JP2002180215A - Composite magnetic member having excellent low temperature magnetic stability and its production method - Google Patents

Composite magnetic member having excellent low temperature magnetic stability and its production method

Info

Publication number
JP2002180215A
JP2002180215A JP2000380356A JP2000380356A JP2002180215A JP 2002180215 A JP2002180215 A JP 2002180215A JP 2000380356 A JP2000380356 A JP 2000380356A JP 2000380356 A JP2000380356 A JP 2000380356A JP 2002180215 A JP2002180215 A JP 2002180215A
Authority
JP
Japan
Prior art keywords
magnetic
temperature
permeability
weak
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000380356A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000380356A priority Critical patent/JP2002180215A/en
Publication of JP2002180215A publication Critical patent/JP2002180215A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic member which has low temperature magnetic stability more excellent than that of the conventional member in composite magnetic members combining a ferromagnetic part and a weak magnetic part in single material, and its production method. SOLUTION: The composite magnetic member having low temperature magnetic stability has a composition containing, by mass, 0.30 to 0.80% C, 0.10 to 3.0% Si, 0.10 to 4.0% Mn, 10.0 to 25.0% Cr, 0.01 to 3.0% Al and 0.01 to 0.10% N, and containing, as selective elements, one or more kinds selected from Nb, Ti and Zr by 0.10 to 1.0% individually or in total, and the balance substantially Fe, and contains a ferromagnetic part having a structure essentially consisting of (ferrite+carbide), and in which the specific maximum permeability μr is >=400, and a feeble-magnetic part having a structure essentially consisting of austenite, and in which the specific maximum permeability μr is <=2, the average crystal grain size is <=100 μm, and the rate of the change of the specific maximum permeability in the temperature range from room temperature to -40 deg.C, (μr-40 deg.C-μrRT) /μrRT is <=1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えばモ−タ回転子
やアクチュエータ等の磁気回路部品として適用され得
る、単一材料中に強磁性部と弱磁性部を併せ持つ複合磁
性部材の内、低温磁気安定性に優れた複合磁性部材及び
低温磁気安定性に優れた複合磁性部材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic member having a ferromagnetic portion and a weak magnetic portion in a single material, which can be applied as a magnetic circuit component such as a motor rotor or an actuator. The present invention relates to a composite magnetic member having excellent stability and a method for producing a composite magnetic member having excellent low-temperature magnetic stability.

【0002】[0002]

【従来の技術】従来、モータの回転子やアクチュエータ
等の磁気回路部品においては、強磁性体(一般には軟質
磁性材料)の一部に非磁性部を設けた構造が用いられて
いる。強磁性体の一部に非磁性部分を設ける方法として
は強磁性部品と非磁性部品を、ろう付けやレーザ溶接に
よって固着、あるいは接合するか、強磁性体の一部をプ
レスで打ち抜き、プレスで出来た空隙を非磁性部とする
等の手法が行われてきた。これらの異種材を接合する手
法やプレス打ち抜きによる手法に対し、本発明者は単一
材を使用して、この単一材に冷間加工または熱処理によ
って強磁性部と非磁性部(あるいは弱磁性部)を設けた
複合磁性部材を提案している。このような単一材から成
る複合磁性部材を利用すると、気密性の確保、振動等に
よる破損防止等、信頼性の確保、機械的強度という点
で、強磁性体と非磁性体を接合した部品や強磁性体の一
部をプレスで打ち抜いた部品よりも優れたものとなる。
2. Description of the Related Art Conventionally, in a magnetic circuit component such as a rotor or an actuator of a motor, a structure in which a nonmagnetic portion is provided in a part of a ferromagnetic material (generally, a soft magnetic material) is used. As a method of providing a non-magnetic part in a part of the ferromagnetic material, the ferromagnetic component and the non-magnetic component are fixed or joined by brazing or laser welding, or a part of the ferromagnetic material is punched out with a press and pressed. Techniques such as using the formed void as a non-magnetic portion have been performed. In contrast to the method of joining these dissimilar materials or the method of press punching, the present inventor uses a single material, and performs cold working or heat treatment on this single material by using a ferromagnetic part and a non-magnetic part (or a weak magnetic Part) is proposed. The use of such a composite magnetic member made of a single material makes it possible to secure the airtightness, prevent breakage due to vibration, etc., and to ensure reliability and mechanical strength. And it is better than a part obtained by stamping out part of a ferromagnetic material with a press.

【0003】たとえば本発明者は特開2000−364
09号において、質量%でC;0.30〜0.80%、C
r;10.0〜25.0%、残部が実質的にFeの組成で
成り、(フェライト+炭化物)組織主体で比最大透磁率
400以上の強磁性部と、実質的にオーステナイト組織
から成る比最大透磁率2以下の弱磁性部を有するアクチ
ュエータ用複合磁性部材を提案している。この特開20
00−36409号に示す複合磁性部材は、鉄鋼材料の
相変態を利用して単一材料で(フェライト+炭化物)組
織主体の強磁性特性とオーステナイト組織主体の弱磁性
特性を実現できるFe−Cr−C系合金に着目したもの
である。この提案は、単一材料で強磁性と弱磁性という
相反する磁気特性を両立し、更に強磁性部で比最大透磁
率400以上の軟磁気特性と、弱磁性部で比最大透磁率
2以下の磁気特性を満足する複合磁性部材の最適組成範
囲を見出した点で優れている。
For example, the present inventor has disclosed Japanese Patent Application Laid-Open No. 2000-364.
No. 09, C by mass%; 0.30 to 0.80%, C
r: 10.0 to 25.0%, the balance being substantially composed of Fe, a ferromagnetic part mainly composed of (ferrite + carbide) and having a specific maximum magnetic permeability of 400 or more, and a ratio substantially composed of austenite. A composite magnetic member for an actuator having a weak magnetic portion having a maximum magnetic permeability of 2 or less has been proposed. This JP 20
The composite magnetic member described in JP-A-00-36409 is a single material utilizing the phase transformation of a steel material to realize a ferromagnetic property mainly composed of (ferrite + carbide) and a weak magnetic property mainly composed of austenitic structure. It focuses on a C-based alloy. This proposal achieves both magnetic properties of ferromagnetic and weak magnetic properties which are contradictory with a single material, and furthermore, soft magnetic properties with a specific maximum magnetic permeability of 400 or more in a ferromagnetic part and a specific magnetic permeability of 2 or less in a weak magnetic part. It is excellent in finding the optimum composition range of the composite magnetic member satisfying the magnetic properties.

