JP2004089813A - Cu含有触媒 - Google Patents

Cu含有触媒 Download PDF

Info

Publication number
JP2004089813A
JP2004089813A JP2002252809A JP2002252809A JP2004089813A JP 2004089813 A JP2004089813 A JP 2004089813A JP 2002252809 A JP2002252809 A JP 2002252809A JP 2002252809 A JP2002252809 A JP 2002252809A JP 2004089813 A JP2004089813 A JP 2004089813A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
teflon
shift
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252809A
Other languages
English (en)
Other versions
JP4246978B2 (ja
Inventor
Satoru Watanabe
渡辺  悟
Satonobu Yasutake
安武 聡信
Shigeru Nojima
野島  繁
Masanao Yonemura
米村 将直
Hirohisa Yoshida
吉田 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002252809A priority Critical patent/JP4246978B2/ja
Publication of JP2004089813A publication Critical patent/JP2004089813A/ja
Application granted granted Critical
Publication of JP4246978B2 publication Critical patent/JP4246978B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】温度条件や運転条件に依存せず、シンタリングを回避して、触媒劣化による性能低下を起こさないCu含有触媒を提供する。
【解決手段】CuおよびZnの少なくとも2種の元素を含むCu含有触媒であって、Cu−ZnO系触媒成分の表面にテフロン粒子が付着していることを特徴とするCu含有触媒、並びに、その製造方法。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、COシフト触媒やメタノール合成触媒として好適に用いられる、耐久性を向上させたCu含有触媒に関し、より詳しくは、例えば、水素含有ガスから一酸化炭素を除去するCOシフト触媒として、燃料電池システムにおける水素製造を行う改質装置の後流側にて好適に用いられる、Cu含有触媒に関する。
【0002】
【従来の技術】
燃料電池システムは、炭化水素系燃料(都市ガス、メタン、プロバン、灯油、ジメチルエーテル等)を改質器によって、H、COおよびCOを製造する。燃料電池の電極触媒はCOによって被毒されるため、電池に入るまでにCO濃度を10〜20ppmあるいはそれ以下にする必要がある。このため、得られるガス中に含まれる一酸化炭素(CO)の濃度を低減する方法の1つとして、COシフト反応が用いられる。該反応に用いるCOシフト触媒には、LTS触媒(low temperature shift) とHTS触媒(high temperature shift) の2種類がある。HTS触媒は、高温の450℃前後でシフト反応する触媒であり、LTS触媒は、低温の200℃前後でシフト反応する触媒である。通常、改質器から流下する改質ガスは高温であり、HTS触媒を介してからLTS触媒に送られるが、HTS触媒は省略される場合もある。
LTS触媒では、以下のシフト反応が行われる。
シフト反応  CO + H0  → C02 + H
【0003】
LTS触媒を経ることによって、LTS出口までに、CO濃度は3000ppm程度にまで低減される。
しかしながら、このLTS触媒は、COと水蒸気を反応させる触媒であるが、液体の水が存在する状況下では、触媒成分がシンタリングを起こして劣化してしまうという問題があった。特に、燃料電池システムの起動停止時には、100℃以下になり、水蒸気が液体の水として存在することとなり、この水が、銅又は酸化亜鉛のシンタリングを発生させて、触媒の性能を劣化させる傾向にあった。
【0004】
一方、メタノール合成においては、水素、一酸化炭素、二酸化炭素の原料ガスからメタノールおよび水を生成する以下の反応である。
(メタノール合成反応)
2H +CO → CHOH
3H +CO → CHOH + H
本反応においてもLTS触媒と同様の銅亜鉛系触媒が用いられ、起動・停止時に液体の水の存在により触媒反応に劣化が生じると考えられる。
【0005】
通常、白金アルミナ系の触媒などでは、液体の水が存在してもシンタリングは発生しない。白金は高温でも低温でも安定して存在し、また担持量も少ないために、一般にシンタリングによる触媒劣化を考慮する必要はない。
ところが、LTS触媒に用いられるCu−ZnO系触媒は、活性成分である銅が不安定成分であり、含有量も多いので、シンタリングを防止する必要がある。シンタリングとは、触媒成分同士、ここでは銅あるいは酸化亜鉛同士が接合して粒径が肥大化する現象であり、液体の水などの媒体が介在することによって起こるものと考えられる。
