refrigerant flowing out from the first evaporator 16, compresses the refrigerant to high temperature and high pressure, and discharges the refrigerant to the condenser 12, and is driven by an electric motor 11a. The driving of the electric motor 11a is controlled by an electronic control unit (ECU 20). That is, the ECU 20 controls the number of times that the output shaft of the compressor 11 rotates per predetermined time (compressor rotational speed), and consequently the amount of refrigerant discharged from the compressor 11 per predetermined time (discharge amount). It can be said that it is in control.

凝縮器12は、図示しない電動ファンにより強制的に送風される車室外空気との熱交換により、圧縮機11から吐出された高圧冷媒を放熱させて冷却する熱交換器である。凝縮器12の冷媒流出側には、冷却された冷媒の気液を分離して、液冷媒のみを膨張弁13側に流出させるレシーバ(図示せず)が設けられている。   The condenser 12 is a heat exchanger that dissipates and cools the high-pressure refrigerant discharged from the compressor 11 by heat exchange with outside air that is forcibly blown by an electric fan (not shown). On the refrigerant outflow side of the condenser 12, a receiver (not shown) is provided that separates the gas-liquid of the cooled refrigerant and causes only the liquid refrigerant to flow out to the expansion valve 13 side.

膨張弁13は、凝縮器12から流出する高圧冷媒を減圧する絞り手段である。本実施形態の膨張弁13は、圧縮機11の吸入側冷媒の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、その過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整する温度式膨張弁である。膨張弁13から流出する低圧冷媒は、分岐部14により、エジェクタ15のノズル部15a側へ流れる流路と、吸引部15b側へ流れる流路とに分配される。   The expansion valve 13 is a throttle means for reducing the pressure of the high-pressure refrigerant flowing out from the condenser 12. The expansion valve 13 of the present embodiment detects the degree of superheat of the compressor suction side refrigerant based on the temperature and pressure of the suction side refrigerant of the compressor 11 so that the degree of superheat becomes a predetermined value set in advance. It is a temperature type expansion valve that adjusts the valve opening (refrigerant flow rate). The low-pressure refrigerant flowing out from the expansion valve 13 is distributed by the branching section 14 into a flow path that flows toward the nozzle section 15a of the ejector 15 and a flow path that flows toward the suction section 15b.

エジェクタ15は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う冷媒循環手段(運動量輸送式ポンプ)でもある。エジェクタ15には、膨張弁13を通過した冷媒(中間圧冷媒)の通路面積を小さく絞って、冷媒をさらに減圧膨張させるノズル部15aと、ノズル部15aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器18からの気相冷媒を吸引する吸引部15bが備えられている。   The ejector 15 is a decompression means for decompressing the refrigerant, and is also a refrigerant circulation means (momentum transport pump) that circulates the refrigerant by a suction action (convolution action) of the refrigerant flow ejected at high speed. The ejector 15 is arranged in the same space as the nozzle portion 15a for further reducing and expanding the refrigerant by reducing the passage area of the refrigerant (intermediate pressure refrigerant) that has passed through the expansion valve 13, and the refrigerant outlet of the nozzle portion 15a. A suction part 15b for sucking a gas-phase refrigerant from the second evaporator 18 described later is provided.

さらに、ノズル部15aおよび吸引部15bの冷媒流れ下流側部位には、ノズル部15aからの高速度の冷媒流と吸引部15bの吸引冷媒とを混合する混合部15cが設けられている。そして、混合部15cの冷媒流れ下流側に昇圧部をなすディフューザ部15dが配置されている。このディフューザ部15dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギを圧力エネルギに変換する作用を果たす。エジェクタ15のディフューザ部15dの出口側には、第1蒸発器16が接続され、この第1蒸発器16の出口側は圧縮機11の吸入側に接続される。   Furthermore, a mixing portion 15c that mixes the high-speed refrigerant flow from the nozzle portion 15a and the suction refrigerant of the suction portion 15b is provided on the downstream side of the refrigerant flow of the nozzle portion 15a and the suction portion 15b. And the diffuser part 15d which makes a pressure | voltage rise part is arrange | positioned in the refrigerant | coolant flow downstream of the mixing part 15c. The diffuser portion 15d is formed in a shape that gradually increases the passage area of the refrigerant, and serves to increase the refrigerant pressure by decelerating the refrigerant flow, that is, to convert the velocity energy of the refrigerant into pressure energy. The first evaporator 16 is connected to the outlet side of the diffuser portion 15 d of the ejector 15, and the outlet side of the first evaporator 16 is connected to the suction side of the compressor 11.

一方、分岐部14から吸引部15b側へ冷媒を導く流路には、絞り機構17が配置され、この絞り機構17よりも冷媒流れ下流側には第2蒸発器18が配置されている。絞り機構17は、第2蒸発器18への冷媒流量の調節作用をなす減圧手段であって、具体的にはオリフィスのような固定絞りで構成できる。また、電動アクチュエータにより弁開度(通路絞り開度)が調整可能になっている電気制御弁を絞り機構17として用いてもよい。   On the other hand, a throttle mechanism 17 is disposed in the flow path that guides the refrigerant from the branch part 14 to the suction part 15 b side, and a second evaporator 18 is disposed downstream of the throttle mechanism 17 in the refrigerant flow. The throttle mechanism 17 is a pressure reducing means for adjusting the refrigerant flow rate to the second evaporator 18, and can be specifically constituted by a fixed throttle such as an orifice. An electric control valve whose valve opening (passage opening) can be adjusted by an electric actuator may be used as the throttle mechanism 17.