【0004】[0004]

【発明が解決しようとする課題】本発明者は上述の特開
2000−36409号に記載した複合磁性部材につい
て検討を行った結果、弱磁性部のオーステナイト組織
は、Ms点(弱磁性のオーステナイトが強磁性のマルテ
ンサイトに変態し始める温度)以下の温度でマルテンサ
イト変態により強磁性化し始めるため、低温になるにつ
れ弱磁性部の比最大透磁率が上昇し、特に氷点下以下の
温度範囲で弱磁性部の磁気特性が不安定になるという問
題がある。磁気回路部品として用いられる複合磁性部材
の中には、−40℃付近までの品質保証が要求される場
合がある。この場合、使用温度の変化によって弱磁性部
の磁気特性が変化することは、磁気回路の設計上、好ま
しくない。これに対して、上述の特開2000−364
09号に開示する複合磁性部材では、弱磁性部の低温で
の特性の安定性が十分ではない場合があった。本発明の
目的は、単一材で強磁性部と弱磁性部を併せ持つ複合磁
性部材の内、従来部材よりも低温磁気安定性に優れた複
合磁性部材及び低温磁気安定性に優れた複合磁性部材の
製造方法を提供することである。
The present inventor has studied the composite magnetic member described in Japanese Patent Application Laid-Open No. 2000-36409. As a result, the austenite structure of the weak magnetic portion was found to be at the Ms point (weak magnetic austenite). (The temperature at which transformation to ferromagnetic martensite begins) Ferromagnetization begins at a temperature below that of martensitic transformation, so that the relative maximum permeability of the weak magnetic portion increases as the temperature decreases, especially in the temperature range below the freezing point. There is a problem that the magnetic characteristics of the portion become unstable. In some composite magnetic members used as magnetic circuit components, quality assurance up to around −40 ° C. may be required. In this case, it is not preferable in the design of the magnetic circuit that the magnetic characteristics of the weak magnetic portion change due to a change in the operating temperature. On the other hand, Japanese Patent Laid-Open No. 2000-364 described above
In the composite magnetic member disclosed in No. 09, the stability of the characteristics of the weak magnetic portion at a low temperature was sometimes insufficient. An object of the present invention is to provide a composite magnetic member having both a ferromagnetic portion and a weak magnetic portion in a single material, among which a composite magnetic member having superior low-temperature magnetic stability and a composite magnetic member having superior low-temperature magnetic stability than conventional members. Is to provide a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】弱磁性部の低温特性を安
定とするためには、弱磁性部のMs点を下げ、オーステ
ナイト組織を安定とすることが必要である。本発明者
は、強磁性と弱磁性の相反する磁気特性を両立できるF
e−Cr−C系の複合磁性部材において、弱磁性部の低
温特性を安定にすることを目的として、弱磁性部のオー
ステナイト粒径の微細化を検討した結果、強磁性体素材
を局部的にオーステナイト化(弱磁性化)した時に、オ
ーステナイト結晶粒の粒成長を抑制するピンニング粒子
を利用することが有効であることを知見した。そして、
複合磁性部材を構成する材料の最適化学組成に、ピンニ
ング粒子を形成して、オーステナイト粒径の粗大化を抑
制でき、且つ複合磁性部材としての磁気特性に悪影響を
及ぼさない、必要最小限の特定合金元素の適量添加によ
って、特定の大きさのオーステナイト平均粒径を持った
弱磁性部に調整することが出来ることを見出し、更にこ
の結晶粒径の調整によって、低温での磁気特性までをも
安定にできることを見出し、本発明に到達した。
In order to stabilize the low-temperature characteristics of the weak magnetic part, it is necessary to lower the Ms point of the weak magnetic part and to stabilize the austenite structure. The inventor of the present invention has proposed F
In order to stabilize the low-temperature characteristics of the weak magnetic part in the e-Cr-C-based composite magnetic member, we investigated the miniaturization of the austenite grain size in the weak magnetic part. It has been found that it is effective to use pinning particles that suppress the growth of austenite crystal grains when austenitizing (weakening). And
The minimum necessary specific alloy that can suppress pinning of austenite grain size by forming pinning particles in the optimum chemical composition of the material constituting the composite magnetic member, and does not adversely affect the magnetic properties of the composite magnetic member It has been found that by adding an appropriate amount of element, it is possible to adjust to a weak magnetic part having a specific size of austenite average grain size. They have found that they can do so and have reached the present invention.

【0006】即ち本発明は、質量%でC;0.30〜
0.80%、Si;0.10〜3.0%、Mn;0.10〜
4.0%、Cr;10.0〜25.0%、Al;0.01
〜3.0%、N;0.01〜0.10%と、(Nb,T
i,Zr)の群から選ばれる一種または二種以上を単独
または合計で0.10〜1.0%含有し、残部が実質的
にFeの組成で成り、(フェライト+炭化物)組織主体
で比最大透磁率μrが400以上の強磁性部と、オース
テナイト組織主体で比最大透磁率μrが2以下、平均結
晶粒径100μm以下、室温〜−40℃の温度範囲での
比最大透磁率の変化率(μr-40℃-μrRT)/μrRTが1以下
の弱磁性部を有する低温磁気安定性に優れた複合磁性部
材である。
That is, according to the present invention, C: 0.30% by mass.
0.80%, Si; 0.10 to 3.0%, Mn; 0.10
4.0%, Cr; 10.0 to 25.0%, Al; 0.01
To 3.0%, N; 0.01 to 0.10%, (Nb, T
one or more selected from the group consisting of (i, Zr) alone or in a total amount of 0.10 to 1.0%, and the balance substantially consists of Fe; Ferromagnetic portion having a maximum magnetic permeability μr of 400 or more and a specific maximum magnetic permeability μr of 2 or less mainly composed of an austenite structure, an average crystal grain size of 100 μm or less, and a rate of change of the specific maximum magnetic permeability in a temperature range from room temperature to -40 ° C (μr− 40 ° C.− μr RT ) / μr RT is a composite magnetic member having a weak magnetic portion of 1 or less and excellent in low-temperature magnetic stability.

【0007】また本発明は、質量%でC;0.30〜
0.80%、Si;0.10〜3.0%、Mn;0.10〜
4.0%、Cr;10.0〜25.0%、Al;0.01
〜3.0%、N;0.01〜0.10%と、(Nb,T
i,Zr)の群から選ばれる一種または二種以上を単独
または合計で0.10〜1.0%含有し、残部が実質的
にFeの組成で成る材料を、550〜900℃の温度範
囲で1回以上焼鈍して(フェライト+炭化物)組織主体
で比最大透磁率μrが400以上の強磁性体とした後、
該強磁性体に対して1100〜1350℃の温度範囲で
局所的な弱磁性化熱処理を行ってオーステナイト組織主
体で比最大透磁率μrが2以下、平均結晶粒径100μ
m以下、室温〜−40℃の温度範囲での比最大透磁率の
変化率(μr-40 -μrRT)/μrRTが1以下の弱磁性部を形
成する低温磁気安定性に優れた複合磁性部材の製造方法
である。
[0007] The present invention also relates to the present invention, wherein C: 0.30
0.80%, Si; 0.10 to 3.0%, Mn; 0.10
4.0%, Cr; 10.0 to 25.0%, Al; 0.01
To 3.0%, N; 0.01 to 0.10%, (Nb, T
i, Zr) is a material containing one or two or more selected from the group consisting of 0.10 to 1.0% in total or substantially the balance of Fe, with a temperature range of 550 to 900 ° C. After annealing at least once in (Ferrite + Carbide) structure to make a ferromagnetic material with a relative maximum permeability μr of 400 or more,
The ferromagnetic material is locally subjected to a heat treatment for weakening magnetism in a temperature range of 1100 to 1350 ° C., and mainly has an austenite structure, a specific maximum magnetic permeability μr of 2 or less, and an average crystal grain size of 100 μm.
m, a rate of change in specific maximum magnetic permeability in the temperature range from room temperature to −40 ° C. (μr −40 ° C. −μr RT ) / μr RT forms a weak magnetic portion of 1 or less, and is a composite excellent in low-temperature magnetic stability. This is a method for manufacturing a magnetic member.