特に、PEFCシステムの運転方式には連続運転以外に、DSS運転がある。DSS運転(daily start up and shut down)は、一日に一回起動停止する運転方法であり、システムを起動・停止する場合、100℃以下で液体の水がLTSに入ることがあり、それにより、LTSが劣化する。また、メタノール合成触媒も同様に、起動・停止の際に100℃以下で液体の水が触媒に入ることにより劣化する。そこで、銅亜鉛系触媒において、このようなシンタリングを回避して、触媒の劣化を防止する方法が望まれた。
【0006】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、温度条件や運転条件に依存せず、シンタリングを回避して、触媒劣化による性能低下を起こさないCu含有触媒を開発すべく、鋭意検討した。
その結果、本発明者らは、Cu−ZnO系触媒の触媒成分上にシンタリング防止剤としてテフロン粒子を付着させることによって、上記問題点が解決されることを見出し、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
すなわち、本発明は、CuおよびZnの少なくとも2種の元素を含むCu含有触媒であって、Cu−ZnO系触媒成分の表面にシンタリング防止剤としてテフロン粒子が付着していることを特徴とするCu含有触媒を提供するものである。前記テフロン粒子は、通常0.2〜5.0重量%、好ましくは0.5〜2.0重量%付着している。Cu−ZnO系触媒成分では、銅成分が通常20〜50重量%含まれており、残りが酸化亜鉛と少量の他の酸化物である。
このようなCu含有触媒は、例えば、ガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応に、COシフト触媒として好適に用いられる。また、ガス中の水素と一酸化炭素もしくは水素と二酸化炭素からメタノールを生成するメタノール合成反応にも、メタノール合成触媒として好適に用いられる。さらに、本発明は、Cu−ZnO系触媒成分を調製する工程と、該触媒成分をテフロン粒子が分散する溶液(テフロンディスパージョン液)中に含浸させる工程と、該テフロン粒子が付着した触媒を乾燥させ固着させる工程と、を含むことを特徴とするCu含有触媒の製造方法を提供するものである。
触媒の製法としてより具体的には、銅亜鉛系触媒のペレットを調製して、これをテフロンディスパージョン液に含浸した後、乾燥させる方法が挙げられる。あるいは、銅亜鉛系触媒の粉体を調製して、テフロンディスパージョン液に含浸してから乾燥させた後、ペレット化する方法も挙げられる。
【0008】
本発明では、銅亜鉛系触媒をシンタリング防止処理することにより、触媒成分が肥大化することを防止する。具体的には、テフロンで触媒を活性を損なわない程度にコートすることが必要であり、テフロンをコートし過ぎると触媒活性が低下してしまうので好ましくない。銅亜鉛系触媒に、通常0.2〜5.0重量%、好ましくは0.5〜2.0重量%のテフロンを付着させる。テフロン粒子は、通常0.1〜1μmの微粒子であるため、銅亜鉛系触媒の表面に分散してコートもしくは担持される。
本発明の触媒は、液体の水が存在する条件下においても、シンタリングによる触媒の劣化を有効に防止することができる。そして、燃料電池システムにおけるLTSの反応温度は約200℃であり、テフロン(PTFE)の耐熱温度が約350℃であるので、システムの運転中においても十分に使用可能である。同様に、メタノール合成触媒も使用温度は200〜300℃であり、テフロンの耐熱温度以下であるため、使用可能である。
【0009】
【発明の実施の形態】
固体高分子型燃料電池(PEFC)は低公害で、さらに効率が高いため自動車用電源や分散電源等の幅広い分野での動力源としての適用が可能である。この燃料電池システムに、燃料である水素を供給するには、例えば改質器を用いた水素製造による方法が挙げられる。かかる水素製造においては炭化水素系燃料(都市ガス、メタン、プロバン、灯油、ジメチルエーテル等)などが原料として用いられる。メタンやプロパン等のガスは、燃料ガスとして十分に普及している原料であり、これらのガスを改質器において水素Hに改質する。この際、同時に一酸化炭素COおよび二酸化炭素C0が生成する。
固体高分子型燃料電池の電極には主に白金触媒が用いられるが、この触媒は一酸化炭素により被毒され易いので、予め水素を主成分とする燃料ガスから一酸化炭素を極力除去する必要がある。このように、燃料電池の電極に触媒毒として作用するCOの濃度はできるだけ低くすることが必要である。よって、改質器の後流では、COシフト触媒を用いてガス中の一酸化炭素濃度を低減する。LTS出口までに一酸化炭素濃度は3000ppm程度にまで低減させることで、さらに後段に設けられるCO選択酸化触媒などのCO除去器を用いることにより、燃料電池本体に送る該ガス中のCO濃度は10ppm以下に低減することができる。
【0010】
COシフト触媒は、燃料電池システムにおいて、改質器によって製造された水素含有ガス中のCO濃度を低減する。燃料電池本体に入るまでにCO濃度を10ppm以下にするため、LTS出口ではC0濃度を3000ppmにまで低減させる。COシフト触媒には、上記したように450℃前後の高温でシフト反応するHTS触媒と、200℃前後の低温でシフト反応するLTS触媒の2種類がある。いずれもガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応を行う。
CO + H0 → CO2 + H
