JP2004092053A - Construction method for composite underground wall - Google Patents

Construction method for composite underground wall Download PDF

Info

Publication number
JP2004092053A
JP2004092053A JP2002251388A JP2002251388A JP2004092053A JP 2004092053 A JP2004092053 A JP 2004092053A JP 2002251388 A JP2002251388 A JP 2002251388A JP 2002251388 A JP2002251388 A JP 2002251388A JP 2004092053 A JP2004092053 A JP 2004092053A
Authority
JP
Japan
Prior art keywords
wall
composite
retaining wall
basement
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251388A
Other languages
Japanese (ja)
Other versions
JP3896540B2 (en
Inventor
Kazuhiko Isoda
磯田 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2002251388A priority Critical patent/JP3896540B2/en
Publication of JP2004092053A publication Critical patent/JP2004092053A/en
Application granted granted Critical
Publication of JP3896540B2 publication Critical patent/JP3896540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground construction method which is more rational than a conventional inverted construction method. <P>SOLUTION: When a reinforced concrete (RC) wall 5 is integrally provided inside an earth retaining wall 1 so that a composite underground wall 7 can be constructed, after the construction of the wall 1, ground inside the wall 1 is excavated in a stepwise manner, and at the stage of the excavation of a certain step, the RC wall 5 is provided inside the wall 1 which is exposed on the above step, so that the wall 7 can be constructed. After that, the excavation of the next step is performed. In the construction of the wall 7 on each step, the strength of integration of a core material 2 for the wall 1 with the RC wall 5 is set depending on the distribution of stress which is expected to occur in each part of the wall 7. The strength of the integration of the core material 2 with the RC wall 5 is set by adjusting a pitch of a stud 8 serving as a shear key which is provided in the core material 2. The excavation of the next step is performed after concrete is placed more thickly than a necessary thikness for cover concrete up to an excavated bottom surface on a certain step in the lower part of an outer peripheral beam 3 which is integrally provided in the RC wall 5 on the above step. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建物の地下躯体を施工するための工法に係わり、特に山留壁と鉄筋コンクリート壁とを一体化した合成地下壁を逆打ち工法により施工する方法に関する。
【0002】
【従来の技術】
建物の地下躯体を施工するための工法として、地盤を地表から段階的に掘削して地下躯体を下方に向かって施工していくという逆打ち工法が広く採用されている。
【0003】
図8〜図12に従来一般の逆打ち工法の概要を示す。これは、まず図8に示すように地中に仮設の山留壁1、たとえばH形鋼2を芯材とするソイルミキシングウォール(SMW)を設ける。次に、図9に示すように山留壁1の内側の地盤地表部を掘削して、1階の外周梁3とスラブ4の施工を行う。そして、それら外周梁3とスラブ4を腹起こしと切梁として機能せしめて山留壁1を支持しつつ、図10に示すようにB1FLよりもやや深いレベルまで掘削した後、地下1階の外周梁3とスラブ4を施工する。同様に、図11に示すようにB2FLよりもやや深いレベルまで掘削した後、地下2階の外周梁3とスラブ4を施工し、図12に示すように基礎レベルまでの掘削を行いながら、本設の地下壁としての鉄筋コンクリート壁(RC壁)5を地下1階から順次施工していって地下階の躯体および基礎を完成させる、という手順となる。一般的には、掘削階より2層遅れて地下外壁を施工する工程となる場合が多い。
【0004】
【発明が解決しようとする課題】
上記従来の逆打ち工法では、大深度掘削を行う場合や、地下階の階高が大きいような場合等においては、図12(b)に示すように施工途中において山留壁1に過大な曲げモーメントが生じるので、山留壁1の所要厚や芯材2の断面を大きく確保する必要があるし、また図12(a)に示すように必要に応じて仮設の斜梁6や中間切梁を適宜追加する必要も生じる場合がある。しかし、敷地に余裕がないような場合には山留壁1の厚さを充分に確保できない場合があるし、本設の外周梁3やスラブ4に加えて仮設の斜梁6や中間切梁を設けることは施工が煩雑になり、工期やコスト的に好ましいことではない。
【0005】
また、従来における山留壁1はあくまで仮設として設けられるものであるので地下躯体が完成した後には撤去すべきではあるが、建物の完成後にSMW等の山留壁1を撤去することは困難であることから工事完了後も撤去せずにそのまま残置することが多い。そして、近年においてはそれが建設廃材を処分せずに放置すると見なされ、環境的にも好ましくないとされている。
【0006】
上記事情に鑑み、本発明は逆打ち工法を基本としつつも従来の逆打ち工法に較べて合理的で施工性に優れた有効な地下工法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、山留壁の内側に鉄筋コンクリート壁を一体に設けて合成地下壁を施工するための方法であって、山留壁を施工した後、その内側の地盤を段階的に掘削していくとともに、或る段を掘削した段階で当該段に露出せしめた山留壁の内側に鉄筋コンクリート壁を設けて当該段の合成地下壁を施工し、しかる後に次段の掘削を行うことを特徴とする。
【0008】
請求項2の発明は、請求項1の発明において、各段の合成地下壁を施工するに際し、その合成地下壁の各部に生じると予想される応力分布に応じて、山留壁の芯材と鉄筋コンクリート壁との一体化強度を設定することを特徴とする。
【0009】
請求項3の発明は、請求項2の発明において、山留壁の芯材と鉄筋コンクリート壁との一体化強度の設定を、芯材に設けるシアキーとしてのスタッドのピッチの調整により行うことを特徴とする。
【0010】
請求項4の発明は、請求項1,2または3の発明において、或る段の鉄筋コンクリート壁と一体に設ける外周梁の下部を当該段の掘削底面まで増し打ちした後、次段の掘削を行うことを特徴とする。
【0011】
【発明の実施の形態】
図1〜図7に本発明の実施の形態を示す。本実施形態では、上述した従来の工法と同様に、SMWからなる山留壁1の内側地盤を段階的に掘削していって地下躯体を逆打ち工法により施工するのであるが、山留壁1を単に仮設として設けるのではなく、またその内側にRC壁5を単に重ねて設けるのではなく、必要に応じてそれら山留壁1とRC壁5とを構造的に一体化した合成地下壁7として設け、その合成地下壁7を本設の地下壁として機能させることにより山留壁1をそのまま本設の地下壁の一部として利用することとする。そして、そのような合成地下壁7の各部における山留壁1とRC壁5との一体化強度を、この合成地下壁7の各部における応力分布に応じて適正に設定するものとしている。
【0012】
すなわち、一般に地下壁は深部ほど大きな土水圧を受けることから深部ほど大きな応力が生じるものであるので、本実施形態では合成地下壁7が完成した後に生じるであろう応力分布を予め想定し、それに基づいて、応力が大きい部分ほど山留壁1とRC壁5との一体化強度を大きく設定しておき、応力が小さい部分では一体化強度をそれよりも小さく設定するか、あるいは敢えて単に重ねて一体化させないようにし、それにより合成地下壁7の各部の剛性を各部の応力状態に見合うように最適に設定するのである。そして、そのような一体化強度の設定を、シアキーとしてのスタッド8の有無やそのピッチの調整により行うこととし、かつそれと同時にRC壁5の壁厚も適正に設定するものとしている。
【0013】