【0008】ここで、複合磁性部材を構成する材料の化
学組成によっては、弱磁性部の比透磁率は空隙ほどには
小さくならない場合がある。しかし複合磁性部材を使用
する磁気回路の設計上は強磁性部と弱磁性部の比透磁率
の比が重要であって、この比が十分に大きければ良い場
合が多い。そこで本発明の複合磁性部材の弱磁性部に関
しては、非磁性という表現を敢えて使わず、強磁性部よ
りも軟磁気特性が弱いという意味で弱磁性と表現する。
勿論、本発明の複合磁性部材の弱磁性部が空隙と同レベ
ルの非磁性であっても差し支えない。
Here, depending on the chemical composition of the material constituting the composite magnetic member, the relative magnetic permeability of the weak magnetic portion may not be as small as the gap. However, in designing a magnetic circuit using a composite magnetic member, the ratio of the relative permeability between the ferromagnetic portion and the weak magnetic portion is important, and it is often sufficient if this ratio is sufficiently large. Therefore, the weak magnetic portion of the composite magnetic member of the present invention is not dared to use the expression of non-magnetic, but is expressed as weak magnetic in the sense that soft magnetic characteristics are weaker than the ferromagnetic portion.
Of course, the weak magnetic portion of the composite magnetic member of the present invention may be nonmagnetic at the same level as the gap.

【0009】[0009]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、Fe−Cr−C系複合磁性部材の弱磁性部の低
温での磁気特性を安定とするために、弱磁性部のオース
テナイト粒径を微細化した点にある。以下、本発明の規
定理由を述べる。まず、複合磁性部材の化学組成の内、
必須元素の組成範囲を規定した理由を述べる。 C;0.30〜0.80% Cはオーステナイトを形成する元素として、弱磁性部の
形成に必要な本発明の必須元素である。また、後述する
Nb,Ti,Zr等の元素と炭化物を形成し、弱磁性部
のオーステナイト粒の成長を抑制するピンニング粒子と
しても重要な役割を果たす。Cが0.30%未満では、
比最大透磁率μrが2以下の弱磁性部を得ることが困難
である。一方、C量が0.80%を超えると、強磁性部
の軟磁気特性が劣化し、比最大透磁率400以上の磁気
特性が得られ難くなる。そのため本発明においては、C
の範囲を0.30〜0.80%に規定した。Cのより望
ましい範囲は0.40〜0.70%である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that the weak magnetic portion of the Fe--Cr--C composite magnetic member is made stable in order to stabilize the magnetic properties at a low temperature. The point is that the austenite particle size is reduced. Hereinafter, the reasons for defining the present invention will be described. First, of the chemical composition of the composite magnetic member,
The reason for defining the composition range of the essential elements will be described. C: 0.30 to 0.80% C is an essential element of the present invention necessary for forming a weak magnetic portion as an element forming austenite. Further, it forms a carbide with elements such as Nb, Ti, and Zr, which will be described later, and also plays an important role as pinning particles that suppress the growth of austenite grains in the weak magnetic portion. If C is less than 0.30%,
It is difficult to obtain a weak magnetic portion having a specific maximum magnetic permeability μr of 2 or less. On the other hand, if the C content exceeds 0.80%, the soft magnetic characteristics of the ferromagnetic portion deteriorate, and it becomes difficult to obtain magnetic characteristics having a specific maximum magnetic permeability of 400 or more. Therefore, in the present invention, C
Was defined as 0.30 to 0.80%. A more desirable range for C is 0.40 to 0.70%.

【0010】Si;0.10〜3.0% Siは材料の脱酸元素としての作用があるとともに、強
磁性部の軟磁気特性を高めるのに有効な元素である。但
し、0.10%未満では効果が小さく、逆に3.0%を
超える範囲では強磁性部の比最大透磁率は更に高まるも
のの、弱磁性部で比最大透磁率2以下の特性を得難くな
るので、上述の範囲に規定した。Siのより望ましい範
囲は0.10〜1.5%である。 Mn;0.10〜4.0% Mnは脱酸元素としての作用があるとともに、オーステ
ナイト形成元素として弱磁性部の形成に有効な元素であ
る。但し0.10%未満では効果が小さく、逆に4.0
%を超える範囲では材料の加工が難しくなるので、上述
の範囲に規定した。Mnのより望ましい範囲は0.3〜
2.5%である。
Si: 0.10 to 3.0% Si has an effect as a deoxidizing element of the material and is an effective element for enhancing the soft magnetic characteristics of the ferromagnetic portion. However, if it is less than 0.10%, the effect is small, and if it exceeds 3.0%, although the specific maximum magnetic permeability of the ferromagnetic portion is further increased, it is difficult to obtain a characteristic having a specific maximum magnetic permeability of 2 or less in the weak magnetic portion. Therefore, it was specified in the above range. A more desirable range of Si is 0.10 to 1.5%. Mn: 0.10 to 4.0% Mn has an effect as a deoxidizing element and is an element effective for forming a weak magnetic portion as an austenite forming element. However, the effect is small at less than 0.10%, and conversely 4.0.
%, The working of the material becomes difficult, so it is specified in the above range. A more desirable range of Mn is 0.3 to
2.5%.

【0011】Cr;10.0〜25.0% Crは強磁性部においては、一部は炭化物となり、また
一部はマトリックスに固溶して該部材の耐食性、耐錆性
を確保する。更にCrはMs点を下げる効果があるの
で、弱磁性部においてオーステナイトの低温特性を安定
化するのにも有効である。Crの範囲を10.0〜2
5.0%未満としたのは、10.0%未満ではMs点を
下げる効果が小さいので、弱磁性部の低温特性を(μr
-40℃-μrRT)/μrRTが1以下の範囲に安定化することが
難しく、逆に25.0%以上の範囲では、弱磁性部の低
温特性は向上するものの、強磁性部の比最大透磁率が低
下するからである。Crのより望ましい範囲は12.0
〜20.0%である。
Cr: 10.0 to 25.0% In the ferromagnetic portion, part of the ferromagnetic portion becomes carbide, and part of the solid solution in the matrix secures the corrosion resistance and rust resistance of the member. Further, since Cr has an effect of lowering the Ms point, it is also effective in stabilizing the low-temperature characteristics of austenite in the weak magnetic portion. The range of Cr is 10.0 to 2
When it is less than 5.0%, if it is less than 10.0%, the effect of lowering the Ms point is small.
-40 ° C. -μr RT ) / μr RT is difficult to stabilize in the range of 1 or less. On the other hand, in the range of 25.0% or more, the low-temperature characteristics of the weak magnetic portion are improved, but the ratio of the ferromagnetic portion is improved. This is because the maximum magnetic permeability decreases. The more desirable range of Cr is 12.0.
~ 20.0%.

【0012】Al;0.01〜5.0% AlはSi同様、脱酸元素としての作用があるととも
に、強磁性部の軟磁気特性改善(比最大透磁率の向上、
保磁力の低減)に効果がある。この軟磁気特性改善のメ
カニズムは、Fe−Cr−C系素材にAlを添加するこ
とにより強磁性部の炭化物、結晶粒径がともに大きくな
って磁壁移動が容易となること、及びα−Fe(フェラ
イト組織)の容易磁化面である(200)面集積度が高
くなることによるものである。但し0.01%未満では
脱酸元素としての効果も小さく、逆に3.0%を超える
範囲では、強磁性部の軟磁気特性は更に改善されるもの
の、弱磁性部で比最大透磁率2以下の特性を得難くなる
ので、上述の範囲に規定した。Alのより望ましい範囲
は0.30〜2.5%である。 N;0.01〜0.10% Nはオーステナイト生成元素として弱磁性部の形成に有
効な元素である。但し、0.01%未満では効果が小さ
く、逆に0.10%を超える範囲では材料の加工が難し
くなるので、上述の範囲に規定した。
Al: 0.01 to 5.0% Al acts as a deoxidizing element similarly to Si and improves soft magnetic properties of the ferromagnetic portion (improvement of specific maximum magnetic permeability,
(Reduction of coercive force). The mechanism of this soft magnetic property improvement is that the addition of Al to the Fe-Cr-C-based material increases the carbide and crystal grain size of the ferromagnetic portion to facilitate domain wall movement, and that α-Fe ( This is because the degree of integration of the (200) plane, which is an easily magnetized surface of the ferrite structure, is increased. However, if it is less than 0.01%, the effect as a deoxidizing element is small. Conversely, if it exceeds 3.0%, the soft magnetic properties of the ferromagnetic portion are further improved, but the specific maximum permeability is 2 in the weak magnetic portion. Since it becomes difficult to obtain the following characteristics, it is specified in the above range. A more desirable range of Al is 0.30 to 2.5%. N: 0.01 to 0.10% N is an effective element for forming a weak magnetic portion as an austenite forming element. However, if the content is less than 0.01%, the effect is small, and if it exceeds 0.10%, material processing becomes difficult.