一方、メタノールは各種工業原料として利用され、水素、一酸化炭素、二酸化炭素からのメタノール合成法は工業的に広く利用されている製造方法である。工業的には、50気圧から100気圧の加圧下で水素、一酸化炭素、二酸化炭素を銅亜鉛触媒で反応させ、メタノールを回収した後、未反応ガスを再び反応器へ導入するリサイクル法で行われる。
【0011】
COシフト触媒およびメタノール合成触媒として好適に用いられる、本発明のCu含有触媒の運転方法のうち、DSS運転とは、通常一日一回起動停止する運転方法を指すものであるが、特に一日一回起動停止に限定されるものではなく、頻繁に起動停止する運転または適宜起動停止する方法も含まれ、いずれの場合にも有効である。また、主成分としてCu−ZnO系触媒成分を含むものであり、この触媒成分は種々の方法によって調製することができ、何ら限定されるものではないが、例えば以下の方法によって調製できる。
【0012】
炭酸ナトリウムを水に溶解させ、50〜80℃に保温してこのアルカリ溶液をAとする。次に硝酸アルミニウム及び硝酸亜鉛を水に溶解させ、50〜80℃に保温した酸性溶液を溶液Bとする。また、硝酸銅を水に溶かして、50〜80℃に保温した酸性溶液を溶液Dとする。
次いで、攪拌しながら溶液Aに溶液Bを10〜60分にわたり均一に滴下し、沈殿生成液Eを得る。次に溶液Dを沈殿生成液Eに10〜60分にわたり均一に滴下し、アルミニウム、亜鉛及び銅を含有した沈殿生成液Gを得る。G液を硝酸で中和し、数時間そのまま攪拌する事により熟成を行い、次に沈殿生成液Gのろ液及びNaイオン、NOイオンが検出されない様に十分洗浄する。さらに、約100℃で10〜50時間乾燥し、その後、200〜400℃で2〜5時間焼成することにより、Cu−ZnO系触媒成分の粉末を得る。
上記Cu−ZnO系触媒成分の粉末は、打錠成型器などでペレット状に成型した後、テフロンディスパージョン溶液に含浸させる。次いで、含浸させたペレットを乾燥させ、例えば100〜300℃の水素還元雰囲気中でテフロンを固着する。これにより、本発明のCu含有触媒が得られるのである。
【0013】
触媒成分の中でも、例えばアルミナ担体の触媒には、一般に吸水性がない。
これに対して、本発明で用いる銅亜鉛系触媒は多孔質なペレットであるため、極めて吸水性が高く、ペレット成型後の吸水量は、体積比で50体積%程度まで水を吸収する。よって、吸水性を一定以下に低下させて、シンタリングをしない状態にしておくことが必要である。例えば、20体積%以上、水を吸水するとシンタリングし易くなる場合には、テフロン加工により、吸水量を20体積%未満になるように制御することが必要である。シンタリング防止ができれば、一定量の水は含有していてもよい。
テフロン(ポリテトラフルオロエチレン)粒子は吸水量制御剤として作用し、触媒成分の吸水量を一定以下に抑制する効果があり、本発明の銅亜鉛系触媒成分に対しては、通常0.2重量%以上、好ましくは0.5重量%以上配合することで効果が発揮される。
【0014】
具体的には、例えば、試験触媒を24時間、水に浸漬後の触媒重量と浸漬前の重量との差から、吸水率を計算することができる。触媒としては、銅亜鉛系触媒成分にテフロン粒子を1重量%付着させた触媒(本発明の触媒1)、および、銅亜鉛系触媒成分のみからなる触媒(比較触媒1)、を用いる。この場合に吸水率は、比較触媒1が50体積%であるのに対して、本発明の触媒1では0体積%である。
【0015】
本発明のCOシフト触媒は、例えば改質器の後流に設置されて、水素含有ガスを流通させることにより、ガス中の一酸化炭素と水蒸気を反応させて、二酸化炭素と水素を得る。
本発明の触媒が用いられるシフト反応の温度域は、通常180〜300℃、好ましくは200〜220℃の温度範囲であり、例えば約200℃程度で安定して運転できる。
また、メタノール合成触媒は、水素、一酸化炭素、二酸化炭素を加圧下で反応させ、メタノールと水を得る反応であり、通常200〜300℃、好ましくは220〜260℃で反応させるため、例えば、240℃で安定して運転できる。
【0016】
本発明の銅亜鉛系触媒の調製法は特に限定されるものではないが、好適な一例を挙げるとすればテフロンディスパージョン液を用いた含浸法で、テフロン粒子を銅亜鉛系触媒成分上に担持する方法がある。すなわち、COシフト触媒の製造は、Cu−ZnO系触媒を調製する工程、該触媒をテフロン粒子が分散する溶液(テフロンディスパージョン液)中に含浸させる工程、該テフロン粒子が付着した触媒を乾燥させる工程、該テフロン粒子を触媒上に固着させる工程、を順に行う方法によって実施できる。より具体的には、銅亜鉛系触媒のペレットを調製して、これをテフロンディスパージョン液に含浸した後、乾燥させ固着させる方法が挙げられる。あるいは、銅亜鉛系触媒の粉体を調製して、テフロンディスパージョン液に含浸してから乾燥させた後、ペレット化する方法も挙げられる。なお、後者の固着工程は、乾燥後でもよいし、ペレット化後でもよい。さらに、いずれの固着工程も、使用前の還元処理によって、兼ねることもできる。
【0017】
本発明により得られるCu含有触媒を、固体高分子型燃料電池(PEFC)システム10で用いる場合には、図1に示すような形態が考えられる。改質触媒を有する改質器1を用いて水素を製造する方法であり、水素製造においてはメタン、プロパン等が原料として用いられる。
図1の都市ガス(メタン主成分)又はLPG(プロパン主成分)を原料とする場合には、先ず、臭い成分である硫黄分(S分)を除去する。次いで、約700℃程度にて改質器1の改質触媒によって、下式の反応を生じさせて水素含有ガスを得る。
CH+HO→CO+3H 又は C+3HO→3CO+7H
【0018】
このようにして得たガスは多量の一酸化炭素を含み、このCOは燃料電池の働きを阻害する被毒物質として作用する。そこで、後段のCOシフト触媒2において、約200〜450℃にてシフト反応を生じさせて、COを二酸化炭素に変換する。