具体的には、図7に示すように、地下1階の部分では合成地下壁7はさほど大きな土水圧を受けず、したがってさしたる応力が生じないので、ここでは山留壁1の強度を期待する必要がなく通常のRC壁5を設けることで充分であり、そのためここではシアキー等による山留壁1とRC壁5との一体化を敢えてせず、それらが単に接しているに過ぎない重ね壁とする。一方、地下3階以深では大きな土水圧を受けることから充分な強度が必要とされ、したがってここではRC壁5の壁厚を上層部よりも大きく設定するとともに、山留壁1の強度を本設の地下壁の一部として有効に活用するべく、その山留壁1の芯材2に多数のスタッド8を密に設け、それらスタッド8をシアキーとして山留壁1とRC壁5および外周梁3を確実強固に一体化した完全合成壁とする。また、地下2階の部分では、地下1階と地下3階以深との中間程度の応力となるので、それに応じてRC壁5の壁厚も中間程度に設定し、かつスタッド8により山留壁1とRC壁5および外周梁3との一体化を図るもののスタッド8のピッチを地下3階以深でのピッチよりも大きくして、ここでは一体化強度を軽減した不完全合成壁とする。
【0014】
そのように、合成地下壁7の各部に生じると予想される応力分布に応じて、山留壁1の芯材2とRC壁5および外周梁3との一体化強度を設定することにより、合成地下壁7の各部の壁厚やその強度を最適に設定することができ、それが必要以上に大きくなるような無駄を無くすことができる。しかも、山留壁1の芯材2とRC壁5との一体化強度の設定を、芯材2に設けるシアキーとしてのスタッド8のピッチの調整により行うので、合成地下壁7の各部の一体化強度を簡易な手法で確実に設定することができる。
【0015】
そして、本実施形態では、上記の合成地下壁7を以下の工程で施工する。まず、従来と同様に図1に示すようなSMWからなる山留壁1を地中に施工し、図2に示すように山留壁1の内側の地盤地表部を掘削して1階の外周梁3とスラブ4の施工を行い、図3に示すようにB1FLよりもやや深いレベルまで掘削した後、地下1階の外周梁3とスラブ4を施工する。この際、地下1階の外周梁3をスタッド8を介して山留壁1の芯材2に対して一体化させる。
【0016】
従来工法では引き続いて次段の掘削を行うのであるが、本実施形態では次段の掘削に先立って図4に示すように地下1階にRC壁5を施工する。上述のように地下1階においては山留壁1とRC壁5とを重ね壁として設けるので、ここではスタッド8による一体化は行わないが、いずれにしても山留壁1の内側にRC壁5を設けることからそこでの断面二次モーメントが大きく増大して剛性が高められ、次段の掘削に際して山留壁1に生じる曲げモーメントを軽減することができる。
【0017】
そして、図5に示すように次段の掘削を地下2階よりもやや低いレベルまで行った後、地下2階の外周梁3とスラブ4とを施工する。この際、外周梁3をスタッド8を介して芯材に一体化させるが、上述のように地下3階以深では一体化強度を地下2階よりも高めることから、スタッド8のピッチは上階よりも密とする。また、この外周梁3の施工に際してはその下部を掘削底面まで増し打ち(いわゆる下端フカシ)して、増し打ち部3aも同様に芯材2に対してスタッド8により一体化させる。
【0018】
次いで、図6に示すように、地下2階にRC壁5をスタッド8により山留壁1の芯材2に一体化させた状態で設けて地下2階まで合成地下壁7を施工し、しかる後に、図7に示すようにさらに次段の掘削を基礎レベルまで行い、地下3階および基礎の躯体を施工して地下躯体を完成させる。
【0019】
以上のように、山留壁1とRC壁5とを重ねてあるいは一体化して合成地下壁7を施工しながら地盤を段階的に掘削していくことにより、従来のように単なる仮設の山留壁1と本設の地下壁としてのRC壁5とを個々に設ける場合に較べて、山留壁1の強度を見込める分だけRC壁5の壁厚を薄くできるしその鉄筋量も削減でき、また、掘削に先行して合成地下壁7を施工することで山留壁1単体の場合に較べてその曲げ剛性が高められて変形が確実に抑制されるから、山留壁1を単に仮設として設ける場合に較べてその所要壁厚や芯材2の断面を削減することができる。したがって、上記工法によれば、従来の逆打ち工法における山留壁1とRC壁5との合計厚に較べて合成地下壁7の所要厚を充分に薄くすることが可能であり、その結果、従来工法に較べてコスト的に有利であるばかりでなく、敷地に余裕のない場合にも適用が可能となり、地下階の有効空間を大きく確保できることにもなり、極めて有効である。勿論、山留壁1を本設の地下壁の一部として利用することからそれを完成後に撤去するような必要もない。
【0020】
また、RC壁5に一体に設ける外周梁3の下部を増し打ちしてその断面を大きくすることで、その外周梁3によって山留壁1を広い範囲にわたって安定に支持することができ、したがって掘削に際しての山留壁1の変形をより確実に抑制し得るから、山留壁1の壁厚と芯材2の断面をより削減することが可能となるし、従来においては必要とされる仮設の中間切梁や図12(a)に示したような斜梁12を不要とすることも可能となる。
【0021】
以上で本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものでは勿論なく、施工するべき地下躯体の規模や形態、地盤の状況、その他の諸条件に応じて適宜の設計的変更を行えば良い。たとえば、山留壁1はSMWに限るものではなく、芯材2に対してRC壁5を一体化できるものであれば他の構造の山留壁、たとえばH形鋼横矢板工法によるもの等も採用可能である。また、山留壁1とRC壁5とを一体化させるための構成や、一体化強度を調節するための構成も、スタッド8およびそのピッチの調整によることに限らず適宜の構成が考えられるし、山留壁1とRC壁5とを一体化させる範囲や単に重ね合わせる範囲、RC壁5の各部の壁厚等も、合成地下壁7の各部に生じる応力その他の条件を考慮して適宜設定すれば良い。また、施工手順として当該階の地下外壁の後に下階の掘削を例示したが、応力の小さい地下1階のように浅い階では地下外壁を施工する前に下階の掘削を進め、応力の大きい深い階では地下外壁の施工後に下階の掘削を行うというように、両者を適宜組み合わせることで、より合理的な施工計画とすることもできる。
【0022】
【発明の効果】
請求項1の発明は、山留壁の内側に鉄筋コンクリート壁を一体に設けてそれらを合成地下壁として施工するものであり、特に、山留壁を施工した後、その内側の地盤を段階的に掘削していくとともに、或る段を掘削した段階で当該段に露出せしめた山留壁の内側に鉄筋コンクリート壁を設けて合成地下壁を施工し、しかる後に次段の掘削を行うので、山留壁の強度を見込める分だけRC壁の壁厚を薄くでき、また、山留壁がRC壁により補強されるので単に仮設として設ける場合に較べてその所要壁厚や芯材断面を削減することができ、したがって合成地下壁全体の壁厚を従来の仮設の山留壁と本設の鉄筋コンクリート壁との合計厚さよりも充分に薄くでき、しかも山留壁を本設の地下壁の一部として利用するのでその撤去も不要であり、従来の単なる逆打ち工法に較べて合理的であり極めて有効である。
【0023】
請求項2の発明は、各段の合成地下壁を施工するに際し、その合成地下壁の各部に生じると予想される応力分布に応じて、山留壁の芯材と鉄筋コンクリート壁との一体化強度を設定するので、合成地下壁の各部の壁厚やその強度を最適に設定することができ、それが必要以上に大きくなるような無駄を無くすことができる。
【0024】
請求項3の発明は、山留壁の芯材と鉄筋コンクリート壁との一体化強度の設定を、芯材に設けるシアキーとしてのスタッドのピッチの調整により行うので、合成地下壁の各部の一体化強度を簡易な手法で確実に設定することができる。
【0025】
請求項4の発明は、或る段の鉄筋コンクリート壁に一体に設ける外周梁の下部を当該段の掘削底面まで増し打ちした後に次段の掘削を行うので、増し打ち部を含めて外周梁により山留壁を広い範囲にわたって安定に支持し得てその変形を確実に防止でき、したがって山留壁の壁厚と芯材断面をより削減できるし、従来においては必要とされる仮設の中間切梁や斜梁を不要とすることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すもので、山留壁を設けた状態を示す図である。
【図2】同、1階の外周梁とスラブを施工した状態を示す図である。
【図3】同、地下1階の外周梁とスラブを施工した状態を示す図である。
【図4】同、地下1階の合成地下壁を施工した状態を示す図である。
【図5】同、地下2階の外周梁とスラブを施工した状態を示す図である。
【図6】同、地下2階の合成地下壁を施工した状態を示す図である。
【図7】同、掘削が完了した状態を示す図である。
【図8】従来の逆打ち工法の概要を示すもので、山留壁を設けた状態を示す図である。
【図9】同、1階の外周梁とスラブを施工した状態を示す図である。
【図10】同、地下1階の外周梁とスラブを施工した状態を示す図である。
【図11】同、地下2階の外周梁とスラブを施工した状態を示す図である。
【図12】同、掘削を完了し地下1階の地下壁を施工した状態を示す図である。
【符号の説明】
1 山留壁
2 芯材
3 外周梁
3a 増し打ち部
4 スラブ
5 鉄筋コンクリート壁(RC壁)
7 合成地下壁
8 スタッド(シアキー)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of constructing an underground skeleton of a building, and more particularly to a method of constructing a composite underground wall in which a retaining wall and a reinforced concrete wall are integrated by a reverse strike method.
[0002]
[Prior art]
As a construction method for constructing an underground skeleton of a building, a reverse striking method of gradually excavating the ground from the ground surface and constructing the underground skeleton downward has been widely adopted.
[0003]