【0013】次にNb,Ti,Zrから選ばれる一種ま
たは二種以上を単独または合計で0.10〜1.0%の
組成範囲とした理由を述べる。これらの元素はいずれも
Cと結合し、炭化物XC(X=Nb,Ti,Zr)を形
成する。この炭化物XCは1350℃程度の高温域まで
安定であるので、強磁性体に局部的な非磁性化処理を行
ってオーステナイト化した時にも炭化物として残存す
る。オーステナイト中に残存した炭化物は、オーステナ
イト粒の粒成長を抑制するピンニング粒子として作用す
るので、弱磁性部のオーステナイト粒径を微細に制御す
る上で有効である。これらの元素の組成範囲を0.10
〜1.0%としたのは、0.10%未満ではピンニングに
必要な炭化物が得られず、逆に1.0%を超える範囲で
は、弱磁性部で比最大透磁率2以下の特性を得難くなる
からである。またNb,Ti,Zrの内の一種のみを添
加しても、二種以上を複合添加しても同様の効果が得ら
れるので、一種または二種以上を単独または合計で0.
10〜1.0%含有することとした。なお、本発明の複
合磁性部材の素材となる材料は、不可避不純物として
P、S、Oを、特に複合磁性部材の強磁性部と非磁性部
の磁気特性を劣化しない範囲として、それぞれ0.1%
以下含有してもよい。
Next, the reason why one or more selected from Nb, Ti and Zr are used alone or in a total composition range of 0.10 to 1.0% will be described. All of these elements combine with C to form carbide XC (X = Nb, Ti, Zr). Since this carbide XC is stable up to a high temperature range of about 1350 ° C., it remains as a carbide even when the ferromagnetic material is locally demagnetized and austenitized. The carbide remaining in the austenite acts as pinning particles that suppress the growth of austenite grains, and is effective in finely controlling the austenite grain size of the weak magnetic portion. The composition range of these elements is 0.10
If it is less than 0.10%, a carbide necessary for pinning cannot be obtained, and if it exceeds 1.0%, the characteristic having a specific maximum permeability of 2 or less in the weak magnetic portion is obtained. It is difficult to obtain. Even if only one of Nb, Ti, and Zr is added, or two or more of them are added in combination, the same effect can be obtained.
It was decided to contain 10 to 1.0%. The material used as the material of the composite magnetic member of the present invention contains P, S, and O as unavoidable impurities, particularly in a range that does not degrade the magnetic characteristics of the ferromagnetic portion and the non-magnetic portion of the composite magnetic member. %
The following may be contained.

【0014】次に、上述の材料を用いて成る複合磁性部
材の強磁性部、非磁性部の各々の金属組織と磁気特性、
更に弱磁性部の低温特性を規定した理由を述べる。先
ず、強磁性部の組織を(フェライト+炭化物)主体の組
織としたのは、比最大透磁率μrが400以上の磁気特
性を得るために必要な組織であるからである。強磁性部
の比最大透磁率を400以上とするためには、マトリッ
クスは磁性を有する組織であって、かつ歪の少ないフェ
ライト相とする必要がある。また比最大透磁率の向上の
点からは、マトリックスに固溶するC量は出来るだけ減
らし、Cは炭化物としてマトリックスの外に出しておく
ことが望ましいので、上述の組織に規定した。なお、こ
こで述べる(フェライト+炭化物)主体の組織とは、該
強磁性部をエックス線回折により分析した際に検出され
るすべてのピーク面積の内、80%以上をフェライトと
炭化物が占めている組織を指す。フェライトと炭化物の
ピーク面積が上述の範囲内であれば、強磁性部の磁気特
性の範囲を外れることはなく、問題はない。また(フェ
ライト+炭化物)主体の組織とは、組織中に若干量の非
金属介在物や内部酸化物が含まれていてもよいことを指
す。
Next, the metal structure and magnetic characteristics of each of the ferromagnetic portion and the non-magnetic portion of the composite magnetic member made of the above-described material,
Further, the reason for defining the low-temperature characteristics of the weak magnetic portion will be described. First, the structure of the ferromagnetic portion is mainly composed of (ferrite + carbide) because it is a structure necessary for obtaining magnetic properties with a specific maximum permeability μr of 400 or more. In order for the specific maximum magnetic permeability of the ferromagnetic portion to be 400 or more, the matrix must have a magnetic structure and a ferrite phase with less distortion. In order to improve the specific maximum magnetic permeability, it is desirable to reduce the amount of C dissolved in the matrix as much as possible, and it is desirable that C be taken out of the matrix as a carbide. The structure mainly composed of (ferrite + carbide) described here is a structure in which ferrite and carbide occupy 80% or more of all peak areas detected when the ferromagnetic portion is analyzed by X-ray diffraction. Point to. If the peak areas of ferrite and carbide are within the above ranges, there is no problem without deviating from the range of the magnetic characteristics of the ferromagnetic portion. The structure mainly composed of (ferrite + carbide) indicates that the structure may contain a small amount of nonmetallic inclusions or internal oxides.

【0015】次に強磁性部の磁気特性を規定した理由を
述べる。強磁性部の磁気特性を比最大透磁率μrが40
0以上としたのは、この範囲の磁気特性を有する部材
が、磁気回路部品として特に使い易いためである。強磁
性部の比最大透磁率が400以上であれば、弱磁性部の
比透磁率との比を十分に取ることができる。強磁性部の
磁気特性のより望ましい範囲は、比最大透磁率μrが7
00以上である。
Next, the reason for defining the magnetic characteristics of the ferromagnetic portion will be described. The magnetic property of the ferromagnetic part is determined by the relative maximum permeability μr being 40.
The reason why it is set to 0 or more is that a member having the magnetic characteristics in this range is particularly easy to use as a magnetic circuit component. When the specific maximum magnetic permeability of the ferromagnetic portion is 400 or more, a sufficient ratio with the relative magnetic permeability of the weak magnetic portion can be obtained. A more desirable range of the magnetic characteristics of the ferromagnetic portion is that the specific maximum permeability μr is 7
00 or more.

【0016】次に弱磁性部の金属組織を規定した理由を
述べる。弱磁性部の金属組織を、オーステナイトを主体
とする組織としたのは、比最大透磁率2以下の磁気特性
を得るために必要な組織であるからである。ここで述べ
るオーステナイトを主体とする組織とは、該弱磁性部を
エックス線回折により分析した際に検出されるすべての
ピ−ク面積の内、80%以上をオーステナイトのピ−ク
面積の総和が占めている組織を指す。この範囲内であれ
ば弱磁性部の磁気特性の範囲を外れることはない。また
オーステナイトを主体とする組織とは、組織中にピンニ
ング粒子である未固溶炭化物や非金属介在物が含まれて
いてもよいことを指す。
Next, the reason for defining the metal structure of the weak magnetic portion will be described. The reason why the metal structure of the weak magnetic portion is a structure mainly composed of austenite is that it is a structure necessary for obtaining magnetic properties with a specific maximum magnetic permeability of 2 or less. The structure mainly composed of austenite described herein means that the total area of the austenite peak area accounts for 80% or more of all peak areas detected when the weak magnetic portion is analyzed by X-ray diffraction. Organization. Within this range, the range of the magnetic characteristics of the weak magnetic portion does not deviate. The structure mainly composed of austenite indicates that the structure may contain undissolved carbides and nonmetallic inclusions as pinning particles.