電動ブロワ19により空気を矢印の方向(図1において上から下)へ送風し、この送風空気を2つの蒸発器16、18で冷却するように構成されている。2つの蒸発器16、18で冷却された冷風を共通の冷却対象空間(図示略)に送り込み、これにより、2つの蒸発器16、18で共通の冷却対象空間を冷却するようになっている。   The electric blower 19 blows air in the direction of the arrow (from top to bottom in FIG. 1), and the blown air is cooled by the two evaporators 16 and 18. The cold air cooled by the two evaporators 16 and 18 is sent to a common cooling target space (not shown), whereby the common cooling target space is cooled by the two evaporators 16 and 18.

次に、上記構成を有する冷凍サイクル10の作動を説明する。圧縮機11を電動モータ11aにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は凝縮器12に流入する。凝縮器12では高温の冷媒が外気により冷却されて凝縮する。凝縮器12から流出した高圧冷媒は、図示しないレシーバ内にて気液分離され、膨張弁13で減圧される。   Next, the operation of the refrigeration cycle 10 having the above configuration will be described. When the compressor 11 is driven by the electric motor 11a, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the condenser 12. In the condenser 12, the high-temperature refrigerant is cooled by the outside air and condensed. The high-pressure refrigerant that has flowed out of the condenser 12 is gas-liquid separated in a receiver (not shown), and is decompressed by the expansion valve 13.

膨張弁13からエジェクタ15の側へ分岐した冷媒流れは、ノズル部15aで減圧されて膨張する。従って、ノズル部15aで冷媒の圧力エネルギが速度エネルギに変換され、このノズル部15aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、第2蒸発器18通過後の冷媒(気相冷媒)が吸引部15bから吸引される。   The refrigerant flow branched from the expansion valve 13 toward the ejector 15 is decompressed and expanded by the nozzle portion 15a. Accordingly, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 15a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 15a. Due to the refrigerant pressure drop at this time, the refrigerant (gas phase refrigerant) after passing through the second evaporator 18 is sucked from the suction part 15b.

ノズル部15aから噴出した冷媒と吸引部15bに吸引された冷媒は、ノズル部15a下流側の混合部15cで混合してディフューザ部15dに流入する。このディフューザ部15dでは通路面積の拡大により、冷媒の速度(膨張)エネルギが圧力エネルギに変換されるため、冷媒の圧力が上昇する。そして、エジェクタ15のディフューザ部15dから流出した冷媒は第1蒸発器16に流入する。そして、第1蒸発器16では、低温の低圧冷媒が送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、圧縮機11に吸入され、再び圧縮される。   The refrigerant ejected from the nozzle portion 15a and the refrigerant sucked by the suction portion 15b are mixed in the mixing portion 15c on the downstream side of the nozzle portion 15a and flow into the diffuser portion 15d. In the diffuser portion 15d, the passage area is enlarged, so that the speed (expansion) energy of the refrigerant is converted into pressure energy, so that the pressure of the refrigerant rises. Then, the refrigerant that has flowed out of the diffuser portion 15 d of the ejector 15 flows into the first evaporator 16. In the first evaporator 16, the low-temperature low-pressure refrigerant absorbs heat from the blown air and evaporates. The vapor phase refrigerant after evaporation is sucked into the compressor 11 and compressed again.

一方、膨張弁13から吸引部15b側へ分岐した冷媒流れは、絞り機構17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。そして、第2蒸発器18では、低温の低圧冷媒が、第1蒸発器16通過後の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、吸引部15bを介してエジェクタ15内に吸引される。以上のように構成される冷凍サイクル10によれば、第1および第2蒸発器16、18の両方で冷却された冷風を冷却対象空間(車室)へ吹き出して、冷却対象空間を冷房(冷却)できるようになっている。   On the other hand, the refrigerant flow branched from the expansion valve 13 toward the suction portion 15 b is decompressed by the throttle mechanism 17 to become low-pressure refrigerant, and this low-pressure refrigerant flows into the second evaporator 18. In the second evaporator 18, the low-temperature low-pressure refrigerant absorbs heat from the blown air after passing through the first evaporator 16 and evaporates. The vapor phase refrigerant after evaporation is sucked into the ejector 15 through the suction part 15b. According to the refrigeration cycle 10 configured as described above, the cool air cooled by both the first and second evaporators 16 and 18 is blown out to the space to be cooled (vehicle compartment) to cool (cool) the space to be cooled. ) You can do it.

ECU20には、吹出空気温度センサ21、外気温度センサ22、温度設定操作部23および高圧センサ24からの信号が入力され、これらの信号に基づき、電動ブロワ19の作動を制御して車室内へ吹き出される空調風の風量を制御したり、吹出口を切り替えたり、圧縮機回転数を制御して蒸発器16、18による冷却度合を制御したり、空調風の温度を制御したりする。   The ECU 20 receives signals from the blown air temperature sensor 21, the outside air temperature sensor 22, the temperature setting operation unit 23, and the high pressure sensor 24, and controls the operation of the electric blower 19 based on these signals to blow into the vehicle interior. The air volume of the conditioned air to be controlled, the outlets are switched, the compressor rotation speed is controlled to control the degree of cooling by the evaporators 16 and 18, and the temperature of the conditioned air is controlled.

なお、吹出空気温度センサ21は、第1、第2蒸発器16、18で冷却された直後の冷風温度(吹出空気温度Te)を検出する。外気温度センサ22は車室外の空気温度(外気温度)を検出する。温度設定操作部23は、乗員が操作した設定温度を出力する。高圧センサ24は、冷凍サイクルのうち高圧側の冷媒圧力、つまり、圧縮機11の吐出口から13膨張弁の入口までの経路の任意箇所での冷媒圧力(以下、「高圧側圧力」と記載)を検出する。   The blown air temperature sensor 21 detects the cold air temperature (blown air temperature Te) immediately after being cooled by the first and second evaporators 16 and 18. The outside air temperature sensor 22 detects the outside air temperature (outside air temperature). The temperature setting operation unit 23 outputs the set temperature operated by the occupant. The high-pressure sensor 24 is a refrigerant pressure on the high-pressure side in the refrigeration cycle, that is, a refrigerant pressure at an arbitrary point in the path from the discharge port of the compressor 11 to the inlet of the 13 expansion valve (hereinafter referred to as “high-pressure side pressure”). Is detected.

次に、ECU20による圧縮機回転数の制御手順について、図2を用いて説明する。なお、図2の処理は、ECU20が有するマイクロコンピュータにより所定周期で繰り返し実施されるものであり、冷凍サイクルの作動中に実行する。   Next, the control procedure of the compressor speed by the ECU 20 will be described with reference to FIG. Note that the processing in FIG. 2 is repeatedly performed at a predetermined cycle by a microcomputer included in the ECU 20, and is executed during the operation of the refrigeration cycle.

先ず、ステップS10において、冷房要求負荷が所定値未満である低要求負荷の状態であるか否かを判定する。例えば、車室内へ送風される空調風の風量、つまり電動ブロワ19による風量が所定値未満であれば、低要求負荷と判定する。或いは、外気温度と室内温度との偏差が所定値未満の場合や、外気温度と設定温度との偏差が所定値未満の場合に、低要求負荷と判定する。   First, in step S10, it is determined whether or not the cooling required load is in a low required load state that is less than a predetermined value. For example, if the air volume of the conditioned air blown into the passenger compartment, that is, the air volume of the electric blower 19 is less than a predetermined value, it is determined that the load is low. Alternatively, when the deviation between the outside air temperature and the room temperature is less than a predetermined value, or when the deviation between the outside air temperature and the set temperature is less than a predetermined value, the load is determined to be low.

低要求負荷でないと判定(S10:NO)された場合には、ステップS16(通常制御手段)に進み、圧縮機11に対して以下に説明する「通常制御」を実施する。すなわち、設定温度、室内温度および外気温度等に基づき、吹出空気温度Teの目標値Tetrgを設定する。そして、吹出空気温度Teが目標値Tetrgとなるよう、圧縮機回転数をファジイ制御する。なお、このファジイ制御では高圧センサ24の検出値を用いることなく制御する。つまり、高圧側圧力の検出値とは無関係に圧縮機回転数を制御する。   If it is determined that the load is not a low required load (S10: NO), the process proceeds to step S16 (normal control means), and “normal control” described below is performed on the compressor 11. That is, the target value Tetrg of the blown air temperature Te is set based on the set temperature, the room temperature, the outside air temperature, and the like. Then, the compressor rotational speed is fuzzy controlled so that the blown air temperature Te becomes the target value Tetrg. In this fuzzy control, control is performed without using the detection value of the high-pressure sensor 24. That is, the compressor speed is controlled regardless of the detected value of the high-pressure side pressure.

低要求負荷であると判定(S10:YES)された場合には、続くステップS11において、吹出空気温度Teが所定値未満であるか否かを判定する。Te<所定値と判定(S11:YES)されればステップS16にて通常制御を実施し、Te≧所定値と判定(S11:NO)されれば、後述するステップS15にて高圧制御を実施する。つまり、圧縮機11を起動した直後であれば、吹出空気温度Teが十分に低下していないので高圧制御が実施され、その後、吹出空気温度Teが十分に低下した以降では通常制御が実施される。   When it is determined that the load is a low required load (S10: YES), in the subsequent step S11, it is determined whether or not the blown air temperature Te is less than a predetermined value. If Te <predetermined value is determined (S11: YES), normal control is performed in step S16, and if Te ≧ predetermined value is determined (S11: NO), high pressure control is performed in step S15 described later. . That is, immediately after the compressor 11 is started, the blown air temperature Te is not sufficiently lowered, so that the high pressure control is performed. After that, the normal control is performed after the blown air temperature Te is sufficiently lowered. .

ステップS12では、圧縮機11の起動開始時点から所定時間が経過したか否かを判定する。経過していないと判定(S12:NO)されれば、ステップS13において、外気温度センサ22により検出された外気温度に基づき、高圧側の目標圧力(目標高圧)を設定する。例えば、符号M1に示すマップを参照して目標高圧を設定する。或いは、外気温度に基づき算出される外気飽和圧力に基づき、目標高圧を演算して設定してもよい。例えば、目標高圧=(定常運転時高圧−外気飽和圧)×K+外気飽和圧、との演算式に基づき目標高圧を演算する。なお、上記「K」は0以上1未満の定数である。また、「定常運転時高圧」とは、圧縮機11の起動開始から十分な時間が経過し、吹出空気温度Teの変化が所定未満である状態が所定時間以上継続した定常運転時における、高圧側圧力のことである。   In step S12, it is determined whether or not a predetermined time has elapsed since the start of starting the compressor 11. If it is determined that it has not elapsed (S12: NO), in step S13, a target pressure (target high pressure) on the high pressure side is set based on the outside air temperature detected by the outside air temperature sensor 22. For example, the target high pressure is set with reference to a map indicated by reference numeral M1. Alternatively, the target high pressure may be calculated and set based on the outside air saturation pressure calculated based on the outside air temperature. For example, the target high pressure is calculated based on the following equation: target high pressure = (high pressure during steady operation−outside air saturation pressure) × K + outside air saturation pressure. The “K” is a constant of 0 or more and less than 1. The “high pressure during steady operation” means that a sufficient time has elapsed since the start of the compressor 11 and the state where the change in the blown air temperature Te is less than a predetermined value continues for a predetermined time or more during the normal operation. It is a pressure.