8 to 12 show an outline of a conventional general reverse hitting method. First, as shown in FIG. 8, a temporary retaining wall 1, for example, a soil mixing wall (SMW) having an H-section steel 2 as a core material is provided in the ground. Next, as shown in FIG. 9, the ground surface inside the retaining wall 1 is excavated, and the outer beam 3 and the slab 4 on the first floor are constructed. After excavating to a level slightly deeper than B1FL as shown in FIG. 10 while supporting the retaining wall 1 by making the outer peripheral beam 3 and the slab 4 function as bulging and cutting beams, the outer periphery of the first basement The beam 3 and the slab 4 are constructed. Similarly, after excavating to a slightly deeper level than B2FL as shown in FIG. 11, the outer beam 3 and slab 4 on the second basement floor are constructed, and as shown in FIG. A reinforced concrete wall (RC wall) 5 as a basement wall is sequentially constructed from the first basement floor to complete the skeleton and the foundation of the basement floor. Generally, it is often the step of constructing the underground outer wall two layers later than the excavation floor.
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional reverse striking method, when deep excavation is performed or when the height of the basement floor is large, as shown in FIG. Since a moment is generated, it is necessary to ensure the required thickness of the retaining wall 1 and the cross section of the core material 2 large, and also, as shown in FIG. May need to be added as appropriate. However, when there is not enough room on the site, the thickness of the retaining wall 1 may not be sufficiently ensured. In addition to the permanent outer beams 3 and the slabs 4, the temporary oblique beams 6 and the intermediate cut beams are provided. Is complicated, and it is not preferable in terms of construction period and cost.
[0005]
Also, since the conventional retaining wall 1 is provided only as a temporary construction, it should be removed after the underground skeleton is completed. However, it is difficult to remove the retaining wall 1 such as SMW after the completion of the building. For this reason, they often remain without being removed even after construction is completed. In recent years, it is considered that construction waste is left without being disposed of, which is considered to be environmentally unfavorable.
[0006]
In view of the above circumstances, an object of the present invention is to provide an effective underground construction method which is based on the reverse construction method and which is more rational and more excellent in workability than the conventional reverse construction method.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a method for constructing a composite underground wall by integrally providing a reinforced concrete wall inside a retaining wall, and after constructing the retaining wall, excavating the ground inside the retaining wall in a stepwise manner. At the stage when a certain step was excavated, a reinforced concrete wall was provided inside the retaining wall exposed to the step and a composite underground wall of the step was constructed, and then the next step was excavated. Features.
[0008]
According to the invention of claim 2, in the invention of claim 1, when constructing the composite underground wall of each step, the core material of the retaining wall is provided according to the stress distribution expected to occur in each part of the composite underground wall. It is characterized by setting the integrated strength with the reinforced concrete wall.
[0009]
According to a third aspect of the present invention, in the second aspect of the present invention, the setting of the integral strength of the core material of the retaining wall and the reinforced concrete wall is performed by adjusting the pitch of a stud as a shear key provided on the core material. I do.
[0010]
According to a fourth aspect of the present invention, in the invention of the first, second, or third aspect, after the lower part of the outer peripheral beam provided integrally with the reinforced concrete wall of a certain step is additionally struck to the excavation bottom of the step, the next step is excavated. It is characterized by the following.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 7 show an embodiment of the present invention. In the present embodiment, similarly to the above-mentioned conventional method, the inner ground of the retaining wall 1 made of SMW is excavated in a stepwise manner, and the underground skeleton is constructed by the reverse driving method. Is not simply provided as a temporary structure, and the RC wall 5 is not merely provided inside the composite basement wall, but the composite basement wall 7 in which the retaining wall 1 and the RC wall 5 are structurally integrated as necessary. And the composite basement wall 7 functions as a permanent basement wall, so that the retaining wall 1 is used as it is as a part of the main basement wall. The integrated strength of the retaining wall 1 and the RC wall 5 in each portion of the composite underground wall 7 is appropriately set according to the stress distribution in each portion of the composite underground wall 7.