【0017】次に弱磁性部の磁気特性を規定した理由を
述べる。先述した様に、磁気回路の設計上、弱磁性部は
必ずしも厳密な非磁性(比透磁率1.01以下)である
必要はなく、強磁性部の比透磁率に対して、十分に低い
比透磁率を有する弱磁性であればよい場合が多い。本発
明で弱磁性部の磁気特性を比最大透磁率μrが2以下と
したのは、この範囲が磁気回路を設計する上で弱磁性部
として許容される特性範囲であるからである。弱磁性部
の比最大透磁率のより望ましい範囲は1.1以下であ
る。
Next, the reason for defining the magnetic characteristics of the weak magnetic portion will be described. As described above, in designing the magnetic circuit, the weak magnetic portion does not necessarily have to be strictly non-magnetic (relative permeability of 1.01 or less), and the ratio of the relative permeability of the ferromagnetic portion is sufficiently low. In many cases, a weak magnetic property having a magnetic permeability is sufficient. In the present invention, the reason why the relative maximum magnetic permeability μr is set to 2 or less in the magnetic characteristics of the weak magnetic portion is that this range is a characteristic range allowable as a weak magnetic portion when designing a magnetic circuit. A more desirable range of the specific maximum magnetic permeability of the weak magnetic portion is 1.1 or less.

【0018】弱磁性部のオーステナイトの平均結晶粒径
を規定した理由を述べる。弱磁性部のオーステナイトの
平均結晶粒径を100μm以下としたのは、室温〜−4
0℃の温度範囲で、弱磁性部の比最大透磁率μrの変化
率(μr-40℃-μrRT)/μrRTを1以下とし、弱磁性部の低
温特性を安定にするためである。弱磁性部のオーステナ
イトの平均結晶粒径が上述の範囲であれば、本発明で規
定する低温特性から外れることはない。
The reason for defining the average crystal grain size of austenite in the weak magnetic portion will be described. The reason why the average crystal grain size of austenite of the weak magnetic portion was set to 100 μm or less is that the room temperature to -4
In the temperature range of 0 ° C., the rate of change of the specific maximum magnetic permeability μr (μr− 40 ° C.− μr RT ) / μr RT of the weak magnetic part is set to 1 or less, and the low-temperature characteristics of the weak magnetic part are stabilized. If the average crystal grain size of austenite in the weak magnetic portion is in the above-mentioned range, the low-temperature characteristics defined in the present invention will not be deviated.

【0019】弱磁性部の低温磁気安定性を規定した理由
を述べる。弱磁性部の低温磁気安定性を室温〜−40℃
の温度範囲での比最大透磁率μrの変化率(μr-40℃-μr
RT)/μrRTが1以下としたのは、μrの変化率が上述の範
囲を超えると、低温環境で部材を使用する場合に問題と
なるからである。磁気回路の設計上、許容される範囲と
して上述の範囲を規定した。
The reason for defining the low-temperature magnetic stability of the weak magnetic portion will be described. Low temperature magnetic stability of weak magnetic part from room temperature to -40 ° C
Rate of change of relative maximum magnetic permeability μr (μr -40 ° C -μr
RT ) / μr RT is set to 1 or less because if the rate of change of μr exceeds the above range, there is a problem when the member is used in a low-temperature environment. In the design of the magnetic circuit, the above range is defined as an allowable range.

【0020】本発明部材の製造方法を規定した理由を述
べる。本発明の複合磁性部材用の材料を550〜900
℃の温度範囲で1回以上焼鈍することとしたのは、本発
明部材の強磁性部の金属組織と磁気特性を得るために必
要な工程であるからである。本発明材料が有する最高の
軟磁気特性を発現させる為には、弱磁性化処理前に行う
最終の焼鈍は600〜750℃の範囲で行うことが望ま
しく、この温度範囲で最終の焼鈍を行えば、比最大透磁
率μrが700以上の強磁性とすることができる。
The reason for defining the method for manufacturing the member of the present invention will be described. The material for the composite magnetic member of the present invention is 550 to 900
The reason why the annealing is performed once or more in the temperature range of ° C. is because it is a necessary step for obtaining the metal structure and magnetic properties of the ferromagnetic portion of the member of the present invention. In order to express the best soft magnetic properties of the material of the present invention, it is desirable that the final annealing performed before the weak magnetic treatment be performed in the range of 600 to 750 ° C. If the final annealing is performed in this temperature range, , Can be ferromagnetic with a specific maximum magnetic permeability μr of 700 or more.

【0021】強磁性体に局所的な弱磁性部を設ける方法
としては、強磁性体に対して1100〜1350℃の温
度範囲で局所的な弱磁性化熱処理を行うとよい。局所的
な弱磁性化熱処理の温度範囲を1100〜1350℃と
したのは、1100℃未満では比最大透磁率μrが2以
下の弱磁性特性を得ることが難しく、また1350℃を
超える範囲ではオーステナイト粒の粒成長をピンニング
する炭化物XC(X=Nb,Ti,Zr)がオーステナ
イト基地に固溶し、ピンニング粒子としての機能を果た
さなくなるので、平均結晶粒径100μm以下のオース
テナイト粒を得ることが難しくなり、ひいては室温〜−
40℃の温度範囲での比最大透磁率の変化率(μr-40℃-
μrRT)/μrRTが1以下の低温磁気安定性を得難くなるか
らである。望ましい局所的な弱磁性化熱処理の温度範囲
は1150〜1300℃である。また局所的な弱磁性化
熱処理の方法は、特には規定していないが、たとえば高
周波加熱装置を用いるとよい。
As a method of providing a local weak magnetic portion in a ferromagnetic material, it is preferable to perform a local weak magnetic heat treatment on the ferromagnetic material in a temperature range of 1100 to 1350 ° C. The temperature range of the local heat treatment for weak magnetic weakening is set to 1100 to 1350 ° C. It is difficult to obtain a weak magnetic property having a relative maximum permeability μr of 2 or less at a temperature lower than 1100 ° C. and to austenite at a temperature exceeding 1350 ° C. Since the carbide XC (X = Nb, Ti, Zr) that pins the grain growth becomes a solid solution in the austenite matrix and no longer functions as pinning grains, it is difficult to obtain austenite grains having an average crystal grain size of 100 μm or less. And eventually room temperature-
Rate of change of relative maximum magnetic permeability in the temperature range of 40 ° C (μr -40 ° C-
This is because it is difficult to obtain low-temperature magnetic stability of μr RT ) / μr RT of 1 or less. A desirable local temperature range for the weak magnetic weakening heat treatment is 1150 to 1300 ° C. Although the method of the local heat treatment for weakening the magnetism is not particularly defined, for example, a high-frequency heating device may be used.

【0022】[0022]

【実施例】(実施例1)本発明では複合磁性部材の素材
の化学組成と、該素材を用いて作製した複合磁性部材の
強磁性部、弱磁性部それぞれの金属組織と磁気特性が重
要である。更には弱磁性部のオーステナイト粒径と低温
磁気安定性が重要である。複合磁性部材の素材の化学組
成、及び素材を使用して作製した複合磁性部材の強磁性
部と弱磁性部の諸特性の関係を明確にする為に、素材と
して種々の組成の金属材料を真空溶解により溶製した。
これらの素材を1100℃に加熱して熱間鍛造と熱間圧
延を行い、厚さ5mm、幅80mmの板材を得た。これ
を主として材料の軟化を目的に、860℃で4時間焼鈍
後、20℃/hの冷却速度で冷却した。熱間鍛造、焼鈍
時の酸化スケ−ルを除去した後、冷間圧延を行い、厚さ
1mmの板材を得た。この板材を材料の軟化と強磁性化
(軟磁性化)を目的に真空中860℃で4時間焼鈍後、
20℃/hの冷却速度で冷却した後、最終焼鈍として真
空中650℃で1hの焼鈍を行い、素材を更に軟磁性化
した。素材の化学組成を表1に示す。
(Embodiment 1) In the present invention, the chemical composition of the material of the composite magnetic member and the metal structures and magnetic properties of the ferromagnetic portion and the weak magnetic portion of the composite magnetic member manufactured using the material are important. is there. Further, the austenite grain size and low-temperature magnetic stability of the weak magnetic portion are important. In order to clarify the chemical composition of the material of the composite magnetic member and the relationship between the characteristics of the ferromagnetic part and the weak magnetic part of the composite magnetic member manufactured using the material, metal materials of various compositions were vacuum- It was produced by dissolution.
These materials were heated to 1100 ° C. and subjected to hot forging and hot rolling to obtain a plate having a thickness of 5 mm and a width of 80 mm. This was mainly annealed at 860 ° C. for 4 hours for the purpose of softening the material, and then cooled at a cooling rate of 20 ° C./h. After removing the oxide scale during hot forging and annealing, cold rolling was performed to obtain a sheet material having a thickness of 1 mm. After annealing this plate at 860 ° C. for 4 hours in a vacuum for the purpose of softening and ferromagnetic (softening) the material,
After cooling at a cooling rate of 20 ° C./h, annealing was performed at 650 ° C. for 1 hour in a vacuum as final annealing to further soften the material. Table 1 shows the chemical composition of the material.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の各材料について説明する。本実施例
ではC,Si,Mn,P,S,Cr,N,Oの含有量は
すべて一定とした。No.1〜16は本発明の複合磁性
部材の素材である。No.1〜5はFe-17%Cr-
0.5%C-0.2%Si-0.5%Mnを基本組成とする
素材に、Nbを0.1〜1.0%の範囲で単独添加したも
のである。同様にNo.6〜10はTiを0.1〜1.0
%の範囲で単独添加したものであり、No.11〜15
はZrを0.1〜1.0%の範囲で単独添加したものであ
る。またNo.16はNb;0.3%とTi;0.2%
を複合添加したものである。No.17〜18は本発明
の比較部材の素材である。No.17はNb,Ti,Z
rがいずれも無添加であり、特開2000-36409
号に開示する複合磁性部材の素材に相当する。No.1
8は素材のNb含有量が本発明の規定範囲を超えてい
る。
Each material shown in Table 1 will be described. In this example, the contents of C, Si, Mn, P, S, Cr, N, and O were all constant. No. Reference numerals 1 to 16 are materials of the composite magnetic member of the present invention. No. 1-5 are Fe-17% Cr-
It is a material having a basic composition of 0.5% C-0.2% Si-0.5% Mn and Nb alone added in a range of 0.1-1.0%. Similarly, No. For 6 to 10, Ti is 0.1 to 1.0.
% Alone. 11-15
Is a single addition of Zr in the range of 0.1 to 1.0%. No. 16 is Nb; 0.3% and Ti; 0.2%
Are added in combination. No. Reference numerals 17 and 18 denote materials of the comparative member of the present invention. No. 17 is Nb, Ti, Z
r is no addition, and JP-A-2000-36409
The material of the composite magnetic member disclosed in the above publication. No. 1
In No. 8, the Nb content of the material exceeds the specified range of the present invention.

【0025】上記の工程で作製した強磁性体の一部を、
高周波加熱装置を用いて1200℃に加熱し5分間保持
した後、空冷した。各材料において局部加熱された箇所
は、強磁性体中に形成された局部的な弱磁性部となり、
以上の工程を経ることで、強磁性体中に局部的な弱磁性
部を有する複合磁性部材とした。
A part of the ferromagnetic material produced in the above steps is
After heating to 1200 ° C. using a high-frequency heating device and holding for 5 minutes, it was air-cooled. In each material, the locally heated portion becomes a local weak magnetic portion formed in the ferromagnetic material,
Through the above steps, a composite magnetic member having a local weak magnetic portion in the ferromagnetic material was obtained.

【0026】強磁性部の金属組織と磁気特性は、それぞ
れ下記の方法で調査した。まず金属組織は、各部品の高
周波加熱の影響を受けていない部分をX線回折により2
θ=30°〜120°の範囲で走査して相同定を行い、
すべての部品の強磁性部で(フェライト+炭化物)主体
の組織となっていることを確認した。次に磁気特性は、
各部品の高周波加熱の影響を受けていない部分から外径
45mm、内径33mm、板厚1mmのリングを採取
し、1次巻線150回、2次巻線30回を施した後、4
000Am−1の直流磁場を印加してB−H特性を測定
し、初磁化曲線から比最大透磁率μrを測定した。
The metal structure and magnetic properties of the ferromagnetic portion were examined by the following methods. First, the metal structure was analyzed by X-ray diffraction for the part of each part that was not affected by high-frequency heating.
The phase is identified by scanning in the range of θ = 30 ° to 120 °,
It was confirmed that the ferromagnetic portion of all parts had a (ferrite + carbide) -based structure. Next, the magnetic properties
A ring having an outer diameter of 45 mm, an inner diameter of 33 mm, and a plate thickness of 1 mm was sampled from a part of each part that was not affected by high-frequency heating, and 150 primary windings and 30 secondary windings were performed.
A DC magnetic field of 000 Am- 1 was applied to measure the BH characteristics, and the specific maximum magnetic permeability μr was measured from the initial magnetization curve.

【0027】一方、弱磁性部の金属組織、磁気特性、オ
ーステナイト粒径、低温特性は、それぞれ下記の方法で
調査した。まず金属組織は、各部品の高周波加熱部をX
線回折により2θ=40°〜130°の範囲で走査して
相同定を行い、すべての部品の弱磁性部でオーステナイ
ト主体の組織となっていることを確認した。次に各部品
の高周波加熱部を切断により採取し、透磁率計により弱
磁性部の比最大透磁率μrRTを測定した。更にこのサ
ンプルを樹脂に埋め込み、鏡面研磨した後、王水で腐食
してミクロ組織を観察できる様にした後、オーステナイ
トの平均粒径を測定した。
On the other hand, the metal structure, magnetic properties, austenite grain size, and low-temperature properties of the weak magnetic portion were examined by the following methods. First, for the metal structure, the high-frequency heating part of each part
Phase identification was performed by scanning in the range of 2θ = 40 ° to 130 ° by line diffraction, and it was confirmed that the austenitic structure was mainly formed in the weak magnetic portions of all parts. Next, the high-frequency heating part of each part was sampled by cutting, and the relative maximum magnetic permeability μr RT of the weak magnetic part was measured by a magnetic permeability meter. Further, after embedding this sample in a resin and polishing it to a mirror surface, it was corroded by aqua regia so that the microstructure could be observed, and the average particle size of austenite was measured.