一方、起動開始時点から所定時間が経過したと判定(S12:YES)されれば、続くステップS14において、ステップS13で設定した目標高圧を徐々に上昇させるよう、目標高圧を変化させる。そして、次のステップS15では、高圧センサ24で検出される高圧側圧力が、ステップS13、S14で設定した目標高圧に一致するよう制御(高圧制御)する。この制御では、PI、PID、PD等のフィードバック制御を実施すればよく、特に、積分動作を有するPIまたはPID制御を実施して、残留偏差の解消を図ることが望ましい。   On the other hand, if it is determined that the predetermined time has elapsed from the start of activation (S12: YES), in the subsequent step S14, the target high pressure is changed so as to gradually increase the target high pressure set in step S13. Then, in the next step S15, control (high pressure control) is performed so that the high pressure side pressure detected by the high pressure sensor 24 matches the target high pressure set in steps S13 and S14. In this control, feedback control of PI, PID, PD, etc. may be performed. In particular, it is desirable to perform PI or PID control having an integration operation to eliminate the residual deviation.

以上により、図2の制御を実施すれば、図3に示すように、圧縮機11の起動時t1には、冷房要求負荷が所定値未満であることを条件として高圧制御が実施される。起動時t1から所定時間が経過するt2時点までの期間は、目標高圧を一定の値に固定し、t2時点以降は、目標高圧を徐々に上昇させながら高圧制御が実施される。その後、吹出空気温度Teが所定値にまで低下したt3時点で、高圧制御から通常制御に切り替わる。   As described above, when the control of FIG. 2 is performed, as shown in FIG. 3, the high pressure control is performed on the condition that the required cooling load is less than a predetermined value at the time t1 when the compressor 11 is started. The target high pressure is fixed at a constant value during a period from the start time t1 to a time t2 when a predetermined time elapses, and after the time t2, the high pressure control is performed while gradually increasing the target high pressure. Thereafter, at time t3 when the blown air temperature Te decreases to a predetermined value, the high pressure control is switched to the normal control.

図4(a)(b)(c)の各々は、圧縮機11を起動させた時の回転数変化、消費動力変化、吹出空気温度Teの変化を示す図であり、図中の実線は高圧制御を実施した場合、点線は通常制御を実施した場合を示す。また、図4(a)中の一点鎖線は、吹出空気温度Teの変化の傾きが所定未満となり安定した状態の時の圧縮機回転数(定常運転時回転数)を示す。図4(a)の例では、通常制御の場合にはt8時点で定常運転時回転数となり、高圧制御の場合にはt9時点で定常運転時回転数となる。   4 (a), 4 (b), and 4 (c) are diagrams showing a change in the rotational speed, a change in power consumption, and a change in the blown air temperature Te when the compressor 11 is started. A solid line in the figure indicates a high pressure. When the control is performed, the dotted line indicates the case where the normal control is performed. Also, the alternate long and short dash line in FIG. 4A indicates the compressor rotational speed (the rotational speed during steady operation) when the gradient of change in the blown air temperature Te is less than a predetermined value and is stable. In the example of FIG. 4A, in the case of normal control, the rotational speed at steady operation is at time t8, and in the case of high pressure control, the rotational speed at steady operation is at time t9.

図4(a)に示すように、通常制御の場合には、起動直後には圧縮機回転数を最大にするようファジイ制御されることとなる(t5〜t6参照)。その後も、定常運転時回転数で安定するt8時点までの期間、圧縮機回転数は定常運転時高圧を大きくオーバーシュートする。これに対し高圧制御の場合には、定常運転時高圧と同じ値、或いはそれよりも低い値に目標高圧を設定してフィードバック制御する。そのため、起動開始から定常運転時回転数で安定するt9時点までの期間、定常運転時回転数に対するオーバーシュートは殆ど生じない。したがって、高圧制御を実施すれば通常制御の場合に比べて消費動力を低減できる(図4(b)参照)。   As shown in FIG. 4A, in the case of normal control, fuzzy control is performed to maximize the compressor speed immediately after startup (see t5 to t6). Thereafter, the compressor speed greatly overshoots the high pressure during steady operation until the time t8 when the rotational speed during steady operation stabilizes. On the other hand, in the case of high pressure control, feedback control is performed by setting the target high pressure to the same value as or lower than the high pressure during steady operation. Therefore, during the period from the start to the time t9 when the rotation speed is stabilized at the steady operation speed, there is almost no overshoot with respect to the steady operation rotation speed. Therefore, if high pressure control is performed, power consumption can be reduced as compared with the case of normal control (see FIG. 4B).

但し、高圧制御を実施すると、通常制御の場合に比べて吹出空気温度Teの低下速度が遅くなる(図4(c)参照)。この点を鑑みた本実施形態では、低要求負荷であることを条件として高圧制御を実施するので、起動直後に迅速な冷房が要求される場合に、その要求が高圧制御の実施により妨げられることを回避できる。   However, when high pressure control is performed, the rate of decrease in the blown air temperature Te is slower than in the case of normal control (see FIG. 4C). In view of this point, in the present embodiment, since the high pressure control is performed on the condition that the load is low, the request is hindered by the execution of the high pressure control when quick cooling is required immediately after startup. Can be avoided.

圧縮機の起動時は、車両が停車または低速走行している状況であることが多く、この場合には車両の騒音が低レベルであるため、圧縮機11の作動音がユーザにとって耳障りになりやすい。この問題に対し、本実施形態によれば、起動時の圧縮機回転数が抑制されるので、起動時に懸念される圧縮機11の作動音を低減でき、作動音がユーザの耳障りになることを抑制できる。   When the compressor is started, the vehicle is often stopped or traveling at a low speed. In this case, since the noise of the vehicle is low, the operation sound of the compressor 11 is likely to be annoying to the user. . With respect to this problem, according to the present embodiment, since the compressor rotation speed at the time of starting is suppressed, it is possible to reduce the operating sound of the compressor 11 which is a concern at the time of starting, and the operating sound is annoying to the user. Can be suppressed.

さらに本実施形態によれば、以下に列挙する効果が発揮される。   Furthermore, according to this embodiment, the effects listed below are exhibited.

・先述した定常運転時高圧は、その時の冷房要求負荷に応じて異なる値となる。そして、目標高圧を定常運転時高圧以下にすることが、定常運転時回転数に対するオーバーシュートを抑制する上で望ましい。この点を鑑みた本実施形態では、圧縮機の起動時または起動直前の外気温度に基づき目標高圧を設定する。そのため、前記オーバーシュートの抑制を十分に図りつつ、吹出空気温度Teの低下速度が必要以上に遅くなることを回避できるような値に、目標高圧を設定することを容易に実現できる。   The above-mentioned high pressure during steady operation has a different value depending on the cooling demand load at that time. Then, it is desirable to set the target high pressure to be equal to or lower than the high pressure during steady operation in order to suppress overshoot with respect to the rotational speed during steady operation. In the present embodiment in view of this point, the target high pressure is set based on the outside air temperature at the time of starting the compressor or immediately before starting the compressor. For this reason, it is possible to easily set the target high pressure to a value that can prevent the decrease rate of the blown air temperature Te from being unnecessarily slow while sufficiently suppressing the overshoot.

・圧縮機を起動させた後、吹出空気温度Teが所定温度にまで低下すれば、先述した定常運転になったとみなすことができるので、通常制御を実施してもオーバーシュートするおそれが少ない。この点を鑑みた本実施形態では、圧縮機を起動させた後、吹出空気温度Teが所定温度にまで低下した時点で、高圧制御手段による制御から通常制御手段による制御に切り替える。そのため、必要以上に高圧制御を継続させることを回避して、通常制御(ファジイ制御)による高精度な回転数制御に切り替えることができる。   -After starting the compressor, if the blown air temperature Te drops to a predetermined temperature, it can be considered that the above-mentioned steady operation has been performed, so there is little risk of overshoot even if normal control is performed. In this embodiment in view of this point, after starting the compressor, when the blown air temperature Te is lowered to a predetermined temperature, the control is switched from the control by the high pressure control means to the control by the normal control means. Therefore, it is possible to avoid continuing high pressure control more than necessary, and to switch to high-accuracy rotational speed control by normal control (fuzzy control).

・本実施形態に反し、図7(b)に示すように目標高圧を一定値に固定すると、目標高圧が最適値よりも低い値になっている場合には、高圧制御期間において、時間が経過してもオフセット偏差が解消されず、吹出空気温度Teが所望の値にまで低下しないことが懸念される。この点を鑑みた本実施形態では、高圧制御を実施する期間の少なくとも一部に、目標圧力を徐々に上昇させる期間を設ける。図3の例では、t2時点以降に目標高圧を徐々に上昇させる。そのため、時間が経過すれば、吹出空気温度Teが所望の値にまで低下することを確実にでき、前記懸念を解消できる。   -Contrary to this embodiment, when the target high pressure is fixed to a constant value as shown in FIG. 7B, if the target high pressure is lower than the optimum value, the time elapses in the high pressure control period. Even so, there is a concern that the offset deviation is not eliminated and the blown air temperature Te does not decrease to a desired value. In the present embodiment in view of this point, a period in which the target pressure is gradually increased is provided in at least a part of the period in which the high pressure control is performed. In the example of FIG. 3, the target high pressure is gradually increased after time t2. Therefore, if time passes, it can ensure that the blowing air temperature Te falls to a desired value, and the said concern can be eliminated.

・起動時には圧縮機11の作動音がユーザにとって耳障りになりやすいことは先述した通りである。そして、図7(c)に示すように起動開始時点から目標高圧を上昇させていくと、耳障りになりやすい時間帯で圧縮機11の回転数が上昇し、圧縮機11の作動音がユーザに認識されるおそれがある。この点を鑑みた本実施形態では、圧縮機11の起動を開始してから所定時間が経過するまでは、目標高圧を一定の値に維持させる。そのため、耳障りになりやすい時間帯で圧縮機11の回転数が上昇することを抑制でき、作動音がユーザに認識されるおそれを低減できる。   As described above, the operation sound of the compressor 11 is likely to be annoying to the user at the time of startup. Then, as shown in FIG. 7 (c), when the target high pressure is increased from the start of activation, the rotation speed of the compressor 11 increases during a time period in which it is likely to be annoying, and the operating sound of the compressor 11 is given to the user. May be recognized. In the present embodiment in view of this point, the target high pressure is maintained at a constant value until a predetermined time elapses after the start of the compressor 11. Therefore, it can suppress that the rotation speed of the compressor 11 raises in the time slot | zone which is easy to become annoying, and can reduce a possibility that a user may recognize an operating sound.

・本実施形態では、エジェクタ15を備えた冷凍サイクルに本発明を適用させるので、膨張弁13を通過した冷媒(中間圧冷媒)の圧力(中間圧)を最適な値に制御できる、と言った効果も発揮される。以下、この効果について詳細に説明する。   -In this embodiment, since this invention is applied to the refrigerating cycle provided with the ejector 15, it said that the pressure (intermediate pressure) of the refrigerant | coolant (intermediate pressure refrigerant | coolant) which passed the expansion valve 13 can be controlled to an optimal value. The effect is also demonstrated. Hereinafter, this effect will be described in detail.

図5に示すように、冷媒のエンタルピおよび圧力は、圧縮機11での圧縮により増大し(点A→点B)、その後、凝縮器12での放熱で減少する(点B→点C)。その後、膨張弁13での減圧により、等エンタルピの状態で圧力が減少する(点C→点D、F)。その後、分岐部14からノズル部15a側へ流れた冷媒は、ノズル部15aにより速度エネルギから圧力エネルギへ変換されるので、符号Gnに示す如く圧力が低下するとともに、符号ΔHに示す如くエンタルピが低下する(点D→点E)。一方、分岐部14から吸引部15b側へ流れた冷媒は、絞り機構17での減圧により、等エンタルピの状態で圧力が減少する(点F→点G)。   As shown in FIG. 5, the enthalpy and pressure of the refrigerant increase due to compression in the compressor 11 (point A → point B), and thereafter decrease due to heat dissipation in the condenser 12 (point B → point C). Thereafter, the pressure is reduced in an isoenthalpy state by the pressure reduction at the expansion valve 13 (point C → points D and F). Thereafter, the refrigerant flowing from the branching portion 14 toward the nozzle portion 15a is converted from velocity energy to pressure energy by the nozzle portion 15a, so that the pressure decreases as indicated by the symbol Gn and the enthalpy decreases as indicated by the symbol ΔH. (Point D → Point E). On the other hand, the pressure of the refrigerant that has flowed from the branching portion 14 toward the suction portion 15b decreases in a state of equal enthalpy due to the decompression by the throttle mechanism 17 (point F → point G).

ここで、点A〜点Cでの圧力を高圧、点Dでの圧力を中間圧、点E〜点Aでの圧力を低圧と呼ぶ。そして、ノズル部15aにより速度エネルギから圧力エネルギへ変換された量、つまりノズル部15aでの膨張エネルギは、先述した圧力低下量Gnにエンタルピ低下量ΔHを乗算した値となる。この膨張エネルギを大きく取得できれば、エジェクタ効率を向上でき、冷凍サイクル10のサイクル効率を向上できると言える。   Here, the pressure at points A to C is called high pressure, the pressure at point D is called intermediate pressure, and the pressure at points E to A is called low pressure. The amount converted from velocity energy to pressure energy by the nozzle portion 15a, that is, the expansion energy in the nozzle portion 15a is a value obtained by multiplying the pressure drop amount Gn described above by the enthalpy drop amount ΔH. If this expansion energy can be acquired largely, it can be said that the ejector efficiency can be improved and the cycle efficiency of the refrigeration cycle 10 can be improved.

図6に示すように、前記膨張エネルギは、中間圧が所定値(最適値Pa)となっている時に最大となる。また、中間圧と高圧と相関性が高く、中間圧が最適値Pa近傍となるように、圧縮機回転数を制御して高圧を制御することが望ましい。そして、起動時に通常制御を実施すると、高圧上昇に伴い中間圧は符号P3まで上昇する。その後、回転数低下に伴い中間圧は符号P1まで低下する。つまり、符号W1の範囲で中間圧が変化する。これに対し、起動時に高圧制御を実施すると、高圧上昇が抑制されるので中間圧は符号P2までしか上昇せず、その後、回転数低下に伴い中間圧は符号P1まで低下する。つまり、符号W2の範囲で中間圧が変化する。   As shown in FIG. 6, the expansion energy becomes maximum when the intermediate pressure is a predetermined value (optimum value Pa). Further, it is desirable to control the high pressure by controlling the compressor speed so that the intermediate pressure and the high pressure are highly correlated and the intermediate pressure is in the vicinity of the optimum value Pa. And if normal control is implemented at the time of starting, an intermediate pressure will raise to the code | symbol P3 with a high pressure raise. Thereafter, the intermediate pressure decreases to the symbol P1 as the rotational speed decreases. That is, the intermediate pressure changes in the range of the sign W1. On the other hand, if high pressure control is performed at the time of start-up, since the increase in high pressure is suppressed, the intermediate pressure rises only up to symbol P2, and thereafter the intermediate pressure falls to symbol P1 as the rotational speed decreases. That is, the intermediate pressure changes in the range of the sign W2.

以上により、高圧制御を実施する本実施形態によれば、中間圧が、膨張エネルギを最大にする最適値Paから大きく外れて変化することを抑制できる。よって、起動時における膨張エネルギ低下を抑制できるので、エジェクタ効率を向上でき、冷凍サイクル10のサイクル効率を向上できる。   As described above, according to the present embodiment in which the high pressure control is performed, it is possible to suppress the intermediate pressure from greatly changing from the optimum value Pa that maximizes the expansion energy. Therefore, since the expansion | swelling energy fall at the time of starting can be suppressed, ejector efficiency can be improved and the cycle efficiency of the refrigerating cycle 10 can be improved.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、図7(a)に示す如く目標高圧を変化させているが、図7(b)に示すように目標高圧を一定の値に固定させてもよい。また、図7(b)に示すように起動開始時点から目標高圧を上昇させてもよい。また、図7(d)に示すように、外気温度等の環境パラメータを逐次取得し、その取得値に応じて目標高圧を逐次変化させるようにしてもよい。   In the above embodiment, the target high pressure is changed as shown in FIG. 7A, but the target high pressure may be fixed to a constant value as shown in FIG. 7B. Further, as shown in FIG. 7B, the target high pressure may be increased from the start of activation. Moreover, as shown in FIG.7 (d), environmental parameters, such as external temperature, may be acquired sequentially and a target high pressure may be changed sequentially according to the acquired value.

・上記実施形態では、外気温度に応じて目標高圧を設定しているが、外気温度に基づき定常運転時高圧または定常運転時回転数を予測し、その予測値に応じて目標高圧を設定するようにしてもよい。   In the above embodiment, the target high pressure is set according to the outside air temperature. However, the high pressure during steady operation or the rotation speed during steady operation is predicted based on the outside air temperature, and the target high pressure is set according to the predicted value. It may be.

・本発明にかかる圧縮機は、図1に示す電動式の圧縮機11に限定されるものではなく、可変容量型であればエンジン駆動式の圧縮機であってもよい。例えば、車両走行用エンジンにより圧縮機を回転駆動させるエンジン駆動式であって、斜板室の圧力の調整により吐出容量を100%から0%付近まで連続的に変化させることができる斜板式可変容量型の圧縮機が挙げられる。そして、電動式の圧縮機11の場合には回転数を制御しているのに対し、可変容量型の圧縮機の場合には、斜板角度を制御して吐出量を制御すればよい。   The compressor according to the present invention is not limited to the electric compressor 11 shown in FIG. 1, and may be an engine-driven compressor as long as it is a variable capacity type. For example, a swash plate type variable displacement type which is an engine drive type in which a compressor is driven to rotate by a vehicle running engine and the discharge capacity can be continuously changed from 100% to near 0% by adjusting the pressure of the swash plate chamber. Compressors. In the case of the electric compressor 11, the rotational speed is controlled, whereas in the case of a variable capacity compressor, the discharge amount may be controlled by controlling the swash plate angle.

・上記実施形態では、吹出空気温度Teが所定値にまで低下したタイミングで、高圧制御から通常制御に切り替えているが、蒸発器16、18の温度を直接検出し、その検出値が所定値にまで低下したタイミングで通常制御に切り替えるようにしてもよい。或いは、冷凍サイクル10の低圧側の圧力(低圧)が所定値にまで上昇したタイミングで通常制御に切り替えるようにしてもよい。   In the above embodiment, the control is switched from the high pressure control to the normal control at the timing when the blown air temperature Te is lowered to the predetermined value. However, the temperature of the evaporators 16 and 18 is directly detected, and the detected value becomes the predetermined value. You may make it switch to normal control at the timing which fell to. Or you may make it switch to normal control at the timing which the pressure (low pressure) of the low voltage | pressure side of the refrigerating cycle 10 rose to the predetermined value.

10…冷凍サイクル、11…圧縮機、16、18…蒸発器、S15…高圧制御手段、S16…通常制御手段   DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle, 11 ... Compressor, 16, 18 ... Evaporator, S15 ... High pressure control means, S16 ... Normal control means

Claims (5)

冷媒を圧縮して冷凍サイクル(10)を循環させる圧縮機(11)と、
前記圧縮機の吐出量を制御する通常制御手段(S16)と、
前記冷凍サイクルの高圧側の冷媒圧力を目標圧力にするよう、前記吐出量をフィードバック制御する高圧制御手段(S15)と、
を備え、
前記冷凍サイクルは、
前記圧縮機から吐出した高圧冷媒の熱を放熱する凝縮器(12)と、
前記凝縮器から流出する高圧冷媒を減圧する膨張弁(13)と、
低圧冷媒を蒸発させる第1蒸発器(16)と、
送風空気流れに対して前記第1蒸発器(16)の下流に配置され、前記低圧冷媒を蒸発させる第2蒸発器(18)と、
前記膨張弁を通過した中間圧力の冷媒を減圧膨張させるノズル部(15a)を有し、前記ノズル部から噴射する高速の冷媒流により前記第2蒸発器(18)にて蒸発した気相冷媒を吸引するとともに、冷媒の膨張エネルギを圧力エネルギに変換して前記第1蒸発器(16)に流出させて、前記圧縮機の吸入圧を上昇させるエジェクタ(15)と、
を備えるエジェクタ式冷凍サイクルであり、
前記通常制御手段(S16)は、前記第2蒸発器(18)によって冷却された冷風の温度である吹出空気温度(Te)に応じて前記吐出量を制御するようになっており、
前記圧縮機の起動時または起動直前の外気温度に基づき、前記目標圧力を設定し、前記圧縮機の起動開始時点から前記吹出空気温度(Te)が所定温度まで低下する期間には、冷房要求負荷が所定値未満であることを条件として、前記高圧制御手段により前記エジェクタ式冷凍サイクルの高圧側の冷媒圧力を前記目標圧力にするよう前記吐出量を制御することを特徴とする冷凍サイクル装置。
A compressor (11) for compressing the refrigerant and circulating the refrigeration cycle (10);
Normal control means (S16) for controlling the discharge amount of the compressor;
High-pressure control means (S15) for feedback-controlling the discharge amount so that the refrigerant pressure on the high-pressure side of the refrigeration cycle becomes a target pressure;
With
The refrigeration cycle is
A condenser (12) that dissipates heat of the high-pressure refrigerant discharged from the compressor;
An expansion valve (13) for depressurizing the high-pressure refrigerant flowing out of the condenser;
A first evaporator (16) for evaporating the low-pressure refrigerant ;
A second evaporator (18) disposed downstream of the first evaporator (16) with respect to the blown air flow and evaporating the low-pressure refrigerant ;
It has a nozzle part (15a) for decompressing and expanding the intermediate-pressure refrigerant that has passed through the expansion valve, and the vapor-phase refrigerant evaporated in the second evaporator (18) by the high-speed refrigerant flow injected from the nozzle part. An ejector (15) for sucking, converting expansion energy of the refrigerant into pressure energy and flowing it out to the first evaporator (16) to increase the suction pressure of the compressor;
An ejector-type refrigeration cycle comprising:
The normal control means (S16) controls the discharge amount according to the blown air temperature (Te) which is the temperature of the cold air cooled by the second evaporator (18),
The target pressure is set based on the outside air temperature at the time of starting or just before starting the compressor, and during the period when the blown air temperature (Te) decreases from the start time of starting the compressor to a predetermined temperature, the cooling required load The refrigeration cycle apparatus is characterized in that the discharge amount is controlled by the high pressure control means so that the refrigerant pressure on the high pressure side of the ejector refrigeration cycle becomes the target pressure on the condition that is less than a predetermined value.
前記冷房要求負荷が所定値未満とは、車室内へ送風される空調風の風量が所定値未満、或いは、外気温度と室内温度との偏差が所定値未満や、外気温度と設定温度との偏差が所定値未満、であることを特徴とする請求項1に記載の冷凍サイクル装置。   The cooling requirement load is less than a predetermined value means that the amount of conditioned air blown into the vehicle interior is less than the predetermined value, or the deviation between the outside air temperature and the room temperature is less than the prescribed value, or the deviation between the outside air temperature and the set temperature. The refrigeration cycle apparatus according to claim 1, wherein is less than a predetermined value. 前記圧縮機を起動させた後、前記吹出空気温度(Te)が前記所定温度未満となるまで低下した時点で、前記高圧制御手段による制御から前記通常制御手段による制御に切り替えることを特徴とする請求項1または2に記載の冷凍サイクル装置。 The control is switched from the control by the high-pressure control means to the control by the normal control means at the time when the blown air temperature (Te) is lowered to be lower than the predetermined temperature after the compressor is started. Item 3. The refrigeration cycle apparatus according to Item 1 or 2. 前記高圧制御手段による制御を実施する期間の少なくとも一部に、前記目標圧力を徐々に上昇させるように設定した期間を設けることを特徴とする請求項1〜3のいずれか1つに記載の冷凍サイクル装置。   The refrigeration according to any one of claims 1 to 3, wherein a period set so as to gradually increase the target pressure is provided in at least a part of a period during which the control by the high-pressure control means is performed. Cycle equipment. 前記圧縮機の起動を開始してから所定時間が経過するまでは、前記目標圧力を一定の値に固定するように設定することを特徴とする請求項1〜4のいずれか1つに記載の冷凍サイクル装置。   5. The apparatus according to claim 1, wherein the target pressure is set to a fixed value until a predetermined time elapses after starting the compressor. Refrigeration cycle equipment.
JP2012067997A 2012-03-23 2012-03-23 Refrigeration cycle equipment Active JP6116810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067997A JP6116810B2 (en) 2012-03-23 2012-03-23 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067997A JP6116810B2 (en) 2012-03-23 2012-03-23 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2013200063A JP2013200063A (en) 2013-10-03
JP6116810B2 true JP6116810B2 (en) 2017-04-19

Family

ID=49520437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067997A Active JP6116810B2 (en) 2012-03-23 2012-03-23 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6116810B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016422665B2 (en) * 2016-09-08 2019-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CA3117811A1 (en) * 2018-11-06 2020-05-14 Evapco, Inc. Direct expansion evaporator with vapor ejector capacity boost
KR102613506B1 (en) * 2018-11-26 2023-12-14 엘지전자 주식회사 Refrigerator and method for controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210762A (en) * 1988-02-18 1989-08-24 Daikin Ind Ltd Air conditioner
JPH02230056A (en) * 1989-03-02 1990-09-12 Daikin Ind Ltd Operation control device for freezer
JP2508860B2 (en) * 1989-09-20 1996-06-19 ダイキン工業株式会社 Operation control device for air conditioner
JP2951058B2 (en) * 1991-07-31 1999-09-20 株式会社日立製作所 Control method of air conditioner
JP3100490B2 (en) * 1993-03-03 2000-10-16 松下電器産業株式会社 Annual cooling control device for air conditioner
JP4348571B2 (en) * 1999-01-18 2009-10-21 株式会社ヴァレオサーマルシステムズ Refrigeration cycle
JP5012193B2 (en) * 2006-06-06 2012-08-29 株式会社デンソー Air conditioner for vehicles
JP2009222255A (en) * 2008-03-13 2009-10-01 Denso Corp Vapor compression refrigerating cycle
JP2010013017A (en) * 2008-07-04 2010-01-21 Denso Corp Air conditioning device for vehicle
JP2010126136A (en) * 2008-12-01 2010-06-10 Denso Corp Air conditioner for vehicle
JP2011126409A (en) * 2009-12-17 2011-06-30 Denso Corp Refrigerating cycle device for vehicle

Also Published As

Publication number Publication date
JP2013200063A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP4595607B2 (en) Refrigeration cycle using ejector
KR101558307B1 (en) Decompression device and refrigeration cycle device
US6857286B2 (en) Vapor-compression refrigerant cycle system
JP4581720B2 (en) Cycle using ejector
JP4832458B2 (en) Vapor compression refrigeration cycle
JP3956793B2 (en) Ejector cycle
JP4096824B2 (en) Vapor compression refrigerator
JP2003329313A (en) Vapor compression type refrigerating machine
JP2007163016A (en) Ejector type refrigerating cycle and method for controlling it
JP2005308380A (en) Ejector cycle
JP2004324955A (en) Vapor compression type refrigerating machine
JP2007040612A (en) Vapor compression type cycle
JP4631721B2 (en) Vapor compression refrigeration cycle
JP6116810B2 (en) Refrigeration cycle equipment
JP2006317116A (en) Ejector cycle
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP4063023B2 (en) Vapor compression refrigerator
JP2005037056A (en) Ejector cycle
JP2006313050A (en) Supercritical refrigeration cycle and vehicular air conditioner
JP2005180911A (en) Refrigerating device
JP2008121913A (en) Vapor compression type refrigerating cycle
JP2006105526A (en) Mixed refrigerant refrigerating cycle
JP6733625B2 (en) Refrigeration cycle equipment
JP4259605B2 (en) Ejector refrigeration cycle
JP2008008505A (en) Ejector type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250