[0012]
That is, in general, the deeper the underground wall is, the deeper it is subjected to a greater soil pressure, so that a greater stress is generated in the deeper portion. Therefore, in this embodiment, the stress distribution that will occur after the composite underground wall 7 is completed is assumed in advance, and On the basis of this, the integral strength of the retaining wall 1 and the RC wall 5 is set to be greater in a portion where the stress is larger, and the integral strength is set to be smaller in the portion where the stress is smaller, or it is intentionally overlapped. The rigidity of each part of the composite basement wall 7 is optimally set so as to match the stress state of each part by preventing the unification. The setting of such integral strength is performed by adjusting the presence or absence of the stud 8 as a shear key and the pitch thereof, and at the same time, appropriately setting the wall thickness of the RC wall 5.
[0013]
Specifically, as shown in FIG. 7, in the portion of the first basement floor, the composite basement wall 7 is not subjected to a very large soil water pressure, and therefore no significant stress is generated, so that the strength of the retaining wall 1 is expected here. It is sufficient to provide a normal RC wall 5 without necessity, and therefore, in this case, it is not necessary to integrate the retaining wall 1 and the RC wall 5 with a shear key or the like. And On the other hand, sufficient strength is required at depths below the third floor below the basement, so that the RC wall 5 is set thicker than the upper part and the strength of the retaining wall 1 is permanently installed. A large number of studs 8 are densely provided on the core material 2 of the retaining wall 1 so as to be effectively used as a part of the underground wall of the retaining wall 1. Is a completely synthetic wall that is firmly integrated. Further, in the part of the second basement floor, the stress is about the middle between the first basement floor and the third basement floor or lower, so the wall thickness of the RC wall 5 is set to about the middle accordingly, and the stud 8 is used to secure the mountain retaining wall. Although the pitch of the stud 8 is made larger than the pitch at the depth of the third basement floor or lower, the incomplete composite wall having a reduced integration strength is used, although the integration of the RC wall 1 with the RC wall 5 and the outer peripheral beam 3 is intended.
[0014]
Thus, by setting the integrated strength of the core material 2 of the retaining wall 1, the RC wall 5, and the outer peripheral beam 3 in accordance with the stress distribution expected to occur in each part of the composite underground wall 7, The wall thickness and strength of each part of the basement wall 7 can be optimally set, and waste that would be unnecessarily large can be eliminated. In addition, the integration strength between the core 2 of the retaining wall 1 and the RC wall 5 is set by adjusting the pitch of the studs 8 serving as the shear key provided on the core 2, so that the components of the composite basement wall 7 can be integrated. The strength can be reliably set by a simple method.
[0015]
And in this embodiment, the above-mentioned synthetic underground wall 7 is constructed in the following steps. First, a mountain retaining wall 1 made of SMW as shown in FIG. 1 is constructed underground in the same manner as in the prior art, and the ground surface inside the mountain retaining wall 1 is excavated as shown in FIG. The beam 3 and the slab 4 are constructed, and as shown in FIG. 3, after excavating to a level slightly deeper than B1FL, the outer peripheral beam 3 and the slab 4 on the first basement floor are constructed. At this time, the outer peripheral beam 3 on the first basement floor is integrated with the core 2 of the retaining wall 1 via the stud 8.
[0016]