【0028】また各部品の低温磁気安定性は、各部品の
高周波加熱部を切断することにより測定試験片を採取し
た後、(エタノ−ル+ドライアイス)により−40℃に
保持した冷媒中に浸漬し、透磁率計により弱磁性部の−
40℃冷媒浸漬後の比最大透磁率μr−40℃を測定し
た。この測定結果から、室温(20℃)〜−40℃の温
度範囲での比最大透磁率μrの変化率(μr-40℃-μrRT)
/μrRTを求めた。各部品の強磁性部の比最大透磁率μ
r、弱磁性部の比最大透磁率μr、オーステナイト平均
粒径(μm)、室温〜−40℃の温度範囲での比最大透
磁率μrの変化率(μr-40℃-μrRT)/μrRTを表2に纏め
て示す。
The low-temperature magnetic stability of each part is determined by cutting a high-frequency heating part of each part to obtain a test piece, and then storing the specimen in a refrigerant maintained at -40 ° C. with (ethanol + dry ice). Immerse and measure the weak magnetic part with a permeability meter.
The specific maximum magnetic permeability μr− 40 ° C. after immersion in the refrigerant at 40 ° C. was measured. From this measurement result, the rate of change of the specific maximum magnetic permeability μr in the temperature range from room temperature (20 ° C.) to −40 ° C. (μr −40 ° C. −μr RT )
/ μr RT was determined. Specific maximum permeability μ of the ferromagnetic part of each part
r, specific maximum magnetic permeability μr of the weak magnetic part, austenite average particle size (μm), change rate of specific maximum magnetic permeability μr in the temperature range from room temperature to −40 ° C. (μr -40 ° C. -μr RT ) / μr RT Are summarized in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から、本発明部材のNo.1〜16で
は、強磁性部において比最大透磁率μrが400以上、
弱磁性部において比最大透磁率μrが2以下の磁気特性
を満足するとともに、弱磁性部のオーステナイト平均粒
径は、すべて100μm以下であり、室温〜−40℃の
温度範囲での比最大透磁率μrの変化率(μr-40℃-μr
RT)/μrRTが1以下の特性を満足している。一方、本発
明の比較部材であるNo.17では、オーステナイト平
均粒径は100μmを超えており、室温〜−40℃の温
度範囲での比最大透磁率μrの変化率(μr-40℃-μrRT)
/μrRTも1を超えている。また素材のNb含有量が本発
明の規定範囲を超えている部材No.18では、弱磁性
部の比最大透磁率が2を超えていることが分かる。この
ことから、複合磁性部材の素材であるFe-Cr-C系に
Nb,Ti,Zr等を所定範囲で添加し、この材料を用
いて作製した複合磁性部材の弱磁性部のオーステナイト
粒成長を炭化物XC(X=Nb,Ti,Zr)によって
ピンニングし、オーステナイト粒径を微細に制御するこ
とによって、弱磁性部の低温特性は安定化することが分
かる。
From Table 2, in the case of Nos. 1 to 16 of the member of the present invention, the relative maximum magnetic permeability μr in the ferromagnetic portion is 400 or more,
In the weak magnetic portion, the specific maximum magnetic permeability μr satisfies the magnetic properties of 2 or less, and the austenite average particle diameter of the weak magnetic portion is 100 μm or less, and the specific maximum magnetic permeability in the temperature range from room temperature to −40 ° C. μr change rate (μr -40 ℃ -μr
RT ) / μr RT satisfies the characteristic of 1 or less. On the other hand, the comparative member of the present invention, No. 1 In No. 17, the average austenite particle size exceeds 100 μm, and the rate of change of the specific maximum permeability μr in the temperature range from room temperature to −40 ° C. (μr− 40 ° C. −μr RT )
/ μr RT also exceeds 1. In the case of the member No. where the Nb content of the raw material exceeds the specified range of the present invention. In No. 18, it can be seen that the relative maximum magnetic permeability of the weak magnetic portion exceeds 2. From this, Nb, Ti, Zr and the like are added in a predetermined range to the Fe—Cr—C system as a material of the composite magnetic member, and the austenite grain growth of the weak magnetic portion of the composite magnetic member manufactured using this material is performed. It can be seen that by pinning with carbide XC (X = Nb, Ti, Zr) and finely controlling the austenite grain size, the low-temperature characteristics of the weak magnetic portion are stabilized.

【0031】(実施例2)本発明では、局部的な弱磁性
化熱処理時の加熱温度も重要となる。そこで本発明部品
の部品No.2に対して、弱磁性化熱処理の温度を種々
に変えた場合の弱磁性部の比最大透磁率と低温特性を調
査した。弱磁性化熱処理条件と弱磁性部の比最大透磁率
μr、オーステナイト平均結晶粒径、室温〜−40℃の
温度範囲での比最大透磁率μrの変化率(μr-40℃-μrR
T)/μrRTを表3に纏めて示す。
(Embodiment 2) In the present invention, the heating temperature during the local heat treatment for weak magnetic weakening is also important. Therefore, the part number of the part of the present invention. With respect to No. 2, the relative maximum magnetic permeability and low-temperature characteristics of the weak magnetic portion when the temperature of the weak magnetic heat treatment was changed variously were investigated. Weak magnetizing heat treatment conditions and specific maximum magnetic permeability μr of the weak magnetic part, austenite average crystal grain size, change rate of specific maximum magnetic permeability μr in the temperature range from room temperature to −40 ° C. (μr -40 ° C. -μr R
T ) / μr RT is summarized in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】表3から、弱磁性化熱処理の温度を110
0℃以上とすることにより、比最大透磁率2以下の弱磁
性が得られることが分かる。但し、弱磁性化熱処理の温
度が1350℃を超えると、弱磁性部のオーステナイト
平均粒径は100μmを超え、室温〜−40℃の温度範
囲での比最大透磁率μrの変化率(μr-40℃-μrRT)/μr
RTは、1を超えることが分かる。このことから本発明の
弱磁性部の特性を得るためには、弱磁性化熱処理の温度
は1100〜1350℃とすると良いことが分かる。
From Table 3, it can be seen that the temperature of the heat treatment for weak magnetic
It can be seen that by setting the temperature to 0 ° C. or higher, weak magnetism having a specific maximum magnetic permeability of 2 or less can be obtained. However, if the temperature of the weak magnetic heat treatment exceeds 1350 ° C., the austenite average particle size of the weak magnetic portion exceeds 100 μm, and the rate of change of the specific maximum permeability μr in the temperature range from room temperature to −40 ° C. (μr −40) ℃ -μr RT ) / μr
It can be seen that RT exceeds 1. From this, it can be seen that in order to obtain the characteristics of the weak magnetic portion of the present invention, the temperature of the weak magnetic heat treatment is preferably set to 1100 to 1350 ° C.

【0034】本実施例により、複合磁性部材の弱磁性部
において優れた低温磁気安定性を得るためのオーステナ
イト平均粒径の範囲、更には、これらの特性を満足する
材料組成の最適範囲と、弱磁性化熱処理温度の最適範囲
を見出すことができた。本発明の複合磁性部材は、従来
部材よりも優れた低温磁気安定性を示すので、氷点下以
下での特性の安定性が要求される部品用途に対して、特
に使い易い部材となる。
According to this embodiment, the range of the average austenite particle size for obtaining excellent low-temperature magnetic stability in the weak magnetic portion of the composite magnetic member, the optimum range of the material composition satisfying these characteristics, and the weak range The optimum range of the magnetizing heat treatment temperature was found. Since the composite magnetic member of the present invention exhibits better low-temperature magnetic stability than conventional members, it is a particularly easy-to-use member for component applications that require stability of characteristics below freezing.

【0035】[0035]

【発明の効果】本発明によると、単一の化学組成で強磁
性部と弱磁性部を有する複合磁性部材において、従来部
材より優れた低温磁気安定性を有する複合磁性部材を得
ることができる。本発明は複合磁性部材を、低温での特
性安定性が必要な部品として適用するに当たって欠くこ
とのできない技術となる。
According to the present invention, in a composite magnetic member having a ferromagnetic portion and a weak magnetic portion with a single chemical composition, a composite magnetic member having low-temperature magnetic stability superior to conventional members can be obtained. INDUSTRIAL APPLICABILITY The present invention is an indispensable technique when a composite magnetic member is applied as a component requiring characteristic stability at a low temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC;0.30〜0.80%、S
i;0.10〜3.0%、Mn;0.10〜4.0%、C
r;10.0〜25.0%、Al;0.01〜3.0%、
N;0.01〜0.10%と、(Nb,Ti,Zr)の群
から選ばれる一種または二種以上を単独または合計で
0.10〜1.0%含有し、残部が実質的にFeの組成
で成り、(フェライト+炭化物)組織主体で比最大透磁
率μrが400以上の強磁性部と、オーステナイト組織
主体で比最大透磁率μrが2以下、平均結晶粒径100
μm以下、室温〜−40℃の温度範囲での比最大透磁率
の変化率(μr-40℃-μrRT)/μrRTが1以下の弱磁性部を
有することを特徴とする低温磁気安定性に優れた複合磁
性部材。
1. C. by mass%; 0.30 to 0.80%, S
i; 0.10 to 3.0%, Mn; 0.10 to 4.0%, C
r: 10.0 to 25.0%, Al: 0.01 to 3.0%,
N: 0.01 to 0.10% and one or two or more selected from the group of (Nb, Ti, Zr) alone or in a total amount of 0.10 to 1.0%, with the balance substantially being A ferromagnetic portion composed mainly of (Ferrite + carbide) and having a specific maximum magnetic permeability μr of 400 or more, an austenitic structure mainly having a specific maximum magnetic permeability μr of 2 or less, and an average crystal grain size of 100
Low temperature magnetic stability characterized by having a weak magnetic portion with a relative maximum permeability change rate (μr -40 ° C. -μr RT ) / μr RT of 1 or less in a temperature range from room temperature to −40 ° C. Excellent composite magnetic member.
【請求項2】 質量%でC;0.30〜0.80%、S
i;0.10〜3.0%、Mn;0.10〜4.0%、C
r;10.0〜25.0%、Al;0.01〜3.0%、
N;0.01〜0.10%と、(Nb,Ti,Zr)の群
から選ばれる一種または二種以上を単独または合計で
0.10〜1.0%含有し、残部が実質的にFeの組成
で成る材料を、550〜900℃の温度範囲で1回以上
焼鈍して(フェライト+炭化物)組織主体で比最大透磁
率μrが400以上の強磁性体とした後、該強磁性体に
対して1100〜1350℃の温度範囲で局所的な弱磁
性化熱処理を行ってオーステナイト組織主体で比最大透
磁率μrが2以下、平均結晶粒径100μm以下、室温
〜−40℃の温度範囲での比最大透磁率の変化率(μr-4
0℃-μrRT)/μrRTが1以下の弱磁性部を形成することを
特徴とする低温磁気安定性に優れた複合磁性部材の製造
方法。
2. C: 0.30 to 0.80% by mass%, S
i; 0.10 to 3.0%, Mn; 0.10 to 4.0%, C
r: 10.0 to 25.0%, Al: 0.01 to 3.0%,
N: 0.01 to 0.10% and one or two or more selected from the group of (Nb, Ti, Zr) alone or in a total amount of 0.10 to 1.0%, with the balance substantially being A material having a composition of Fe is annealed at least once in a temperature range of 550 to 900 ° C. to obtain a ferromagnetic material mainly composed of (ferrite + carbide) and having a specific maximum magnetic permeability μr of 400 or more. To a local weakening heat treatment in a temperature range of 1100 to 1350 ° C., with an austenite structure as a main component, a specific maximum magnetic permeability μr of 2 or less, an average crystal grain size of 100 μm or less, and a room temperature to −40 ° C. Rate of change of the maximum magnetic permeability (μr -4
0 ° C. -μr RT ) / μr RT : A method for producing a composite magnetic member having excellent low-temperature magnetic stability, characterized by forming a weak magnetic portion of 1 or less.
JP2000380356A 2000-12-14 2000-12-14 Composite magnetic member having excellent low temperature magnetic stability and its production method Pending JP2002180215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000380356A JP2002180215A (en) 2000-12-14 2000-12-14 Composite magnetic member having excellent low temperature magnetic stability and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000380356A JP2002180215A (en) 2000-12-14 2000-12-14 Composite magnetic member having excellent low temperature magnetic stability and its production method

Publications (1)

Publication Number Publication Date
JP2002180215A true JP2002180215A (en) 2002-06-26

Family

ID=18848554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000380356A Pending JP2002180215A (en) 2000-12-14 2000-12-14 Composite magnetic member having excellent low temperature magnetic stability and its production method

Country Status (1)

Country Link
JP (1) JP2002180215A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
US9634549B2 (en) 2013-10-31 2017-04-25 General Electric Company Dual phase magnetic material component and method of forming
US10229776B2 (en) 2013-10-31 2019-03-12 General Electric Company Multi-phase magnetic component and method of forming
US10229777B2 (en) 2013-10-31 2019-03-12 General Electric Company Graded magnetic component and method of forming
CN113814280A (en) * 2021-08-17 2021-12-21 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
JPWO2012077631A1 (en) * 2010-12-06 2014-05-19 日立金属株式会社 Composite magnetic material and composite magnetic material
US9634549B2 (en) 2013-10-31 2017-04-25 General Electric Company Dual phase magnetic material component and method of forming
US10190206B2 (en) 2013-10-31 2019-01-29 General Electric Company Dual phase magnetic material component and method of forming
US10229776B2 (en) 2013-10-31 2019-03-12 General Electric Company Multi-phase magnetic component and method of forming
US10229777B2 (en) 2013-10-31 2019-03-12 General Electric Company Graded magnetic component and method of forming
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
CN113814280A (en) * 2021-08-17 2021-12-21 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel
CN113814280B (en) * 2021-08-17 2023-09-15 首钢集团有限公司 Rolling method of low-coercivity free-cutting steel

Similar Documents

Publication Publication Date Title
KR101835139B1 (en) Austenitic iron/nickel/chromium/copper alloy
EP2261385B1 (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP4464889B2 (en) Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
JPH09157802A (en) Composite magnetic member and production thereof
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP2002180215A (en) Composite magnetic member having excellent low temperature magnetic stability and its production method
WO2014157302A1 (en) Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP2005520931A (en) Iron-based amorphous alloy with linear BH loop
JP4223701B2 (en) Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
US6245441B1 (en) Composite magnetic member excellent in corrosion resistance and method of producing the same
JP2008031553A (en) Method for manufacturing semi-hard magnetic material, and semi-hard magnetic material
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
JP2004143585A (en) Stock for composite magnetic member, composite magnetic member obtained by using the stock, method for producing the member, and motor obtained by using the member
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JP2018127647A (en) Soft magnetism flat powder
JP4398639B2 (en) Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JP2004091842A (en) Material for composite magnetic member, composite magnetic member using the material, manufacturing method for the member, and motor using the member
KR20210008732A (en) Non-magnetic austenitic stainless steel
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
JP4223727B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic properties, soft magnetic steel parts excellent in magnetic properties, and manufacturing method thereof
WO2022124215A1 (en) Ferritic stainless steel sheet and production method