COシフト触媒2を経たガスからは一酸化炭素が通常3000〜4000ppm程度にまで減少、除去されているが、燃料電池本体に導入する原料ガスは、通常20ppm以下好ましくは10ppm以下のCO濃度であることが必要であり、そのままの濃度では電池が被毒してしまう。そこで、CO除去触媒3をCOシフト触媒2の後流に設けることにより、更なる一酸化炭素除去を行う。
【0019】
このCO除去装置3では、ガス中の3000〜4000ppmのCOについて、更なる低減を目的に下記(1)式もしくは(2)式、又は、(1)式と(2)式の両方によって触媒反応を行わせる。これにより、LTS装置2で3000〜4000ppmにまで除去された残りのCOは、さらに濃度が低減され、CO濃度は10〜20ppm程度あるいは10ppm以下にまで減少させる。
CO+1/2O → CO      ・・・   (1)
CO+3H   → CH + HO ・・・   (2)
【0020】
このようにCO濃度が低下した水素含有ガスは、燃料電池4に送られて、アノード電極側での電極反応に利用される。
燃料電池4では、アノード電極にてアノード電極触媒により、水素がHから2Hと2eとなり、Hが電解質に拡散し、電子は電極間を繋ぐ線を移動する。一方、カソード電極においてカソード電極触媒により、Hと電子と酸素からHOが生じる。これらの反応を合わせて電池反応が構成され、起電力を得ることができる。
【0021】
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。
【0022】
【実施例】
実施例1および比較例1(COシフト触媒の調製)
図2に、本発明のCOシフト触媒の調製工程のフローを示す。
〔Cu−ZnO触媒成分の調製〕
炭酸ナトリウム2.5モル%を水2リットルに溶解させ、60℃に保温してこのアルカリ溶液をAとした。次に硝酸アルミニウム0.015モル及び硝酸亜鉛0.225モルを水400ミリリットルに溶解させ、60℃に保温した酸性溶液を溶液Bとした。さらに、硝酸銅0.3モルを水400ミリリットルに溶かして60℃に保温した酸性溶液を溶液Dとした。
次いで、攪拌しながら溶液Aに溶液Bを30分にわたり均一に滴下し沈殿生成液Eを得た。次に溶液Dを沈殿生成液Eに30分にわたり均一に滴下し、アルミニウム、亜鉛及び銅を含有した沈殿生成液Gを得た。G液を硝酸で中和し、2時間そのまま攪拌する事により熟成を行い、次に沈殿生成液Gのろ液及びNaイオン、NOイオンが検出されないように十分洗浄した。さらに、100℃で24時間乾燥し、その後、300℃で3時間焼成する事によりLTS触媒を得た。
この触媒粉末を触媒粉末1とする(比較例1の触媒)。
【0023】
〔テフロン粒子の付着〕
打錠成型器により、得られた触媒粉末1をペレットに成型した。その後、テフロンディスパージョン液に含浸・乾燥しテフロンを1重量%担持した。150〜200℃の水素雰囲気でペレットを穏やかに還元し、活性化処理するとともに、テフロンを触媒上に固着した(実施例1の触媒)
【0024】
実施例2
得られた実施例1の触媒および比較例1の触媒について、模擬的な燃料電池システムにおけるLTSとして使用した。運転方法は起動、停止を頻繁に行う模擬DSS運転を行い、シンタリング度合いを調べた。
【0025】
〔試験条件〕
室温から200℃に昇温し、200℃でCO濃度8%(dry)のLTS入口模擬ガスを水/CO比=10mol/molの条件で1時間反応させ、その後、室温まで降温するサイクルを40回行った。そして、150℃におけるCOシフト触媒後流のCO濃度を測定するとともに、試験終了後のシンタリング度合いをX線回折によって調べた。
初期およびDSS運転15、30回後の活性評価試験結果を、表1に記す。
【0026】
【表1】
Figure 2004089813
【0027】
図3に、比較例1の触媒がシンタリングを起こしている場合のX線回折図を示す。図4に、実施例1で得られた触媒がシンタリングを起こしていない場合のX線回折図を示す。
この結果より、テフロンでシンタリング防止をしていない場合には、DSS運転を30回程度で性能が悪化するのに対し、本発明の触媒は触媒性能の劣化が起こらないことがわかった。
【0028】
実施例3
実施例1の触媒および比較例1の触媒を用いて、水素84%、一酸化炭素8%および二酸化炭素8%からなるガスを40気圧、240℃で反応させ、100時間反応後、停止し、再起動する運転にてメタノールを合成した。
その結果を、表2に示す。実施例1の触媒には経時劣化はあるものの、起動停止による劣化は少ないことがわかった。
【0029】
【表2】
Figure 2004089813
【0030】
【発明の効果】
本発明によれば、温度条件や運転条件に依存せず、シンタリングを回避して、触媒劣化による性能低下を起こさないCu含有触媒を提供できる。本発明のCu含有触媒を燃料電池システムのCOシフト触媒(例えばLTS)に用いれば、特にDSS運転においてLTSが劣化する現象を効果的に防止でき、銅亜鉛系触媒を長期間使用できる。
【図面の簡単な説明】
【図1】燃料電池システムの概略構成を模式的に示すブロック図である。
【図2】本発明のCOシフト触媒の調製工程のフローを示す図である。
【図3】比較例1の触媒がシンタリングを起こしている場合のX線回折結果を示す図である。
【図4】実施例1で得られた触媒がシンタリングを起こしていない場合のX線回折結果を示す図である。
【符号の説明】
1  改質触媒
2  Cu含有触媒(COシフト触媒)
3  CO除去触媒
4  燃料電池