In the conventional method, the next excavation is continuously performed. In this embodiment, the RC wall 5 is constructed on the first basement floor as shown in FIG. 4 prior to the next excavation. As described above, since the retaining wall 1 and the RC wall 5 are provided as overlapping walls on the first basement floor, the studs 8 are not integrated here, but in any case, the RC wall is provided inside the retaining wall 1. 5, the secondary moment of area there is greatly increased, the rigidity is increased, and the bending moment generated in the retaining wall 1 during the next excavation can be reduced.
[0017]
Then, as shown in FIG. 5, after the next excavation is performed to a level slightly lower than the second basement floor, the outer peripheral beam 3 and the slab 4 on the second basement floor are constructed. At this time, the outer peripheral beam 3 is integrated with the core material via the studs 8. However, as described above, since the integration strength is higher than the second floor below the third floor below the basement, the pitch of the studs 8 is higher than that of the upper floor. Also dense. Further, when the outer peripheral beam 3 is constructed, the lower portion thereof is additionally struck to the excavated bottom surface (so-called lower end shank), and the extra striking portion 3a is similarly integrated with the core 2 by the stud 8.
[0018]
Next, as shown in FIG. 6, the RC wall 5 is provided on the second basement floor with the stud 8 integrated with the core material 2 of the retaining wall 1, and the composite basement wall 7 is constructed up to the second basement floor. Subsequently, as shown in FIG. 7, the next excavation is performed to the foundation level, and the underground skeleton is completed by constructing the third basement floor and the foundation skeleton.
[0019]
As described above, by excavating the ground stepwise while constructing the composite underground wall 7 by superimposing or integrating the retaining wall 1 and the RC wall 5, the conventional temporary retaining Compared to the case where the wall 1 and the RC wall 5 as the main basement wall are individually provided, the wall thickness of the RC wall 5 can be reduced by the amount of the strength of the retaining wall 1 and the amount of rebar can be reduced, Further, by constructing the composite underground wall 7 prior to excavation, the bending rigidity is increased as compared with the case of the retaining wall 1 alone, and the deformation is reliably suppressed. The required wall thickness and the cross section of the core material 2 can be reduced as compared with the case where they are provided. Therefore, according to the above-mentioned construction method, the required thickness of the composite underground wall 7 can be sufficiently reduced as compared with the total thickness of the ridge wall 1 and the RC wall 5 in the conventional upside-down construction method. Not only is it advantageous in terms of cost compared to the conventional method, it can be applied even when there is no room on the site, and it is possible to secure a large effective space on the basement floor, which is extremely effective. Of course, since the retaining wall 1 is used as a part of the main basement wall, there is no need to remove it after completion.
[0020]
In addition, by increasing the cross section of the lower part of the outer beam 3 provided integrally with the RC wall 5 to increase the cross section, the outer wall 3 can stably support the retaining wall 1 over a wide range. Since the deformation of the retaining wall 1 at the time can be suppressed more reliably, it is possible to further reduce the wall thickness of the retaining wall 1 and the cross section of the core material 2, and it is necessary to provide a temporary installation conventionally required. It is also possible to eliminate the need for an intermediate beam or the oblique beam 12 as shown in FIG.
[0021]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and the scale and form of the underground skeleton to be constructed, the state of the ground, and other conditions as appropriate. Design changes may be made. For example, the retaining wall 1 is not limited to the SMW, and a retaining wall of another structure, such as an H-section steel sheet pile method, may be used as long as the RC wall 5 can be integrated with the core material 2. Can be adopted. Also, the configuration for integrating the retaining wall 1 and the RC wall 5 and the configuration for adjusting the integration strength are not limited to the adjustment of the studs 8 and the pitch thereof, and appropriate configurations can be considered. The range in which the retaining wall 1 and the RC wall 5 are integrated or simply overlapped, the wall thickness of each part of the RC wall 5, and the like are appropriately set in consideration of the stress and other conditions generated in each part of the composite basement wall 7. Just do it. In addition, as an example of the construction procedure, excavation of the lower floor is exemplified after the underground outer wall of the floor. On a deep floor, a more rational construction plan can be obtained by appropriately combining the two, such as excavating the lower floor after the construction of the underground outer wall.
[0022]
【The invention's effect】
The invention according to claim 1 is to integrally provide a reinforced concrete wall inside a retaining wall and construct them as a composite underground wall. In particular, after constructing the retaining wall, the ground inside the retaining wall is stepped. While excavating, a reinforced concrete wall is provided inside the retaining wall exposed at that stage when a certain stage is excavated, and a composite underground wall is constructed. The wall thickness of the RC wall can be reduced by as much as the strength of the wall can be expected, and since the retaining wall is reinforced by the RC wall, the required wall thickness and core material cross-section can be reduced compared to the case where the wall is simply provided temporarily. Therefore, the total thickness of the composite basement wall can be made sufficiently thinner than the total thickness of the conventional temporary retaining wall and the permanent reinforced concrete wall, and the retaining wall is used as a part of the permanent underground wall. Removal is not necessary. It is extremely effective and reasonable compared to just reverse out method of.
[0023]
According to the invention of claim 2, when constructing the composite underground wall of each step, the integrated strength of the core material of the retaining wall and the reinforced concrete wall is determined according to the stress distribution expected to occur in each part of the composite underground wall. Is set, the wall thickness and strength of each part of the synthetic underground wall can be optimally set, and waste that would be unnecessarily large can be eliminated.
[0024]
According to the third aspect of the present invention, the integration strength between the core material of the retaining wall and the reinforced concrete wall is set by adjusting the pitch of the stud as a shear key provided on the core material. Can be reliably set by a simple method.
[0025]
According to the fourth aspect of the present invention, the excavation of the next stage is performed after the lower part of the outer peripheral beam provided integrally with the reinforced concrete wall of a certain stage is excavated to the excavated bottom surface of the relevant stage. The retaining wall can be stably supported over a wide range and its deformation can be reliably prevented, so that the wall thickness and core cross section of the retaining wall can be further reduced. It becomes possible to eliminate the need for the inclined beams.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention, and is a view showing a state where a retaining wall is provided.
FIG. 2 is a diagram showing a state where an outer peripheral beam and a slab on the first floor are constructed.
FIG. 3 is a diagram showing a state in which an outer peripheral beam and a slab on the first basement floor are constructed.
FIG. 4 is a diagram showing a state where a composite basement wall of the first basement is constructed.
FIG. 5 is a view showing a state in which an outer peripheral beam and a slab on the second basement are constructed.
FIG. 6 is a diagram showing a state where a composite basement wall on the second basement is constructed.
FIG. 7 is a diagram showing a state where excavation is completed.
FIG. 8 is a view showing an outline of a conventional reverse striking method, showing a state in which a retaining wall is provided.
FIG. 9 is a diagram showing a state in which an outer peripheral beam and a slab on the first floor are constructed.
FIG. 10 is a diagram showing a state where an outer peripheral beam and a slab on the first basement floor are constructed.
FIG. 11 is a view showing a state in which an outer peripheral beam and a slab on the second basement are constructed.
FIG. 12 is a diagram showing a state where excavation is completed and an underground wall on the first basement is constructed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Retaining wall 2 Core material 3 Peripheral beam 3a Additional striking part 4 Slab 5 Reinforced concrete wall (RC wall)
7 Synthetic basement wall 8 Stud (Shiakey)

Claims (4)

山留壁の内側に鉄筋コンクリート壁を一体に設けて合成地下壁を施工するに際し、山留壁を施工した後、その内側の地盤を段階的に掘削していくとともに、或る段を掘削した段階で当該段に露出せしめた山留壁の内側に鉄筋コンクリート壁を設けて当該段の合成地下壁を施工し、しかる後に次段の掘削を行うことを特徴とする合成地下壁の施工方法。When constructing a composite underground wall with a reinforced concrete wall integrally provided inside the mountain retaining wall, after constructing the mountain retaining wall, excavating the ground inside and gradually excavating a certain step A method for constructing a composite underground wall, comprising: providing a reinforced concrete wall inside a retaining wall exposed to the step, constructing a composite underground wall of the step, and then excavating the next step. 各段の合成地下壁を施工するに際し、その合成地下壁の各部に生じると予想される応力分布に応じて、山留壁の芯材と鉄筋コンクリート壁との一体化強度を設定することを特徴とする請求項1記載の合成地下壁の施工方法。When constructing the composite basement wall of each step, the integrated strength of the core material of the retaining wall and the reinforced concrete wall is set according to the stress distribution expected to occur in each part of the composite basement wall. The method for constructing a synthetic underground wall according to claim 1. 山留壁の芯材と鉄筋コンクリート壁との一体化強度の設定を、芯材に設けるシアキーとしてのスタッドのピッチの調整により行うことを特徴とする請求項2記載の合成地下壁の施工方法。3. The method according to claim 2, wherein the setting of the integration strength between the core material of the retaining wall and the reinforced concrete wall is performed by adjusting a pitch of a stud as a shear key provided on the core material. 或る段の鉄筋コンクリート壁と一体に設ける外周梁の下部を当該段の掘削底面まで増し打ちした後、次段の掘削を行うことを特徴とする請求項1,2または3記載の合成地下壁の施工方法。The composite underground wall according to claim 1, 2, or 3, wherein the lower part of the outer peripheral beam provided integrally with the reinforced concrete wall of a certain step is additionally struck to the excavation bottom of the step, and then the next step is excavated. Construction method.
JP2002251388A 2002-08-29 2002-08-29 Synthetic underground wall construction method Expired - Lifetime JP3896540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251388A JP3896540B2 (en) 2002-08-29 2002-08-29 Synthetic underground wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251388A JP3896540B2 (en) 2002-08-29 2002-08-29 Synthetic underground wall construction method

Publications (2)

Publication Number Publication Date
JP2004092053A true JP2004092053A (en) 2004-03-25
JP3896540B2 JP3896540B2 (en) 2007-03-22

Family

ID=32057980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251388A Expired - Lifetime JP3896540B2 (en) 2002-08-29 2002-08-29 Synthetic underground wall construction method

Country Status (1)

Country Link
JP (1) JP3896540B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107430A (en) * 2010-11-17 2012-06-07 Shimizu Corp Construction method of underground structure
KR101230986B1 (en) 2010-06-16 2013-02-15 주식회사 한빛구조엔지니어링 Constructing method for underground external wall using form with concrete placing inlet and vibrator inlet for preventing concrete counterflow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102915A (en) * 1984-10-23 1986-05-21 Ohbayashigumi Ltd Earthquake-proof framework with built-in composite wall integrated with underground continuous wall and body inner wall
JPH06146309A (en) * 1992-11-11 1994-05-27 Ohbayashi Corp Construction method of underground structure
JPH06272267A (en) * 1993-03-25 1994-09-27 Takenaka Komuten Co Ltd Method for utilizing soil cement post lined wall to built composite underground skeleton

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102915A (en) * 1984-10-23 1986-05-21 Ohbayashigumi Ltd Earthquake-proof framework with built-in composite wall integrated with underground continuous wall and body inner wall
JPH06146309A (en) * 1992-11-11 1994-05-27 Ohbayashi Corp Construction method of underground structure
JPH06272267A (en) * 1993-03-25 1994-09-27 Takenaka Komuten Co Ltd Method for utilizing soil cement post lined wall to built composite underground skeleton

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230986B1 (en) 2010-06-16 2013-02-15 주식회사 한빛구조엔지니어링 Constructing method for underground external wall using form with concrete placing inlet and vibrator inlet for preventing concrete counterflow
JP2012107430A (en) * 2010-11-17 2012-06-07 Shimizu Corp Construction method of underground structure

Also Published As

Publication number Publication date
JP3896540B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4722783B2 (en) Foundation reinforcement method for existing buildings
JP2005226326A (en) Reinforcing structure for existing pier foundation and reinforcing method for the existing pier foundation
JP2008231816A (en) Construction method of pile foundation structure
JP2007162266A (en) Two-step earth retaining wall and its construction method
KR20100094140A (en) Wall structure capable of earth retaining and the building method of the same
JP2012112162A (en) Earth retaining wall and construction method of earth retaining wall
JP5480744B2 (en) Foundation for structure and its construction method
JP2001303883A (en) Excavation method using earth retaining structure composed of ring beam, inverted lining wall and rock bolt
JP2004092053A (en) Construction method for composite underground wall
JP4226954B2 (en) Underpinning method and viaduct
JP2003193494A (en) Underground hollow structure constructing method and the underground hollow structure
JPH09324431A (en) Construction method of basement
JP2000129696A (en) Pile foundation method and pile foundation constructed by the method
JP6449078B2 (en) Building construction method
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
KR20090078684A (en) Composite wall using angled channel and constructing method thereof
JP4146250B2 (en) Open caisson bottom plate construction method
JP5480745B2 (en) Reinforcement method for existing foundations for structures
CN209924488U (en) Combined wall structure for underground storey addition of existing building
JP2004036228A (en) Composite underground wall
JP2008303587A (en) Top-down construction method for base-isolated building
JP4319231B2 (en) Approach caisson and method for constructing tunnel approach section composed of caisson
JP4657759B2 (en) Building pile foundation structure
JP4031284B2 (en) Construction method for underground structures
JPH06146308A (en) Construction method of underground skeleton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3896540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150105

Year of fee payment: 8

EXPY Cancellation because of completion of term