JP2004091842A - Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member - Google Patents

Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member Download PDF

Info

Publication number
JP2004091842A
JP2004091842A JP2002253420A JP2002253420A JP2004091842A JP 2004091842 A JP2004091842 A JP 2004091842A JP 2002253420 A JP2002253420 A JP 2002253420A JP 2002253420 A JP2002253420 A JP 2002253420A JP 2004091842 A JP2004091842 A JP 2004091842A
Authority
JP
Japan
Prior art keywords
composite magnetic
magnetic member
composite
less
weak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253420A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
横山 紳一郎
Kazu Sasaki
佐々木 計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002253420A priority Critical patent/JP2004091842A/en
Publication of JP2004091842A publication Critical patent/JP2004091842A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a weak magnetic part by carrying out heating treatment at a temperature lower than that in the case of a material for the conventional member, as a material for a composite magnetic member by which both magnetic properties of ferromagnetism and weak magnetism can be attained with a single composition. <P>SOLUTION: The material is that for a composite magnetic member having a ferromagnetic part and a weak magnetic part with a single composition. The material has a composition consisting of, by mass, ≤0.10% C, 0.10 to 2.0% Si, 0.10 to 4.0% Mn, >20.0% to <28.0% Ni and the balance essentially Fe and also has a martensitic structure, and further, the amount of spontaneous magnetization (J) under the external magnetic field of 1 T(tesla) is made to ≥1.3 T. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばリラクタンスモータの回転子に適用され得る、単一材料中に強磁性部と弱磁性部を具備する複合磁性部材の内、従来部材の素材より低温での加熱処理により弱磁性部を形成することのできる複合磁性部材用素材、並びに該素材を用いて成る複合磁性部材、並びに該部材の製造方法、並びに該部材を用いて成るモータに関するものである。
【0002】
【従来の技術】
従来、リラクタンスモータの回転子においては、強磁性体(一般には珪素鋼に代表される軟質磁性材料)の一部に非磁性部を設けて、磁束が通り難い方向を形成し、磁気抵抗効果を利用する構造が用いられている。強磁性体の一部に非磁性部分を設ける方法としては、強磁性鋼鈑の一部をプレスで打ち抜き、プレスで出来た空隙を非磁性部とする手法が行われてきた。
上述の手法に対し、本発明者は単一材を使用して、この単一材に部分的な熱処理を施すことによって強磁性部と弱磁性部(あるいは非磁性部)を設けた複合磁性部材を提案している。このような単一材から成る複合磁性部材を利用すると、機械的強度、振動等による破損防止という点で、強磁性体の一部をプレスで打ち抜いた部品よりも優れたものとなる。また、複合磁性部材とプレス打抜き加工を併用する場合にも、プレス打抜きにより形成される空間の部分を極力減らすことができるので、優れた機械的強度を有する部品とすることができる。
【0003】
例えば本発明者は、特開2000−104142号において、質量%でAlを0.1〜5.0%含有するFe−Cr−C系合金鋼から成り、粒径0.1μm以上の炭化物個数が100μmの面積中に50個以下、かつ該炭化物個数に対する粒径1.0μm以上の炭化物個数が15%以上に調整された(フェライト+炭化物)組織で成る比最大透磁率400以上の強磁性部と、比透磁率2以下の弱磁性部で成る複合磁性部材を提案している。
併せて本発明者は、この特開2000−104142号において、複合磁性部材の好ましい組成範囲として、質量%でC:0.30〜0.80%、Cr:12.0〜25.0%、Al:0.1〜5.0%、Ni:0.1〜4.0%、N:0.01〜0.10%、Si、Mnの1種または2種を合計で2.0%以下、残部が実質的にFeの組成で成ることを提案している。
【0004】
この特開2000−104142号で提案した複合磁性部材は、鉄鋼材料の相変態を利用して単一材料で(フェライト+炭化物)組織主体の強磁性とオーステナイト組織主体の弱磁性を実現できるFe−Cr−C系合金に着目したものである。この提案は、単一材料で強磁性と弱磁性という相反する磁気特性を両立し、更に添加元素の含有量や組織形態を調節することによって、強磁性部で比最大透磁率400以上の軟磁気特性と、弱磁性部で比最大透磁率2以下の磁気特性を満足する複合磁性部材を見出したという点で優れている。
【0005】
【発明が解決しようとする課題】
上述の特開2000−104142号に記載した複合磁性部材は、好ましい組成範囲としてCr量を12.0〜25.0%としている。
これは、複合磁性部材の耐食性を確保することと、弱磁性部のオーステナイト組織のMs点を下げ、弱磁性の特性を安定とするために、12.0〜25.0%の高Cr組成を好ましいとしたものであるが、Cr量が高いためにオーステナイト単相となる温度が上昇し、弱磁性部を形成するための部分的な熱処理に必要な温度が1000℃を超える高温になるという問題がある。
【0006】
このように、弱磁性部を形成するために1000℃を超える高温で部分的な加熱保持を行うと、熱応力により複合磁性部材が変形し易くなるという問題がある。
この問題を低減するためには、より低温で弱磁性化する材料を開発する必要がある。
本発明の目的は、単一組成で強磁性部と弱磁性部を具備する複合磁性部材用素材の内、従来部材の素材よりも低温での加熱処理により弱磁性化する複合磁性部材用素材、並びに該素材を用いて成る複合磁性部材、並びに該部材の製造方法、更には該部材を用いて成るモータを提供することである。
【0007】
【課題を解決するための手段】
低温での加熱処理により弱磁性のオーステナイト組織を形成するためには、A 点、A 点等の変態点が低い合金を選択する必要がある。
本発明者は、このような合金として、Fe−Ni系合金に着目し、Fe−Ni系を基本成分とする合金の組成、熱処理条件(加熱温度)と磁気特性、相、金属組織の関係を詳細に調査した結果、本発明に到達した。
【0008】
即ち本発明は、単一組成で強磁性部と弱磁性部を具備する複合磁性部材の素材であって、質量%でC:0.10%以下、Si:0.1〜2.0%、Mn:0.1〜4.0%、Ni:20.0を超えて28.0%未満、残部が実質的にFeの組成で成り、マルテンサイト組織で成り、1T(テスラ)の外部磁場下での自発磁化量Jが1.3T以上である複合磁性部材用素材である。
好ましくは、上述の化学組成に加えて、質量%でCr:0.1〜5.0%、Mo:0.1〜5.0%の1種または2種を含有する複合磁性部材用素材である。
【0009】
また本発明は、上述の複合磁性部材用素材として記載した化学組成を有した複合磁性部材であって、該複合磁性部材は、マルテンサイト組織で成り、且つ1Tの外部磁場下での自発磁化量Jが1.3T以上の強磁性部と、オーステナイトを主体とする組織で1Tの外部磁場下での自発磁化量Jが0.8T以下の弱磁性部とを具備する複合磁性部材である。
また本発明は、上述の複合磁性部材用素材を用いて、部分的に500℃を超えて800℃以下の範囲の温度域での加熱処理を行うことにより、1Tの外部磁場下での自発磁化量Jが1.3T以上の強磁性体中に、1Tの外部磁場下での自発磁化量Jが0.8T以下の弱磁性部を形成する複合磁性部材の製造方法である。
また本発明は、上述の複合磁性部材を用いて成るモータである。
【0010】
【発明の実施の形態】
上述したように、本発明の重要な特徴は、複合磁性部材用素材として低温での加熱処理により弱磁性のオーステナイト組織を形成できる合金として、Fe−Ni系を基本組成とする合金に着目したことである。
以下、本発明の規定理由を述べる。
先ず複合磁性部材用素材の化学組成を規定した理由を述べる。
C:0.10%以下
Cはオーステナイトを安定化する元素として、弱磁性部の形成に有効である。但し、本発明のFe−Ni系の複合磁性部材用素材においては、C量が0.10%を超える範囲では素材の自発磁化量、ひいては該素材を用いて成る複合磁性部材の強磁性部の自発磁化量を低下させるので、0.10%以下に規定した。
【0011】
Si:0.1〜2.0%
Siは脱酸元素としての作用がある元素である。但し、0.1%未満では脱酸効果が小さく、逆に2.0%を超える範囲では素材の自発磁化量、ひいては該素材を用いて成る複合磁性部材の強磁性部の自発磁化量を低下させるので、上述の範囲に規定した。
Mn:0.1〜4.0%
Mnは脱酸元素としての作用があるとともに、オーステナイト形成元素として弱磁性部の形成に有効な元素である。但し0.10%未満では効果が小さく、逆に4.0%を超える範囲では素材の自発磁化量、ひいては該素材を用いて成る複合磁性部材の強磁性部の自発磁化量を低下させるので、上述の範囲に規定した。Mnのより望ましい範囲は0.3〜2.0%である。
【0012】
Ni:20.0を超えて28.0%未満
Niはオーステナイト形成元素として、逆変態により複合磁性部材用素材を弱磁性化するため、ひいては複合磁性部材の弱磁性部を形成するために必要な本発明の最重要元素である。
Ni量の範囲を20.0%を超えて28.0%未満としたのは、Ni量が20.0%以下の範囲では、Ms点(オーステナイトがマルテンサイトに変態し始める温度)が高いので、逆変態により形成したオーステナイト組織を室温まで安定に保つことが難しく、また28.0%を超える範囲ではオーステナイト組織は安定となるものの、素材の自発磁化量、ひいては該素材を用いて成る複合磁性部材の強磁性部の自発磁化量を低下させるので、上述の範囲に規定した。Ni量のより望ましい範囲は、23.0〜27.0%である。
【0013】
次に、好ましい添加元素としてCr:0.10〜5.0%、Mo:0.10〜5.0%の1種または2種を含有することとした理由を述べる。
これらの元素は、ともにフェライト形成元素であるが、一旦、オーステナイトに固溶すると、オーステナイト組織からマルテンサイト組織への変態を遅らせるので、結果的にMs点を低下させて、オーステナイト組織を安定化する効果がある。この効果は、Cr、Moをそれぞれ単独添加した場合にも、複合添加した場合にも得られる。
但し、0.10%未満では効果が小さく、逆に5.0%を超える範囲では、オーステナイト組織は安定となるものの、素材の自発磁化量、ひいては該素材を用いて成る複合磁性部材の強磁性部の自発磁化量を低下させるので、上述の範囲に規定した。より好ましくは、Cr:0.50〜3.0%、Mo:0.50〜3.0%の1種または2種を含有すると良い。
なお、本発明の複合磁性部材用素材においては、残部は実質的にFeであるが、不可避不純物としてのP、S、N、O等は当然、含有される。これらの不可避不純物は、素材の磁気特性に特に影響を及ぼさない範囲として、各々0.1%以下の範囲で含有して良い。
【0014】
次に、本発明における組織の規定理由を述べる。
本発明の複合磁性部材用素材の組織、ひいては複合磁性部材の強磁性部の組織をマルテンサイト組織としたのは、Fe−Ni系を基本組成とする本発明素材において強磁性の特性を得るためであり、ひいては1Tの外部磁場下での自発磁化量Jが1.3T以上の特性を実現させるためである。
なお、本発明の複合磁性部材用素材でマルテンサイト組織を得るためには、素材を冷間加工状態とするか、または冷間加工後に逆変態が起こり始める500℃以下の温度で歪取り焼鈍を施した状態とすれば良い。
また弱磁性部の組織を、オーステナイトを主体とする組織としたのは、自発磁化量を低下させ、1Tの外部磁場下での自発磁化量Jが0.8T以下の特性を実現させるためである。なお、本発明のオーステナイトを主体とする組織とは、弱磁性部をエックス線回折により分析した際、検出されるマルテンサイト相の(110)、(200)、(211)、及びオーステナイト相の(111)、(200)、(220)、(311)各面のピ−ク積分強度の総和に対し、50%以上をオ−ステナイト相が占める組織を指す。このオーステナイト量が50%以上であれば、本発明の弱磁性部の特性から外れることはない。
【0015】
次に、複合磁性部材用素材の磁気特性、ひいては複合磁性部材の強磁性部の磁気特性を、1Tの外部磁場下での自発磁化量Jが1.3T以上と規定した理由、及び複合磁性部材の弱磁性部の磁気特性を1Tの外部磁場下での自発磁化量Jが0.8T以下に規定した理由を述べる。
例えば、本発明の複合磁性部材をリラクタンスモータの回転子に適用する場合、回転子には約1T前後の高い外部磁場が印加される。そのため、強磁性部と弱磁性部に要求される磁気特性として、比較的、低い磁場中での比透磁率、保磁力等の磁気特性は、あまり問題とならず、寧ろ高い磁場を印加した際の自発磁化量が問題となる。
本発明の複合磁性部材用素材の磁気特性、ひいては複合磁性部材の強磁性部の磁気特性を、1Tの外部磁場下での自発磁化量Jが1.3T以上としたのは、この特性が、強磁性部として最低限、要求される特性であるからである。好ましくは、1.5T以上であると良い。
【0016】
また、例えばリラクタンスモータの回転子において弱磁性部を形成する目的は、磁束を完全に遮断することではなく、磁束が通り難い方向を形成して、磁気抵抗効果を利用することであるので、弱磁性部の磁気特性は、完全な非磁性でなくても、強磁性部と比較して磁化量の差が明確に出ていれば良い場合が多い。
上述の理由から、該素材を弱磁性化した際の磁気特性、ひいては複合磁性部材の弱磁性部の磁気特性は、1Tの外部磁場下での自発磁化量Jが0.8T以下に規定した。勿論、弱磁性部の磁気特性が完全な非磁性体のレベルであっても差し支えない。
【0017】
次に、本発明の複合磁性部材の製造方法として、弱磁性部を形成するための部分的な加熱温度を、500℃を超え800℃以下の範囲の温度域に規定した理由を述べる。冷間加工により形成されたマルテンサイト組織は、逆変態温度以上に加熱するとオーステナイト組織となるが、逆変態温度の直上で形成されたオーステナイト粒は微細であるので、Ms点が低く、オーステナイト組織は室温まで安定となる。しかし、逆変態温度が上昇するとオーステナイト粒径は大きくなり、それに伴いMs点は上昇する。
従い、高温で形成された逆変態オーステナイトは加熱後の冷却中にマルテンサイト変態を起こし易くなり、室温まで弱磁性のオーステナイト組織を残すことが難しくなる。
具体的には、本発明の複合磁性部材用素材の逆変態は、500℃を超える温度で起こり、また800℃を超える温度で形成されたオーステナイトは、結晶粒が大きく不安定である。それ故、室温までオーステナイト組織を残し、弱磁性化するための加熱は、500℃を超えて800℃以下の温度範囲で行うと良い。但し、弱磁性化のための最適な加熱温度は、該素材の組成により若干、変化するので、素材の組成により適宜、選択する必要がある。故に、加熱温度の範囲は、500℃を超え800℃以下の範囲の温度域と規定した。
【0018】
また部分加熱の方法としては、高周波加熱、レーザ加熱、誘導加熱、抵抗加熱等の公知の方法や設備を用いても良いし、また本発明者らが特開2002−8916号や特開2002−8837号に開示するように、加熱体を弱磁性化したい箇所に押し当てる方式でも良い。
本発明の複合磁性部材は、従来部材よりも低温での加熱処理により弱磁性部を形成できるという特徴があるので、例えば、モータ回転子として使用する場合でも弱磁性部を形成し易く、しかも部分的な加熱処理による部材の変形も少ないという効果がある。そのため、本発明の複合磁性部材を用いて成るモータは、回転子を積層した際の占積率を高くすることができ、高効率特性を有するモータとなる。
【0019】
【実施例】
(実施例1)
本発明では、複合磁性部材用素材の化学組成と磁気特性、相の関係が重要である。更には、複合磁性部材用素材を加熱処理した際の磁気特性と相が重要である。これらの関係を明確にするために、素材として7種類の組成の材料を真空溶解により溶製した。溶製した材料の化学組成(質量%)を表1に示す。
【0020】
【表1】

Figure 2004091842
【0021】
表1の各材料について説明する。
No.1〜4の組成は本発明の規定範囲内であり、No.5〜7の組成は本発明の規定範囲外である。No.5とNo.6は、Ni量が各々19.8%、28.0%と本発明の規定範囲から外れている。またNo.7は、本発明者が特開2000−104142号に開示する複合磁性部材の組成に相当する。
従って、No.1〜4の材料で作製される複合磁性部材用素材は、本発明の素材であり、これらの素材で作製される複合磁性部材は、本発明の部材となる。またNo.5〜7の材料で作製される複合磁性部材用素材は、比較例の素材であり、これらの素材で作製される複合磁性部材は、比較例の部材となる。
【0022】
これらの材料を1100℃に加熱して熱間鍛造と熱間圧延を行い、厚さ5mm、幅50mmの板材を得た。これらの内、Fe−Ni系を基本組成とするNo.1〜No.6の各材料は、大気炉中900℃で1時間焼鈍後、炉冷した。熱間加工、焼鈍時の酸化スケールを除去した後、冷間圧延を行い、厚さ1mmの板材とし、この冷間圧延材を複合磁性部材用素材とした。
また、Fe−Cr−C系を基本組成とするNo.7の材料は、焼鈍処理として大気炉中860℃で4h保持後、20℃/hの冷却速度で650℃まで冷却後、炉冷した。No.7の材料もNo.1〜No.6の材料と同ように、熱間加工、焼鈍時の酸化スケールを除去した後、冷間圧延を行い、厚さ1mmの板材とした。
この板材に対し、焼鈍処理としてAr雰囲気炉中700℃で1h保持後、炉冷し、この焼鈍材を複合磁性部材用素材とした。
【0023】
これら7種の複合磁性部材用素材から、磁性測定用として厚さ1mm×幅4mm×長さ6mmの試験片、及び相同定、組織観察等の調査用として厚さ1mm×幅10mm×長さ15mmの試験片をそれぞれ採取した。
これらの試験片に対し、500℃から1100℃の各温度で4分間、加熱保持後、空冷する熱処理を行い、試験片採取ままの状態と熱処理後の状態で磁気特性と相同定の調査を行った。磁気特性は、振動型磁力計により1(T)の外部磁場を印加した際の自発磁化量J(T)を測定した。各試料の自発磁化量J(T)の値を一覧にして、表2に示す。
【0024】
【表2】
Figure 2004091842
【0025】
表2から、本発明の複合磁性部材用素材であるNo.1〜4は、素材状態で自発磁化量Jが1.3T以上の特性を有しており、また500℃を超えて800℃以下の範囲のいずれかの温度での熱処理により、自発磁化量Jは0.8T以下に低下している。
一方、比較例の素材であるNo.5は、素材状態での自発磁化量は、1.3T以上の特性となっているが、500℃を超えて800℃以下のいずれの温度で熱処理しても、自発磁化量Jは0.8T以下に弱磁性化しない。
また、比較例の複合磁性部材用素材であるNo.6は、500℃を超えて800℃以下の温度での熱処理により、自発磁化量Jは0.8T以下に弱磁性化するが、素材状態で1.3T以上の特性となっていない。
【0026】
更に、比較例の複合磁性部材用素材であり、従来部材の素材であるNo.7は、素材状態での自発磁化量は、1.3T以上の特性となっているが、500℃を超えて800℃以下のいずれの温度で熱処理しても、自発磁化量Jは0.8T以下に弱磁性化せず、自発磁化量Jを0.8T以下まで弱磁性化させるためには1000℃を超える高温加熱が必要であることが分かる。
また本実施例より、本発明の複合磁性部材用素材に対し、部分的な加熱処理を施して弱磁性部を形成する際には、500℃を超えて800℃以下のいずれかの温度を選択すれば良く、素材の組成に応じて最適温度を選択すれば良いことが分かる。
【0027】
各試料の相は、エックス線回折装置により2θ=30°〜120°の範囲で調査し、同定した。調査例として、本発明の複合磁性部材用素材である素材No.2の(a)冷間圧延まま、(b)550℃×4分 空冷後の各状態での相同定結果を図1に示す。
図1(a)に検出されているピークは、すべてマルテンサイト相のピークであり、低角度側から各々、マルテンサイト相の(110)、(200)、(211)のピークである。また、図1(b)には、上述のマルテンサイト相のピークとともにオーステナイト相のピークが検出されており、低角度側から、各々、オーステナイト相の(111)、(200)、(220)、(311)のピークが検出されている。
なお、このエックス線回折より測定される図1(b)のオーステナイト量は72%であった。
図1から、本発明の複合磁性部材用素材である素材No.2において、素材の相は、冷間圧延状態でマルテンサイトとなり、550℃での加熱処理によりオーステナイトを主体とする組織となることが分かる。この結果は、表2に記載した磁気特性の測定結果と整合する。
【0028】
(実施例2)
次に、本発明では弱磁性化のための部分的な加熱を施した際の部材の変形量が重要である。本発明の複合磁性部材用素材である素材No.2(板厚1mm)を900℃で焼鈍した後、板厚0.35mmまで圧延し、この圧延材をプレス打抜きして図2に示す形状のモータ回転子用部品を作製した。また、比較例の複合磁性部材用素材である素材No.7(板厚1mm)を板厚0.35mmまで圧延し、700℃で焼鈍した後、この焼鈍材をプレス打抜きして図2に示す形状のモータ回転子用部品を作製した。図中(1)はスリット部であり、図中(2)は中空部である。
この部品に対し、図中(3)に示す斜線部(8箇所)を高周波加熱処理により弱磁性化し、強磁性体(4)中に弱磁性部(3)を具備する複合磁性部材とした。なお、高周波加熱時の加熱温度は、本発明の複合磁性部材用素材No.2において約550℃、比較例の複合磁性部材用素材No.7において約1150℃となるように設定した。
【0029】
次に、図2の如く作製した2つの複合磁性部材の平坦度を調べるため、3次元形状測定器を用いて、それぞれの部材の反り量を測定した。
本発明の複合磁性部材(素材No.2)における反り量は5μmと小さいのに対し、比較例の複合磁性部材(素材No.7)の反り量は52μmであった。
このように、本発明の複合磁性部材の変形量は小さいので、図2のような形状の部材を積層してモータ回転子とする際、高い占積率が得られ、高効率なモータ特性が得られ易くなる。
【0030】
本実施例より、複合磁性部材用素材としてFe−Ni系を基本組成とする合金を選択し、更に素材の化学組成を本発明の規定範囲に調整することにより、従来部材の素材よりも低温での加熱処理により弱磁性化する素材が得られることが分かる。
従って、本発明の複合磁性部材を製造する際、部分的な弱磁性部を形成するための熱処理温度は、従来部材よりも低く、熱応力等による部材の変形量が少なくなり、より製造し易い部材となる。
更には、本発明部材を用いて成るモータは、占積率が高く高効率特性を有するモータとなり、変形量も少ないため特に積層して使用するようなモータとして好適である。
【0031】
【発明の効果】
本発明によると、単一の化学組成で強磁性部と弱磁性部を有する複合磁性部材用素材において、従来部材の素材より低い加熱温度で弱磁性化する素材を得ることができ、部分的な弱磁性化熱処理に伴う複合磁性部材の変形量を小さくすることができる。本発明は複合磁性部材を、例えばモータ回転子に適用するに当たって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】本発明の複合磁性部材用素材、及び本発明の複合磁性部材用素材を550℃に加熱冷却後のエックス線回折図形である。
【図2】モータ回転子の模式図である。
【符号の説明】
1.スリット部、 2.中空部、 3.弱磁性部、 4.強磁性体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention can be applied to, for example, a rotor of a reluctance motor. Among composite magnetic members having a ferromagnetic portion and a weak magnetic portion in a single material, the weak magnetic portion is formed by heat treatment at a lower temperature than the material of the conventional member. The present invention relates to a material for a composite magnetic member capable of forming the above, a composite magnetic member using the material, a method for manufacturing the member, and a motor using the member.
[0002]
[Prior art]
Conventionally, in a rotor of a reluctance motor, a nonmagnetic portion is provided in a part of a ferromagnetic material (generally, a soft magnetic material typified by silicon steel) to form a direction in which magnetic flux does not easily pass, thereby providing a magnetoresistance effect. The structure used is used. As a method of providing a non-magnetic portion in a part of a ferromagnetic material, a method has been performed in which a part of a ferromagnetic steel sheet is punched by a press, and a gap formed by the press is used as a non-magnetic portion.
In contrast to the above-described method, the inventor uses a single material, and performs a partial heat treatment on the single material to provide a composite magnetic member having a ferromagnetic portion and a weak magnetic portion (or a non-magnetic portion). Has been proposed. The use of such a composite magnetic member made of a single material is superior to a part obtained by stamping a part of a ferromagnetic material by a press in terms of mechanical strength and prevention of damage due to vibration and the like. Also, when the composite magnetic member and the press punching are used together, the space formed by the press punching can be reduced as much as possible, so that a component having excellent mechanical strength can be obtained.
[0003]
For example, the present inventor disclosed in Japanese Patent Application Laid-Open No. 2000-104142 that the number of carbides having a particle size of 0.1 μm or more is made of a Fe—Cr—C alloy steel containing 0.1 to 5.0% by mass of Al. A ferromagnetic part having a specific maximum magnetic permeability of 400 or more composed of a (ferrite + carbide) structure in which the number of carbides having a particle diameter of 1.0 μm or more is adjusted to 15% or more with respect to the number of carbides in an area of 100 μm 2. And a composite magnetic member comprising a weak magnetic portion having a relative magnetic permeability of 2 or less.
In addition, the inventor of the present invention disclosed in Japanese Patent Application Laid-Open No. 2000-104142 that, as a preferable composition range of the composite magnetic member, C: 0.30 to 0.80%, Cr: 12.0 to 25.0%, Al: 0.1 to 5.0%, Ni: 0.1 to 4.0%, N: 0.01 to 0.10%, 2.0% or less in total of one or two of Si and Mn , The remainder substantially consisting of Fe.
[0004]
The composite magnetic member proposed in Japanese Patent Application Laid-Open No. 2000-104142 is a single material that utilizes a phase transformation of a steel material to realize a ferromagnetic material mainly composed of (ferrite + carbide) and a weak magnetic material mainly composed of austenite structure. It focuses on a Cr-C based alloy. This proposal proposes that a single material achieves both the contradictory magnetic properties of ferromagnetism and weak magnetism, and further adjusts the content and texture of additional elements to provide a soft magnetic material with a specific maximum magnetic permeability of 400 or more in the ferromagnetic portion. It is excellent in that a composite magnetic member that satisfies the characteristics and the magnetic characteristics of the specific magnetic permeability of 2 or less in the weak magnetic portion has been found.
[0005]
[Problems to be solved by the invention]
In the composite magnetic member described in JP-A-2000-104142, the Cr content is set to 12.0 to 25.0% as a preferable composition range.
In order to ensure the corrosion resistance of the composite magnetic member, to lower the Ms point of the austenitic structure of the weak magnetic portion, and to stabilize the weak magnetic characteristics, a high Cr composition of 12.0 to 25.0% is used. Although preferred, the problem is that the temperature of the austenite single phase rises due to the high Cr content, and the temperature required for the partial heat treatment for forming the weak magnetic portion becomes higher than 1000 ° C. There is.
[0006]
As described above, when partial heating and holding is performed at a high temperature exceeding 1000 ° C. to form a weak magnetic portion, there is a problem that the composite magnetic member is easily deformed due to thermal stress.
In order to reduce this problem, it is necessary to develop a material that becomes weaker at lower temperatures.
The object of the present invention is a composite magnetic member material having a ferromagnetic portion and a weak magnetic portion in a single composition, a composite magnetic member material that is weakly magnetized by heat treatment at a lower temperature than the conventional member material, It is another object of the present invention to provide a composite magnetic member using the material, a method for manufacturing the member, and a motor using the member.
[0007]
[Means for Solving the Problems]
To form a weak magnetic austenite structure by heat treatment at a low temperature, it is necessary to A C 1 point, the transformation point A C 3 points, etc. to select a low alloy.
The present inventor has focused on Fe—Ni alloys as such alloys, and has described the relationship between the composition of an alloy containing Fe—Ni as a basic component, heat treatment conditions (heating temperature) and magnetic properties, phases, and metal structures. As a result of a detailed investigation, the present invention has been reached.
[0008]
That is, the present invention is a material for a composite magnetic member having a single composition and having a ferromagnetic portion and a weak magnetic portion, wherein C: 0.10% or less by mass%, Si: 0.1 to 2.0%, Mn: 0.1-4.0%, Ni: more than 20.0 and less than 28.0%, and the balance is substantially composed of Fe, has a martensite structure, and is subjected to an external magnetic field of 1 T (tesla). Is a material for a composite magnetic member having a spontaneous magnetization J of 1.3 T or more.
Preferably, in addition to the above chemical composition, a material for a composite magnetic member containing one or two types of Cr: 0.1 to 5.0% and Mo: 0.1 to 5.0% by mass%. is there.
[0009]
The present invention also provides a composite magnetic member having the chemical composition described as the material for a composite magnetic member described above, wherein the composite magnetic member has a martensitic structure and a spontaneous magnetization under an external magnetic field of 1T. A composite magnetic member including a ferromagnetic portion having J of 1.3 T or more and a weak magnetic portion having a structure mainly composed of austenite and having a spontaneous magnetization J of 0.8 T or less under an external magnetic field of 1 T.
In addition, the present invention provides a method for performing spontaneous magnetization under an external magnetic field of 1T by partially performing a heat treatment in a temperature range of more than 500 ° C. to 800 ° C. or less using the above-described material for a composite magnetic member. This is a method for manufacturing a composite magnetic member in which a weak magnetic portion having a spontaneous magnetization J of 0.8 T or less under an external magnetic field of 1 T is formed in a ferromagnetic material having a quantity J of 1.3 T or more.
The present invention is also a motor using the above-described composite magnetic member.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, an important feature of the present invention is that, as an alloy capable of forming a weak magnetic austenitic structure by heat treatment at a low temperature as a material for a composite magnetic member, attention has been paid to an alloy having a basic composition of Fe-Ni. It is.
Hereinafter, the reasons for defining the present invention will be described.
First, the reason for defining the chemical composition of the material for the composite magnetic member will be described.
C: 0.10% or less C is an element for stabilizing austenite and is effective in forming a weak magnetic portion. However, in the Fe—Ni-based composite magnetic member material of the present invention, when the C content exceeds 0.10%, the spontaneous magnetization of the material, and thus the ferromagnetic portion of the composite magnetic member formed using the material, is reduced. Since the amount of spontaneous magnetization is reduced, the amount is specified to be 0.10% or less.
[0011]
Si: 0.1 to 2.0%
Si is an element that acts as a deoxidizing element. However, if it is less than 0.1%, the deoxidizing effect is small, and if it exceeds 2.0%, on the other hand, the spontaneous magnetization of the material and, consequently, the spontaneous magnetization of the ferromagnetic portion of the composite magnetic member using the material are reduced. Therefore, it was specified in the above range.
Mn: 0.1-4.0%
Mn has an effect as a deoxidizing element and is an element effective for forming a weak magnetic portion as an austenite forming element. However, if it is less than 0.10%, the effect is small, and if it exceeds 4.0%, on the other hand, the spontaneous magnetization of the material, and eventually the spontaneous magnetization of the ferromagnetic portion of the composite magnetic member using the material, is reduced. It was specified in the above range. A more desirable range of Mn is 0.3 to 2.0%.
[0012]
Ni: more than 20.0 and less than 28.0% Ni is necessary as an austenite-forming element to weaken the material for the composite magnetic member by reverse transformation and to form a weak magnetic portion of the composite magnetic member. It is the most important element of the present invention.
The reason that the range of the Ni content is more than 20.0% and less than 28.0% is that the Ni content is 20.0% or less because the Ms point (the temperature at which austenite starts transforming to martensite) is high. It is difficult to stably maintain the austenite structure formed by the reverse transformation up to room temperature, and the austenite structure becomes stable in the range of more than 28.0%, but the spontaneous magnetization of the material and, consequently, the composite magnetism using this material Since the amount of spontaneous magnetization of the ferromagnetic portion of the member is reduced, the above range is specified. A more desirable range of the Ni content is 23.0 to 27.0%.
[0013]
Next, the reason why one or two types of Cr: 0.10 to 5.0% and Mo: 0.10 to 5.0% are included as preferable additive elements will be described.
These elements are both ferrite-forming elements, but once solid-solved in austenite, the transformation from austenite structure to martensite structure is delayed, and as a result, the Ms point is lowered and the austenite structure is stabilized. effective. This effect can be obtained both when Cr and Mo are individually added, and when combined.
However, if the content is less than 0.10%, the effect is small. On the other hand, if the content is more than 5.0%, the austenite structure becomes stable, but the spontaneous magnetization of the material, and the ferromagnetic property of the composite magnetic member using the material. Since the amount of spontaneous magnetization of the portion is reduced, the above range is specified. More preferably, one or two of Cr: 0.50 to 3.0% and Mo: 0.50 to 3.0% are contained.
In the material for a composite magnetic member of the present invention, the balance is substantially Fe, but P, S, N, O, and the like as unavoidable impurities are naturally contained. Each of these unavoidable impurities may be contained in a range of 0.1% or less as a range that does not particularly affect the magnetic properties of the material.
[0014]
Next, the reasons for defining the organization in the present invention will be described.
The structure of the material for a composite magnetic member of the present invention, and thus the structure of the ferromagnetic portion of the composite magnetic member, was made to be a martensite structure in order to obtain ferromagnetic properties in the material of the present invention having a basic composition of Fe-Ni. This is because the spontaneous magnetization J under an external magnetic field of 1 T is realized to achieve a characteristic of 1.3 T or more.
In order to obtain a martensite structure with the material for a composite magnetic member of the present invention, the material is kept in a cold-worked state or subjected to strain relief annealing at a temperature of 500 ° C. or less at which reverse transformation starts to occur after cold working. It should just be in the state where it was given.
The structure of the weak magnetic portion is mainly composed of austenite in order to reduce the amount of spontaneous magnetization and to realize characteristics in which the amount of spontaneous magnetization J under an external magnetic field of 1 T is 0.8 T or less. . The austenite-based structure of the present invention refers to the (110), (200), and (211) martensite phases and the (111) austenite phase detected when a weak magnetic portion is analyzed by X-ray diffraction. ), (200), (220), (311) refers to a structure in which the austenite phase accounts for 50% or more of the total peak integrated intensity of each surface. If the austenite amount is 50% or more, the characteristics of the weak magnetic portion of the present invention are not deviated.
[0015]
Next, the reason why the spontaneous magnetization J under an external magnetic field of 1 T is specified to be 1.3 T or more for the magnetic properties of the material for the composite magnetic member and the magnetic properties of the ferromagnetic portion of the composite magnetic member, and The reason why the spontaneous magnetization J under the external magnetic field of 1T is specified to be 0.8T or less for the magnetic characteristics of the weak magnetic portion of Example 1 will be described.
For example, when the composite magnetic member of the present invention is applied to a rotor of a reluctance motor, a high external magnetic field of about 1T is applied to the rotor. Therefore, magnetic properties such as relative permeability and coercive force in a relatively low magnetic field do not cause much problems as magnetic properties required for the ferromagnetic part and the weak magnetic part. Becomes a problem.
The magnetic properties of the material for a composite magnetic member of the present invention, and thus the magnetic properties of the ferromagnetic portion of the composite magnetic member, are such that the spontaneous magnetization J under an external magnetic field of 1 T is 1.3 T or more. This is because the characteristics are at least required as a ferromagnetic portion. Preferably, it is good to be 1.5T or more.
[0016]
Further, for example, the purpose of forming the weak magnetic portion in the rotor of the reluctance motor is not to completely block the magnetic flux but to form a direction in which the magnetic flux does not easily pass and to use the magnetoresistance effect. In many cases, the magnetic properties of the magnetic portion need not be completely non-magnetic, as long as the difference in the amount of magnetization is clearly different from that of the ferromagnetic portion.
For the reasons described above, the magnetic properties when the material is weakly magnetized, and thus the magnetic properties of the weak magnetic portion of the composite magnetic member, are defined such that the spontaneous magnetization J under an external magnetic field of 1T is 0.8T or less. Of course, the magnetic characteristics of the weak magnetic portion may be at the level of a completely non-magnetic material.
[0017]
Next, as a method of manufacturing the composite magnetic member of the present invention, the reason why the partial heating temperature for forming the weak magnetic portion is specified in a temperature range of more than 500 ° C. and 800 ° C. or less will be described. The martensitic structure formed by cold working becomes an austenite structure when heated above the reverse transformation temperature, but since the austenite grains formed just above the reverse transformation temperature are fine, the Ms point is low and the austenite structure is low. It is stable up to room temperature. However, when the reverse transformation temperature increases, the austenite grain size increases, and the Ms point increases accordingly.
Therefore, the reverse transformed austenite formed at a high temperature is apt to undergo martensitic transformation during cooling after heating, and it is difficult to leave a weak magnetic austenite structure up to room temperature.
Specifically, the reverse transformation of the composite magnetic member material of the present invention occurs at a temperature exceeding 500 ° C., and austenite formed at a temperature exceeding 800 ° C. has large and unstable crystal grains. Therefore, the heating for leaving the austenite structure to room temperature and weakening the magnetism is preferably performed in a temperature range of more than 500 ° C. and 800 ° C. or less. However, the optimum heating temperature for weakening the magnetism slightly varies depending on the composition of the material, and therefore it is necessary to appropriately select the heating temperature depending on the composition of the material. Therefore, the range of the heating temperature is defined as a temperature range of more than 500 ° C. and 800 ° C. or less.
[0018]
As the method of partial heating, known methods and equipment such as high-frequency heating, laser heating, induction heating, and resistance heating may be used, and the present inventors have disclosed JP-A-2002-8916 and JP-A-2002-916. As disclosed in Japanese Patent No. 8837, a method in which a heating element is pressed against a portion where weak magnetization is desired may be used.
Since the composite magnetic member of the present invention has a feature that a weak magnetic portion can be formed by heat treatment at a lower temperature than a conventional member, it is easy to form a weak magnetic portion even when used as a motor rotor, for example. There is an effect that the deformation of the member due to the typical heat treatment is small. Therefore, the motor using the composite magnetic member of the present invention can increase the space factor when the rotors are stacked, and has high efficiency.
[0019]
【Example】
(Example 1)
In the present invention, the relationship between the chemical composition, the magnetic properties, and the phase of the material for the composite magnetic member is important. Further, the magnetic properties and phase when the material for the composite magnetic member is heat-treated are important. In order to clarify these relationships, materials having seven types of compositions were melted by vacuum melting. Table 1 shows the chemical composition (% by mass) of the smelted materials.
[0020]
[Table 1]
Figure 2004091842
[0021]
Each material in Table 1 will be described.
No. The compositions of Nos. 1 to 4 are within the specified range of the present invention. Compositions 5 to 7 are outside the specified range of the present invention. No. 5 and No. 5 In No. 6, the Ni content is 19.8% and 28.0%, respectively, which are out of the specified range of the present invention. No. 7 corresponds to the composition of the composite magnetic member disclosed by the present inventor in JP-A-2000-104142.
Therefore, No. The materials for composite magnetic members made of the materials 1 to 4 are the materials of the present invention, and the composite magnetic members made of these materials are the members of the present invention. No. The materials for composite magnetic members made of the materials 5 to 7 are materials of comparative examples, and the composite magnetic members made of these materials are members of comparative examples.
[0022]
These materials were heated to 1100 ° C. and subjected to hot forging and hot rolling to obtain a plate having a thickness of 5 mm and a width of 50 mm. Among these, No. 1 having an Fe-Ni-based basic composition. 1 to No. Each material of No. 6 was annealed in an atmospheric furnace at 900 ° C. for 1 hour, and then cooled in the furnace. After removing the oxide scale at the time of hot working and annealing, cold rolling was performed to obtain a sheet material having a thickness of 1 mm, and this cold-rolled material was used as a material for a composite magnetic member.
In addition, No. 1 having a basic composition of Fe—Cr—C system. The material No. 7 was kept in an atmospheric furnace at 860 ° C. for 4 hours as an annealing treatment, cooled to 650 ° C. at a cooling rate of 20 ° C./h, and then cooled in the furnace. No. No. 7 is also No. 7 material. 1 to No. As in the case of the material No. 6, after removing the oxide scale at the time of hot working and annealing, cold rolling was performed to obtain a sheet material having a thickness of 1 mm.
This sheet material was held in an Ar atmosphere furnace at 700 ° C. for 1 hour as an annealing treatment, and then cooled in the furnace, and this annealed material was used as a material for a composite magnetic member.
[0023]
From these seven types of composite magnetic member materials, a test piece having a thickness of 1 mm x 4 mm x 6 mm in length for measuring magnetism and a thickness of 1 mm x 10 mm in width x 15 mm in length for phase identification, structure observation, etc. Of test pieces were collected.
These specimens were heated at 500 ° C to 1100 ° C for 4 minutes, and then heat-treated by air cooling, and the magnetic properties and phase identification were investigated as-sampled and after heat treatment. Was. The magnetic properties were measured by a spontaneous magnetization J (T) when an external magnetic field of 1 (T) was applied by a vibrating magnetometer. Table 2 lists the values of the spontaneous magnetization J (T) of each sample.
[0024]
[Table 2]
Figure 2004091842
[0025]
From Table 2, it can be seen that the composite magnetic member material of the present invention, No. 1 Nos. 1-4 have the property that the spontaneous magnetization J is 1.3 T or more in the material state, and the spontaneous magnetization J is obtained by heat treatment at any temperature in the range of more than 500 ° C and 800 ° C or less. Has decreased to 0.8T or less.
On the other hand, the material of the comparative example No. No. 5 has a characteristic that the spontaneous magnetization in the material state is 1.3 T or more, but the spontaneous magnetization J is 0.8 T regardless of the heat treatment at any temperature from 500 ° C. to 800 ° C. It does not weaken below.
In addition, the material for the composite magnetic member of Comparative Example No. 1 In No. 6, the spontaneous magnetization J is weakened to 0.8 T or less by heat treatment at a temperature of more than 500 ° C. and 800 ° C. or less, but does not have a characteristic of 1.3 T or more in the raw material state.
[0026]
Further, it is a material for a composite magnetic member of a comparative example, and is a material of a conventional member, No. No. 7 has a characteristic that the spontaneous magnetization in the material state is 1.3 T or more, but the spontaneous magnetization J is 0.8 T even when heat-treated at any temperature from 500 ° C. to 800 ° C. It can be seen that high-temperature heating exceeding 1000 ° C. is necessary to weaken the spontaneous magnetization J to 0.8 T or less without weakening below.
Further, from this example, when performing a partial heat treatment on the material for a composite magnetic member of the present invention to form a weak magnetic portion, any temperature of more than 500 ° C. and 800 ° C. or less is selected. It can be seen that the optimum temperature should be selected according to the composition of the material.
[0027]
The phase of each sample was investigated and identified by an X-ray diffractometer in the range of 2θ = 30 ° to 120 °. As an investigation example, as a material No. which is a material for a composite magnetic member of the present invention. FIG. 1 shows the results of phase identification in each state after (a) cold rolling and (b) air cooling at 550 ° C. for 4 minutes.
The peaks detected in FIG. 1A are all the peaks of the martensite phase, and are (110), (200), and (211) peaks of the martensite phase from the low angle side, respectively. Further, in FIG. 1 (b), the peak of the austenite phase is detected together with the peak of the martensite phase described above, and from the low angle side, (111), (200), (220), The peak of (311) is detected.
The amount of austenite in FIG. 1B measured by the X-ray diffraction was 72%.
From FIG. 1, it can be seen that the material No., which is the material for the composite magnetic member of the present invention. In No. 2, it can be seen that the phase of the raw material becomes martensite in a cold-rolled state and becomes a structure mainly composed of austenite by heat treatment at 550 ° C. This result is consistent with the measurement results of the magnetic properties described in Table 2.
[0028]
(Example 2)
Next, in the present invention, the amount of deformation of the member when performing partial heating for weakening the magnetism is important. Material No. which is a material for a composite magnetic member of the present invention. 2 was annealed at 900 ° C., then rolled to a thickness of 0.35 mm, and the rolled material was press-punched to produce a motor rotor part having the shape shown in FIG. In addition, the material No. which is the material for the composite magnetic member of the comparative example. 7 (1 mm in thickness) was rolled to a thickness of 0.35 mm, and annealed at 700 ° C., and then this annealed material was stamped out to produce a motor rotor part having the shape shown in FIG. (1) in the figure is a slit portion, and (2) in the diagram is a hollow portion.
The hatched portion (8 locations) shown in (3) in the figure was weakened by high-frequency heating to obtain a composite magnetic member having a weak magnetic portion (3) in a ferromagnetic material (4). The heating temperature at the time of the high frequency heating depends on the material No. for composite magnetic member of the present invention. 2, the material No. 2 for the composite magnetic member of the comparative example was about 550 ° C. 7 was set to about 1150 ° C.
[0029]
Next, in order to examine the flatness of the two composite magnetic members manufactured as shown in FIG. 2, the warpage of each member was measured using a three-dimensional shape measuring instrument.
The warp amount of the composite magnetic member (material No. 2) of the present invention was as small as 5 μm, whereas the warp amount of the composite magnetic member (material No. 7) of the comparative example was 52 μm.
As described above, since the amount of deformation of the composite magnetic member of the present invention is small, a high space factor can be obtained when the members having the shape shown in FIG. It will be easier to obtain.
[0030]
From this example, by selecting an alloy having a basic composition of Fe-Ni as a material for a composite magnetic member, and further adjusting the chemical composition of the material within the range specified in the present invention, at a lower temperature than the material of the conventional member. It can be seen that a material that becomes weak magnetic can be obtained by the heat treatment.
Therefore, when manufacturing the composite magnetic member of the present invention, the heat treatment temperature for forming the partially weak magnetic portion is lower than that of the conventional member, the amount of deformation of the member due to thermal stress or the like is reduced, and the manufacturing is easier. It becomes a member.
Further, the motor using the member of the present invention is a motor having a high space factor and a high efficiency characteristic, and has a small amount of deformation, so that it is particularly suitable as a motor to be used in a stacked state.
[0031]
【The invention's effect】
According to the present invention, in a composite magnetic member material having a ferromagnetic portion and a weak magnetic portion with a single chemical composition, a material that is weakened at a lower heating temperature than a material of a conventional member can be obtained, and a partial material can be obtained. The amount of deformation of the composite magnetic member due to the weak magnetic heat treatment can be reduced. The present invention is an indispensable technique in applying a composite magnetic member to, for example, a motor rotor.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern after heating and cooling a material for a composite magnetic member of the present invention and a material for a composite magnetic member of the present invention to 550 ° C.
FIG. 2 is a schematic diagram of a motor rotor.
[Explanation of symbols]
1. 1. slit part; Hollow part, 3. 3. weak magnetic part; Ferromagnetic material

Claims (5)

単一組成で強磁性部と弱磁性部を具備する複合磁性部材の素材であって、質量%でC:0.10%以下、Si:0.1〜2.0%、Mn:0.1〜4.0%、Ni:20.0を超えて28.0%未満、残部が実質的にFeの組成で成り、マルテンサイト組織で成り、1T(テスラ)の外部磁場下での自発磁化量Jが1.3T以上であることを特徴とする複合磁性部材用素材。It is a material of a composite magnetic member having a ferromagnetic part and a weak magnetic part in a single composition, wherein C: 0.10% or less, Si: 0.1 to 2.0%, Mn: 0.1 by mass%. 44.0%, Ni: more than 20.0 and less than 28.0%, with the balance being substantially composed of Fe, having a martensitic structure, and having a spontaneous magnetization under an external magnetic field of 1 T (tesla). A material for a composite magnetic member, wherein J is not less than 1.3T. 請求項1に記載の化学組成に加えて、質量%でCr:0.1〜5.0%、Mo:0.1〜5.0%の1種または2種を含有することを特徴とする複合磁性部材用素材。In addition to the chemical composition according to claim 1, one or two types of Cr: 0.1 to 5.0% and Mo: 0.1 to 5.0% by mass% are contained. Material for composite magnetic members. 請求項1または2に記載の化学組成を有した複合磁性部材であって、該複合磁性部材は、マルテンサイト組織で成り、且つ1Tの外部磁場下での自発磁化量Jが1.3T以上の強磁性部と、オーステナイトを主体とする組織で1Tの外部磁場下での自発磁化量Jが0.8T以下の弱磁性部とを具備することを特徴とする複合磁性部材。A composite magnetic member having the chemical composition according to claim 1 or 2, wherein the composite magnetic member has a martensitic structure and a spontaneous magnetization J under an external magnetic field of 1 T of 1.3 T or more. A composite magnetic member comprising: a ferromagnetic portion; and a weak magnetic portion having a structure mainly composed of austenite and having a spontaneous magnetization J of 0.8 T or less under an external magnetic field of 1 T. 請求項1または2に記載の複合磁性部材用素材を用いて、部分的に500℃を超えて800℃以下の範囲の温度域での加熱処理を行うことにより、1Tの外部磁場下での自発磁化量Jが1.3T以上の強磁性体中に、1Tの外部磁場下での自発磁化量Jが0.8T以下の弱磁性部を形成することを特徴とする複合磁性部材の製造方法。A spontaneous treatment under an external magnetic field of 1T by partially performing a heat treatment in a temperature range of more than 500 ° C. and 800 ° C. or less using the material for a composite magnetic member according to claim 1 or 2. A method of manufacturing a composite magnetic member, wherein a weak magnetic portion having a spontaneous magnetization J of 0.8 T or less under an external magnetic field of 1 T is formed in a ferromagnetic material having a magnetization J of 1.3 T or more. 請求項3に記載の複合磁性部材を用いて成ることを特徴とするモータ。A motor comprising the composite magnetic member according to claim 3.
JP2002253420A 2002-08-30 2002-08-30 Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member Pending JP2004091842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253420A JP2004091842A (en) 2002-08-30 2002-08-30 Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253420A JP2004091842A (en) 2002-08-30 2002-08-30 Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member

Publications (1)

Publication Number Publication Date
JP2004091842A true JP2004091842A (en) 2004-03-25

Family

ID=32059421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253420A Pending JP2004091842A (en) 2002-08-30 2002-08-30 Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member

Country Status (1)

Country Link
JP (1) JP2004091842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017517B4 (en) * 2005-04-15 2007-03-08 Minebea Co., Ltd. Stator assembly for an electric machine and method of manufacturing a stator assembly
JP2008031553A (en) * 2006-06-29 2008-02-14 Hitachi Metals Ltd Method for manufacturing semi-hard magnetic material, and semi-hard magnetic material
WO2009028522A1 (en) * 2007-08-29 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steel having non-magnetic portion, its producing method, and revolving electric core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017517B4 (en) * 2005-04-15 2007-03-08 Minebea Co., Ltd. Stator assembly for an electric machine and method of manufacturing a stator assembly
JP2008031553A (en) * 2006-06-29 2008-02-14 Hitachi Metals Ltd Method for manufacturing semi-hard magnetic material, and semi-hard magnetic material
WO2009028522A1 (en) * 2007-08-29 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steel having non-magnetic portion, its producing method, and revolving electric core
JP2009219341A (en) * 2007-08-29 2009-09-24 Toyota Motor Corp Steel member having nonmagnetic portion, method for manufacturing same, and rotating armature core
JP4626683B2 (en) * 2007-08-29 2011-02-09 トヨタ自動車株式会社 Steel material having nonmagnetic portion, method for manufacturing the same, and rotating electric machine core
KR101095233B1 (en) 2007-08-29 2011-12-20 도요타지도샤가부시키가이샤 Steel having non-magnetic portion, its producing method, and revolving electric core

Similar Documents

Publication Publication Date Title
RU2724810C2 (en) Sheet or strip of feco alloy, fesi alloy or fe, method of their manufacture, transformer magnetic core made from said sheet or strip, and transformer including such core
US6656419B2 (en) Fe-Ni based permalloy and method of producing the same and cast slab
CN111418035B (en) High permeability soft magnetic alloy and method for manufacturing high permeability soft magnetic alloy
EP3572545B1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
US20090039714A1 (en) Magnetostrictive FeGa Alloys
US5821000A (en) Composite magnetic member and process for producing the member
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
EP3239309B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
CN107794458A (en) Exempt from magnetized electromagnetic pure iron and its manufacture method with high warping resistance characteristic
JP2005520931A (en) Iron-based amorphous alloy with linear BH loop
JP2004091842A (en) Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member
JP2002180215A (en) Composite magnetic member having excellent low temperature magnetic stability and its production method
JP2004143585A (en) Stock for composite magnetic member, composite magnetic member obtained by using the stock, method for producing the member, and motor obtained by using the member
JP2682144B2 (en) Method for manufacturing soft magnetic steel
JP5207514B2 (en) Hysteresis motor
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
CN114318112B (en) Soft magnetic ferrite stainless steel straight bar for engine oil pump and preparation method thereof
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JPH0699767B2 (en) Ni-Fe system high permeability magnetic alloy
JP2013224482A (en) Method for producing raw material for composite magnetic material and method for producing the composite magnetic material
JP4046257B2 (en) Composite magnetic member having excellent corrosion resistance and method for producing the same
JP6459078B2 (en) Fe-Mn-based constant elastic / insensitive magnetic alloy