Claims (5)

  1. CuおよびZnの少なくとも2種の元素を含むCu含有触媒であって、Cu−ZnO系触媒成分の表面にテフロン粒子が付着していることを特徴とするCu含有触媒。
  2. 前記テフロン粒子が0.2〜5.0重量%付着していることを特徴とする請求項1記載のCu含有触媒。
  3. ガス中の一酸化炭素と水蒸気から二酸化炭素と水素を生成するシフト反応に、COシフト触媒として用いられることを特徴とする、請求項1又は2に記載のCu含有触媒。
  4. ガス中の水素と一酸化炭素もしくは水素と二酸化炭素からメタノールを生成するメタノール合成反応に、メタノール合成触媒として用いられることを特徴とする、請求項1又は2に記載のCu含有触媒。
  5. Cu−ZnO系触媒成分を調製する工程と、該触媒成分をテフロン粒子が分散する溶液中に含浸させる工程と、該テフロン粒子が付着した触媒を乾燥させ固着させる工程と、を含むことを特徴とするCu含有触媒の製造方法。
JP2002252809A 2002-08-30 2002-08-30 Cu含有触媒 Expired - Fee Related JP4246978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252809A JP4246978B2 (ja) 2002-08-30 2002-08-30 Cu含有触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252809A JP4246978B2 (ja) 2002-08-30 2002-08-30 Cu含有触媒

Publications (2)

Publication Number Publication Date
JP2004089813A true JP2004089813A (ja) 2004-03-25
JP4246978B2 JP4246978B2 (ja) 2009-04-02

Family

ID=32058990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252809A Expired - Fee Related JP4246978B2 (ja) 2002-08-30 2002-08-30 Cu含有触媒

Country Status (1)

Country Link
JP (1) JP4246978B2 (ja)

Also Published As

Publication number Publication date
JP4246978B2 (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
RU2393942C2 (ru) Способ приготовления покрытых металлом частиц палладия или сплава палладия
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
KR20070043387A (ko) 일산화탄소 산화 촉매 및 그의 제조 방법
WO2008056621A1 (fr) Agent et procédé de désulfuration du kérosène et système de pile à combustible utilisant ledit agent
JPH11102719A (ja) 一酸化炭素濃度低減装置および一酸化炭素濃度低減方法並びに一酸化炭素選択酸化触媒
JP2006239551A (ja) Coメタン化触媒、co除去触媒装置及び燃料電池システム
JP2003200048A (ja) 水素ガス中のco除去用触媒
JP3943902B2 (ja) 炭化水素用脱硫触媒、脱硫方法および燃料電池システム
JP2005050760A (ja) 固体高分子電解質型燃料電池アノード電極触媒
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
JP4210130B2 (ja) 炭化水素の脱硫触媒、脱硫方法及び燃料電池システム
US8785061B2 (en) CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2003268386A (ja) 炭化水素の脱硫方法および燃料電池システム
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
JP2006346535A (ja) Co除去触媒及び燃料電池システム
JP4246978B2 (ja) Cu含有触媒
JP4127685B2 (ja) 一酸化炭素選択メタン化器、一酸化炭素シフト反応器及び燃料電池システム
JP2005034682A (ja) Co変成触媒およびその製造方法
JP2004075474A (ja) 水性ガスシフト反応方法、該方法を用いた水素製造装置および燃料電池システム
US20050119119A1 (en) Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2006252929A (ja) 燃料電池のdss運転用のco変性触媒、その製造方法及び燃料電池システム
JP4057314B2 (ja) 炭化水素の脱硫方法および燃料電池システム
JP5117014B2 (ja) 灯油用脱硫剤、脱硫方法およびそれを用いた燃料電池システム
JP4569408B2 (ja) 水性ガスシフト反応触媒とこれを用いる水素ガス中の一酸化炭素ガスを除去する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees