JP2004088121A - Active matrix substrate and liquid crystal display - Google Patents

Active matrix substrate and liquid crystal display Download PDF

Info

Publication number
JP2004088121A
JP2004088121A JP2003356613A JP2003356613A JP2004088121A JP 2004088121 A JP2004088121 A JP 2004088121A JP 2003356613 A JP2003356613 A JP 2003356613A JP 2003356613 A JP2003356613 A JP 2003356613A JP 2004088121 A JP2004088121 A JP 2004088121A
Authority
JP
Japan
Prior art keywords
substrate
pixel electrode
insulating film
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003356613A
Other languages
Japanese (ja)
Other versions
JP3792688B2 (en
Inventor
Mitsutoshi Miyasaka
宮坂 光敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003356613A priority Critical patent/JP3792688B2/en
Publication of JP2004088121A publication Critical patent/JP2004088121A/en
Application granted granted Critical
Publication of JP3792688B2 publication Critical patent/JP3792688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an active matrix substrate and a liquid crystal display device which have superior characteristics. <P>SOLUTION: The active matrix substrate is equipped with thin film transistors and data lines and gate lines connected to the thin film transistors. The data lines and the gate lines are arranged so as to intersect each other, and a plurality of insulating films of different kinds are formed between the data lines and the gate at the intersections of the data lines and the gate lines. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は薄膜トランジスタを有するアクティブマトリックス基板(以後AM基板と略記)と液晶表示装置に関する。 The present invention relates to an active matrix substrate having a thin film transistor (hereinafter abbreviated as AM substrate) and a liquid crystal display device.

 図3及び図4は従来技術に依るAM基板を説明した図で有る。 FIGS. 3 and 4 are diagrams illustrating an AM substrate according to the prior art.

 図3に示すAM基板はコプレナー型TFTを画素用スイッチング素子として用いている。図3−aはその平面図で有り、図3−bはB−B’に於ける断面図で有る。このAM基板では絶縁性基板上の最下層にチャンネル領域301、ソース領域302、ドレイン領域303より成るTFTの半導体層が有り、これを覆う様にゲート絶縁膜304が有る。更にその上にゲート電極・線305が乗り、層間絶縁膜306がゲート電極・線305とゲート絶縁膜304を被覆している。
ゲート絶縁膜304と層間絶縁膜306を通じて開穴されたコンタクト・ホール307を介して画素電極308はドレイン領域303と電気的導通が取られ、又データ線309はソース領域302と電気的導通が取られている。通常は画素電極308材料とデータ線309材料は異なっているので、この構造のAM基板を作成するには少なくとも6回の成膜過程に5回のフォトリソグラフィー加工工程が必要で、各画素に対して2個のコンタクト・ホールが存在している。
The AM substrate shown in FIG. 3 uses a coplanar TFT as a pixel switching element. FIG. 3-a is a plan view, and FIG. 3-b is a cross-sectional view along BB '. In this AM substrate, a TFT semiconductor layer including a channel region 301, a source region 302, and a drain region 303 is provided as a lowermost layer on an insulating substrate, and a gate insulating film 304 is provided to cover the semiconductor layer. Further, a gate electrode / line 305 rides thereon, and an interlayer insulating film 306 covers the gate electrode / line 305 and the gate insulating film 304.
The pixel electrode 308 is electrically connected to the drain region 303 via the contact hole 307 opened through the gate insulating film 304 and the interlayer insulating film 306, and the data line 309 is electrically connected to the source region 302. Have been. Normally, the material of the pixel electrode 308 and the material of the data line 309 are different from each other. Therefore, in order to form an AM substrate having this structure, at least six film formation steps require five photolithography processing steps. There are two contact holes.

 図4に示すAM基板はスタガート構造TFTを画素用スイッチング素子として用いている。図4−aはその平面図で有り、図4−bはC−C’に於ける断面図で有る。このAM基板では絶縁性基板上の最下層にチャンネル領域401、ソース領域402、ドレイン領域403が有り、更にこれら半導体層よりも膜厚の厚いソース・パッド404及びドレイン・パッド405が同様に半導体物質に依って最下層に設けられている。ソース領域402の一部はソース・パッド404の一部を被り、ドレイン領域403の一部はドレインパッド405の一部を覆っている。通常ソース領域402及びドレイン領域403とソース・パッド404及びドレイン・パッド405は同質材料で作成され、これらの間の電気的性質は同一で有る。これら半導体層を覆う様にゲート絶縁膜406が有り、更にその上にゲート電極・線407が乗り、層間絶縁膜408がゲート電極・線407とゲート絶縁膜406を被覆している。ゲート絶縁膜406と層間絶縁膜408を通じて開穴されたコンタクト・ホール409を介して画素電極410はドレイン・パッド405と電気的導通が取られ、又データ線411はソース・パッド404と電気的導通が取られている。通常は画素電極410材料とデータ線411材料は異なっているので、この構造のAM基板を作成するには少なくとも7回の成膜過程に6回のフォトリソグラフィー加工工程が必要で、各画素に対して2個のコンタクト・ホールが存在している。 AM The AM substrate shown in FIG. 4 uses a staggered structure TFT as a pixel switching element. FIG. 4-a is a plan view, and FIG. 4-b is a cross-sectional view along C-C '. In this AM substrate, a channel region 401, a source region 402, and a drain region 403 are provided in the lowermost layer on the insulating substrate, and a source pad 404 and a drain pad 405 which are thicker than these semiconductor layers are similarly formed of a semiconductor material. Is provided in the lowermost layer. Part of the source region 402 covers part of the source pad 404, and part of the drain region 403 covers part of the drain pad 405. Normally, the source region 402 and the drain region 403 and the source pad 404 and the drain pad 405 are made of the same material, and their electrical properties are the same. A gate insulating film 406 is provided so as to cover these semiconductor layers, and a gate electrode / line 407 rides thereon, and an interlayer insulating film 408 covers the gate electrode / line 407 and the gate insulating film 406. The pixel electrode 410 is electrically connected to the drain pad 405 through the contact hole 409 opened through the gate insulating film 406 and the interlayer insulating film 408, and the data line 411 is electrically connected to the source pad 404. Has been taken. Normally, the material of the pixel electrode 410 and the material of the data line 411 are different. Therefore, in order to form an AM substrate having this structure, at least seven film formation processes require six photolithography processing steps. There are two contact holes.

 図8及び図9は又、別の従来技術によるAM基板とその製造方法を説明した図で有る。 FIGS. 8 and 9 are diagrams illustrating another conventional AM substrate and its manufacturing method.

 図8及び図9に示すAM基板はコプレナー型TFTを画素用スイッチング素子として用い、ドナー又はアクセプターとなる不純物を含んだ多結晶シリコン膜と前行のゲート線にて保持容量を作っている。(Japan Display ’92 P.451,Hiroshima Japan 1992)図8−aはその平面図で有り、図8−bはB−B’に於ける断面図で、その製造工程が図9に描かれている。このAM基板では絶縁性基板上の最下層上チャンネル領域301,ソース領域302,ドレイン領域303より成るTFTの半導体層とドナー又はアクセプターとなる不純物を含んだ多結晶シリコンに依る保持容量用下部電極811が有る。これらを覆う様にゲート絶縁膜304が有る。更にその上にゲート電極・線305と保持容量用上電極を兼ねる前行のゲート線813が乗り、これらを覆う層間絶縁膜306が設けられている。ゲート絶縁膜304及び層間絶縁膜306を通じて開穴されたコンタクト・ホール307を介して画素電極308はドレイン領域303と電気的導通が取られ、又データ線309はソース領域302と電気的導通が取られている。又、別のコンタクト・ホール812を介して画素電極308は保持容量用下部電極811と電気的導通が取られている。 AM The AM substrate shown in FIGS. 8 and 9 uses a coplanar TFT as a pixel switching element, and forms a storage capacitor with a polycrystalline silicon film containing an impurity serving as a donor or an acceptor and a previous gate line. (Japan Display '92 P.451, Hiroshima Japan 1992) FIG. 8-a is a plan view, and FIG. 8-b is a cross-sectional view along BB ', and the manufacturing process is depicted in FIG. I have. In this AM substrate, a semiconductor layer of a TFT including a lowermost channel region 301, a source region 302, and a drain region 303 on an insulating substrate and a lower electrode 811 for a storage capacitor made of polycrystalline silicon containing impurities serving as donors or acceptors. There is. A gate insulating film 304 is provided to cover these. Further, a gate line 813 of the preceding row, which also serves as the gate electrode / line 305 and the upper electrode for the storage capacitor, is mounted thereon, and an interlayer insulating film 306 covering these is provided. The pixel electrode 308 is electrically connected to the drain region 303 via the contact hole 307 opened through the gate insulating film 304 and the interlayer insulating film 306, and the data line 309 is electrically connected to the source region 302. Has been. The pixel electrode 308 is electrically connected to the storage capacitor lower electrode 811 through another contact hole 812.

 この構造を有するAM基板の製造方法を図9に従って説明する。まず絶縁性基板上に多結晶シリコン膜を堆積し、フォトリソグラフィー加工に依りシリコン膜のパターニングを行い、その後ゲート絶縁膜304を堆積する(図9−a)。次に保持容量用下部電極と化す部位を除いたその他の領域を被覆する様にフォト・レジスト901を形成し、これをマスクとして不純物イオン902を注入し、保持容量用下部電極811を形成する(図9−b)。更にゲート電極・線305及び813をドナー又はアクセプター不純物を含んだシリコン膜等で作成した後、ゲート電極をマスクとして不純物イオン注入を行う事でTFTのチャンネル領域301、ソース領域302、ドレイン領域303が形成される(図9−c)。その後層間絶縁膜306をAPCVD法等で堆積し、コンタクト・ホール307及び812を開孔し(図9−d)、最後にITO等から成る画素電極308とAl等から成るデータ線309の形成に依りAM基板は完成する(図9−e)。通常は画素電極308材料とデータ線309材料は異なっているので、この構造のAM基板を作成するには少なくとも6回の成膜過程に6回のフォトリソグラフィー加工工程が必要で、各画素に対して3個のコンタクト・ホールが存在している。
又、データ線とゲート線の交差部は層間絶縁膜が単層で絶縁を保っており、画素電極308とデータ線309は同層上に存在している。
A method of manufacturing an AM substrate having this structure will be described with reference to FIG. First, a polycrystalline silicon film is deposited on an insulating substrate, the silicon film is patterned by photolithography, and then a gate insulating film 304 is deposited (FIG. 9A). Next, a photoresist 901 is formed so as to cover a region other than a region to be a storage capacitor lower electrode, and impurity ions 902 are implanted using the photoresist 901 as a mask to form a storage capacitor lower electrode 811 ( Fig. 9-b). Further, after the gate electrodes / lines 305 and 813 are formed from a silicon film or the like containing a donor or acceptor impurity, impurity ions are implanted using the gate electrode as a mask to form the TFT channel region 301, source region 302, and drain region 303. Formed (FIG. 9-c). Thereafter, an interlayer insulating film 306 is deposited by an APCVD method or the like, and contact holes 307 and 812 are opened (FIG. 9D). Finally, a pixel electrode 308 made of ITO or the like and a data line 309 made of Al or the like are formed. Accordingly, the AM substrate is completed (FIG. 9-e). Normally, the material of the pixel electrode 308 and the material of the data line 309 are different from each other. Therefore, in order to form an AM substrate having this structure, at least six film forming processes require six photolithography processing steps. There are three contact holes.
In addition, at the intersection of the data line and the gate line, an interlayer insulating film is kept in a single layer to keep the insulation, and the pixel electrode 308 and the data line 309 exist on the same layer.

 しかしながら先に述べた従来の方法に於いては以下の如き問題が指摘されている。 However, the following problems have been pointed out in the above-mentioned conventional method.

 一般にTFT特性はチャンネル領域の膜厚を薄くすればする程良くなる。所が図3のAM基板構造ではチャンネル領域301の膜厚を薄くすると自動的にソース・ドレイン領域の膜厚も薄くなってしまう。ソース・ドレイン領域の膜厚が薄いとコンタクト不良が生じ、沢山有るTFTの内幾つかはデータ線とソース領域間、或いは画素電極とドレイン領域の電気的導通が取れずに欠陥が生ずる。又おびただしきはコンタクト・ホール開穴時にコンタクト・ホール下のソース領域又はドレイン領域が剥がれて基板より離脱してしまい、やはりスイッチ素子として機能し得ない。従って図3の基板構造ではチャンネル領域を薄膜化し得ず、特性の良いTFTをスイッチング素子として使用出来ない。 Generally, the TFT characteristics are improved as the thickness of the channel region is reduced. However, in the AM substrate structure of FIG. 3, when the thickness of the channel region 301 is reduced, the thickness of the source / drain regions is automatically reduced. If the thickness of the source / drain region is small, contact failure occurs, and some of the many TFTs have defects due to lack of electrical continuity between the data line and the source region or between the pixel electrode and the drain region. In addition, when a contact hole is opened, a source region or a drain region below the contact hole peels off and separates from the substrate, so that it cannot function as a switch element. Therefore, in the substrate structure of FIG. 3, the channel region cannot be made thin, and a TFT having good characteristics cannot be used as a switching element.

 一方、図4に示すAM基板構造だと厚いソース・パッドとドレイン・パッドが存在する為、薄いチャンネル部の使用が可能となり、上述の問題はない。しかしながらこのAM基板を作成する為には7回の成膜工程と6回のフォト・リソグラフィー工程が必要で複雑冗長な工程となり歩留まりの低下や製品価格の高騰を招くと言った問題が有る。更に図3又は図4に示すAM基板で有ると各画素に二個のコンタクト・ホールが存在し、微細な画素を作成できないとの問題点も有る。 On the other hand, in the AM substrate structure shown in FIG. 4, since a thick source pad and a drain pad exist, a thin channel portion can be used, and the above-described problem does not occur. However, in order to produce this AM substrate, seven film formation steps and six photolithography steps are required, which is a complicated and redundant step, which causes a problem that the yield is reduced and the product price is increased. Further, in the case of the AM substrate shown in FIG. 3 or FIG. 4, there is a problem that two contact holes exist in each pixel, and a fine pixel cannot be formed.

 又、画素エリアの開口率を上げる目的で容量線を省き、保持容量を前行のゲート線と下部電極にて作る図8の構造のAM基板を作成するには6回の成膜工程と6回のフォト・リソグラフィー工程が必要で、やはり複雑冗長な工程と化し歩留まりの低下や製品価格の高騰を招くとの問題が有る。この構造のAM基板では各画素に三個のコンタクト・ホールが存在する。コンタクト・ホールの大きさを4μm、両側の合わせ余裕を各3μmとするとコンタクト・ホールを形成する為のパッド領域の面積は一個のコンタクト・ホールに対して10μm×10μm=100μm2となり、三個のコンタクト・ホールに依り300μm2の領域が占有されてしまう。高精細液晶表示装置では画素ピッチは縮小する傾向に有り、そのサイズは現在およそ30μm×40μm=1200μm2程度で有るから三個のコンタクト・ホールで全体の25%をも占めてしまう。高精細化を更に推進し、例えば画素ピッチの20μm×30μm=600μm2を実現しようとしても上記三個のコンタクト・ホールの存在それだけで50%の面積が失われてしまい、事実上これ以上の高精細化は出来ないとの課題が有る。即ち、コンタクト・ホール数の削減が強く求められている。更に図3、図4、図8等に示す従来技術のAM基板ではデータ線の配線と画素電極が同層に有る為、画素電極を大きくし得ないとの問題点が有る。加えてこれら従来技術のAM基板を用いて液晶表示装置を作る場合、液晶を挟んで対向する基板上には隣接画素の光漏れを防ぐ為のブラック・ストライプを設ける必要が有り、このブラック・ストライプが各画素電極の縁辺部を完全に覆う様に二つの基板の位置を合わせねばならない。二枚の基板間距離は通常数μm有り、合わせ余裕を考慮するとブラック・ストライプの幅を太くせざるを得ず、その結果出来上がった液晶表示装置の画素開口部はAM基板上の画素電極よりも著しく小さくなるとの問題点が有る。 In order to increase the aperture ratio of the pixel area, the capacity line is omitted and the AM substrate having the structure shown in FIG. This requires a number of photolithography steps, which again results in a complicated and redundant process, which causes a problem of lowering the yield and increasing the product price. In the AM substrate having this structure, each pixel has three contact holes. Assuming that the size of the contact hole is 4 μm and the margins on both sides are 3 μm, the area of the pad region for forming the contact hole is 10 μm × 10 μm = 100 μm 2 for one contact hole, and three The area of 300 μm 2 is occupied by the contact hole. In a high-definition liquid crystal display device, the pixel pitch tends to be reduced and its size is currently about 30 μm × 40 μm = 1200 μm 2, so that three contact holes occupy 25% of the whole. In order to further improve the definition, for example, to realize a pixel pitch of 20 μm × 30 μm = 600 μm 2 , the existence of the above three contact holes alone results in a loss of 50% of the area, and in fact a higher than that. There is a problem that definition cannot be achieved. That is, there is a strong demand for reduction in the number of contact holes. Further, in the conventional AM substrate shown in FIGS. 3, 4, 8 and the like, since the data line wiring and the pixel electrode are in the same layer, there is a problem that the pixel electrode cannot be enlarged. In addition, when a liquid crystal display device is manufactured using these conventional AM substrates, it is necessary to provide a black stripe on the substrate opposed to the liquid crystal to prevent light leakage from adjacent pixels. Must completely align the two substrates so that the edge of each pixel electrode is completely covered. The distance between the two substrates is usually several μm, and the width of the black stripe must be increased in consideration of the margin for alignment. As a result, the pixel opening of the resulting liquid crystal display device is larger than the pixel electrode on the AM substrate. There is a problem that it becomes extremely small.

 本発明は上記の事情に鑑みてなされた物で、その目的とする所は半導体層を薄くし得て特性の良いTFTをスイッチング素子としている簡単な構造のAM基板とその容易な製造方法を提供する事に有る。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an AM substrate having a simple structure in which a semiconductor layer can be thinned and a TFT having good characteristics is used as a switching element, and an easy manufacturing method thereof. It is to do.

 又、本発明はコンタクト・ホール数を削減して精細化を進めたり、開口率を向上させるAM基板とその容易な製造方法を提供する事に有る。 Another object of the present invention is to provide an AM substrate capable of reducing the number of contact holes to promote fineness and improving an aperture ratio and an easy manufacturing method thereof.

課題を解決する為の手段Means to solve the problem

 本発明のアクティブマトリックス基板は、薄膜トランジスタと、前記薄膜トランジスタに接続されたデータ線及びゲート線と、を有するアクティブマトリックス基板において、前記データ線と前記ゲート線とは互いに交差するよう配置され、前記データ線及び前記ゲート線の交差部分においては、前記データ線と前記ゲート線との間に互いに絶縁膜種が異なる複数の絶縁膜が形成されてなることを特徴とする。 An active matrix substrate according to the present invention is an active matrix substrate including a thin film transistor, and a data line and a gate line connected to the thin film transistor, wherein the data line and the gate line are arranged so as to intersect with each other, and the data line A plurality of insulating films having different types of insulating films are formed between the data lines and the gate lines at intersections of the gate lines.

 また、本発明の液晶表示装置は。上記アクティブマトリックス基板と対向基板とが対向配置されてなることを特徴とする。 は Also, what is the liquid crystal display device of the present invention? The active matrix substrate and the opposing substrate are arranged to face each other.

 以下本発明の一実施例を図面を用いて詳述するが、本発明が以下の実施例に限定される物ではない。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following embodiment.

 図1は本発明に依るAM基板の一例を説明した図で、図2−a〜cは本発明に依るAM基板の製造工程を断面で示した図で有る。 FIG. 1 is a diagram illustrating an example of an AM substrate according to the present invention, and FIGS. 2A to 2C are cross-sectional views illustrating a process of manufacturing an AM substrate according to the present invention.

 図1−aは平面図で図1−bはA−A’に於ける断面図で有る。本発明に依るAM基板では絶縁性基板上の最下層にチャンネル領域101、ソース領域102、ドレイン領域103から成る半導体層が有り、同層上にモリブデン、タングステン、クロム、バナジウム、ニオブ、タンタル等の高融点金属に依るデータ線104と同じ金属に依る画素電極取り出しパッド105が設けられている。ソース領域102の一部はデータ線104の一部を被い、ドレイン領域103の一部は金属の画素電極取り出しパッド105の一部を被っている。これら半導体層と金属データ線、金属画素電極取り出しパッドを覆う様にゲート絶縁膜106が有り、ゲート絶縁膜上にゲート電極・線108が有る。ゲート絶縁膜には金属パッド105上にコンタクト・ホール107が開穴されており、このコンタクト・ホールを介してゲート絶縁膜上に画素電極109が形成されている。本実施例1では画素電極とゲート電極が同一材料で同一層上に形成されているが、この材質は異なっても構わぬし、又別層上に形成されて居ても構わない。例えばコンタクト・ホール開穴時に画素電極領域のゲート絶縁膜も同時に取り除き、画素電極を半導体層などと同層の最下層に設ける事も可能で有る。 FIG. 1-a is a plan view, and FIG. 1-b is a cross-sectional view along A-A ′. In the AM substrate according to the present invention, there is a semiconductor layer including a channel region 101, a source region 102, and a drain region 103 in the lowermost layer on the insulating substrate, and molybdenum, tungsten, chromium, vanadium, niobium, tantalum, and the like on the same layer. A pixel electrode extraction pad 105 made of the same metal as the data line 104 made of a high melting point metal is provided. A part of the source region 102 covers a part of the data line 104, and a part of the drain region 103 covers a part of a metal pixel electrode extraction pad 105. A gate insulating film 106 is provided so as to cover these semiconductor layers, metal data lines, and metal pixel electrode extraction pads, and a gate electrode / line 108 is provided on the gate insulating film. In the gate insulating film, a contact hole 107 is formed on the metal pad 105, and a pixel electrode 109 is formed on the gate insulating film through the contact hole. In the first embodiment, the pixel electrode and the gate electrode are formed of the same material on the same layer. However, the materials may be different or may be formed on different layers. For example, it is also possible to remove the gate insulating film in the pixel electrode region at the time of opening the contact hole and provide the pixel electrode in the lowermost layer of the same layer as the semiconductor layer.

 この本発明に依るAM基板の製造方法を図2を用いて説明する。まずガラス基板などの絶縁性基板上に金属膜を蒸着法或いはスパッター法などで堆積する。本実施例1ではスパッタ法に依り基板温度150℃にてクロムを2000Å堆積した。この他にもモリブデンやタングステン等の高融点金属も可能で有る。この時のクロムのシート抵抗は1・12Ω/□で有った。次にフォト・リソグラフィ工程に依りこの金属膜を加工してデータ線104と画素電極取り出しパッド105を形成する。(図2−a)続いてLPCVD法等で半導体膜を形成する。本実施例1ではLPCVD法に依り多結晶シリコン膜を堆積した。基板温度は555℃で多結晶シリコン膜堆積時のモノシラン分圧は0.94mtorrで有った。多結晶シリコン膜の膜厚は280Åで堆積時間は1時間5分50秒で有った。続いてフォト・リソグラフィ工程に依り半導体膜を加工し、その後ECRーPECVD法等でゲート絶縁膜106を形成する。本実施例1では基板温度100℃で1200ÅにSiO2 膜を堆積した。(図2−b)次にフォト・リソグラフィ工程に依り画素電極取り出しパッド上にコンタクト・ホール107を開穴し、透明電気伝導性膜を形成する。本実施例1ではスパッター法に依りインジウム・錫酸化物(ITO)を2500Å堆積した。この時のシート抵抗は28Ω/□で有った。その後フォト・リソグラフィ工程に依りゲート電極・線108と画素電極109を形成した。次に質量非分離型イオン注入装置に依りドナー又はアクセプターとなる不純物をゲート電極をマスクとして半導体膜に打ち込み、チャンネル領域101とソース領域102及びドレイン領域103を形成する。本実施例1ではn型電界効果トランジスタの作成を目指し、水素希釈されたフォスフィン(PH3) を90kvの加速電圧で5×10151/cm2 打ち込んだ。その後窒素雰囲気下350℃2時間の熱処理で注入イオンを活性化させ、AM基板は完成する(図2−c)。 The method of manufacturing an AM substrate according to the present invention will be described with reference to FIG. First, a metal film is deposited on an insulating substrate such as a glass substrate by an evaporation method or a sputtering method. In the first embodiment, 2000 mm of chromium was deposited at a substrate temperature of 150 ° C. by a sputtering method. In addition, refractory metals such as molybdenum and tungsten are also possible. At this time, the sheet resistance of chromium was 1.12 Ω / □. Next, the metal film is processed by a photolithography process to form a data line 104 and a pixel electrode extraction pad 105. (FIG. 2-A) Subsequently, a semiconductor film is formed by an LPCVD method or the like. In the first embodiment, a polycrystalline silicon film is deposited by the LPCVD method. The substrate temperature was 555 ° C., and the monosilane partial pressure during deposition of the polycrystalline silicon film was 0.94 mtorr. The thickness of the polycrystalline silicon film was 280 ° and the deposition time was 1 hour, 5 minutes, and 50 seconds. Subsequently, the semiconductor film is processed by a photolithography process, and then a gate insulating film 106 is formed by ECR-PECVD or the like. In Example 1, an SiO 2 film was deposited at a substrate temperature of 100 ° C. and 1200 °. (FIG. 2B) Next, a contact hole 107 is formed on the pixel electrode take-out pad by a photolithography process to form a transparent electrically conductive film. In Example 1, indium tin oxide (ITO) was deposited at 2500 ° by a sputtering method. At this time, the sheet resistance was 28Ω / □. Thereafter, a gate electrode / line 108 and a pixel electrode 109 were formed by a photolithography process. Next, an impurity serving as a donor or an acceptor is implanted into the semiconductor film using a gate electrode as a mask by a mass non-separable ion implantation apparatus, so that a channel region 101, a source region 102, and a drain region 103 are formed. In the first embodiment, 5 × 10 15 1 / cm 2 of phosphine (PH 3 ) diluted with hydrogen was implanted at an acceleration voltage of 90 kV with the aim of forming an n-type field effect transistor. Thereafter, the implanted ions are activated by a heat treatment at 350 ° C. for 2 hours in a nitrogen atmosphere to complete the AM substrate (FIG. 2C).

 このようにして試作したAM基板のTFTはオン電流(Vds=4v、Vgs=10v L/W=10μm/10μmのIds)は1.2μA、オフ電流(Vds=4v、Vgs=0v L/W=10μm/10μmのIds)は0.067pAと良好なスイッチング特性を示し、優良なAM基板となった。これは本発明のAM基板構造でチャンネル部の膜厚を十分薄くし得た事に起因する。又コンタクト不良等の問題も生じ得なかった。更に本発明に依ると各画素毎のコンタクト・ホールの数が半減しそれに伴い画素エリアの開口率が向上し、コンタクト・ホールに起因する欠陥も半減出来た。加えて、本発明は4回の成膜工程と4回のフォト・リソグラフィー工程という簡単製造方法から成っている。
(実施例2)
 図5は本発明に依るAM基板の一例を説明した図で、図5−aは平面図で図5−bはA−A’に於ける断面図で有る。本実施例2に依るAM基板では第一絶縁層で有る絶縁性基板上にチャンネル領域101、ソース領域102、ドレイン領域103から成る能動層半導体膜が有り、同層上にモリブデン、タングステン、クロム、バナジウム、ニオブ、タンタル等の高融点金属に依るデータ線104と同じ金属に依る画素電極取り出しパッド105が設けられている。ソース領域102の一部はデータ線104の一部を被い、ドレイン領域103の一部は金属の画素電極取り出しパッド105の一部を被っている。これら半導体層と金属データ線、金属画素電極取り出しパッドを覆う様に第二絶縁層で有るゲート絶縁膜106が有り、この第二絶縁層上にゲート電極・線108が有る。更にこれらの上には第三絶縁層で有る層間絶縁膜110が有る。ゲート絶縁膜及び層間絶縁膜には金属パッド105上にコンタクト・ホール107が開穴されており、このコンタクト・ホールを介して第三絶縁層で有る層間絶縁膜上に画素電極109が形成されている。本実施例2では第一絶縁層上に画素電極取り出しパッド105を設けたが、能動層半導体膜がコンタクト不良等の問題を生じさせぬに十分な厚みを有していれば、この画素電極取り出しパッドを省き、コンタクト・ホール107を直接ドレイン領域103上に開口しても良い。これに依り画素電極取り出しパッドがなくなった分だけ画素開口率が向上する。ゲート電極・線108としてはアルミニウム、銅、ニッケル、鉄、クロム、モリブデン、タングステン、タンタル等各種金属が可能で有る。又、画素電極109としてはインジウム錫酸化物(ITO)等の透明導電物質の他、反射型液晶表示装置に本発明を用いる場合、金属物質で有っても構わない。本実施例2ではデータ線とゲート線、画素電極がそれぞれ別層上に形成されている為、画素電極を可能な限り大きくし得る。画素電極109の縁辺部はゲート線とは層間絶縁膜を介して重なり、又データ線とは層間絶縁膜及びゲート絶縁膜を介して重なっている。データ線とゲート線は本実施例2では金属で有り、共に電気伝導性遮光物質で有るから、これらの両線は画素電極の縁辺部と重なる事に依り、ブラック・ストライプとなっている。即ち、本実施例2のAM基板を用いると、対向基板側に太いブラック・ストライプを作成する必要がなくなり、出来上がった液晶表示装置の実質的開口率が大きく向上するので有る。
The TFT of the AM substrate thus prototyped has an on-current (Vds = 4 v, Vgs = 10 v Lds / Ids of 10 μm / 10 μm) of 1.2 μA, and an off-current (Vds = 4 v, Vgs = 0 v L / W = (Ids of 10 μm / 10 μm) showed good switching characteristics of 0.067 pA, and was an excellent AM substrate. This is because the channel thickness of the AM substrate structure of the present invention can be made sufficiently small. Also, no problems such as poor contact could occur. Further, according to the present invention, the number of contact holes for each pixel was reduced by half, the aperture ratio of the pixel area was improved, and the defects caused by the contact holes were reduced by half. In addition, the present invention comprises a simple manufacturing method of four film forming steps and four photolithography steps.
(Example 2)
FIG. 5 is a view for explaining an example of an AM substrate according to the present invention. FIG. 5-a is a plan view and FIG. 5-b is a cross-sectional view along AA '. In the AM substrate according to the second embodiment, an active layer semiconductor film including a channel region 101, a source region 102, and a drain region 103 is provided on an insulating substrate serving as a first insulating layer, and molybdenum, tungsten, chromium, A pixel electrode extraction pad 105 made of the same metal as the data line 104 made of a high melting point metal such as vanadium, niobium, and tantalum is provided. A part of the source region 102 covers a part of the data line 104, and a part of the drain region 103 covers a part of a metal pixel electrode extraction pad 105. A gate insulating film 106 serving as a second insulating layer is provided so as to cover these semiconductor layers, metal data lines, and metal pixel electrode take-out pads, and a gate electrode / line 108 is provided on the second insulating layer. Further, on these, there is an interlayer insulating film 110 which is a third insulating layer. A contact hole 107 is formed in the gate insulating film and the interlayer insulating film on the metal pad 105, and a pixel electrode 109 is formed on the interlayer insulating film serving as the third insulating layer through the contact hole. I have. In the second embodiment, the pixel electrode take-out pad 105 is provided on the first insulating layer. However, if the active layer semiconductor film has a thickness sufficient to prevent a problem such as a contact failure, the pixel electrode take-out pad is formed. The pad may be omitted and the contact hole 107 may be opened directly on the drain region 103. As a result, the pixel aperture ratio is improved by the amount corresponding to the elimination of the pixel electrode extraction pad. As the gate electrode / line 108, various metals such as aluminum, copper, nickel, iron, chromium, molybdenum, tungsten, and tantalum can be used. The pixel electrode 109 may be made of a transparent conductive material such as indium tin oxide (ITO) or a metal material when the present invention is used in a reflective liquid crystal display device. In the second embodiment, since the data line, the gate line, and the pixel electrode are formed on different layers, the pixel electrode can be made as large as possible. The edge of the pixel electrode 109 overlaps with the gate line via an interlayer insulating film, and overlaps with the data line via an interlayer insulating film and a gate insulating film. Since the data line and the gate line are made of metal in the second embodiment and both are made of an electrically conductive light-shielding substance, these lines are black stripes because they overlap with the edge of the pixel electrode. That is, when the AM substrate of the second embodiment is used, it is not necessary to form a thick black stripe on the counter substrate side, and the substantial aperture ratio of the completed liquid crystal display device is greatly improved.

 次に本発明に依るAM基板の製造方法を説明する。まずガラス基板などの絶縁性基板上に金属膜を蒸着法或いはスパッター法などで堆積する。この金属としては前述した高融点金属が好ましいが、電気伝導性遮光物質で有れば金属シリサイド等の非金属も可能で有る。次にフォト・リソグラフィ工程に依りこの金属膜を加工してデータ線104と画素電極取り出しパッド105を形成する。続いて半導体膜を形成する。半導体膜の形成には実施例1で述べた様にLPCVD法に依り555℃程度以下の温度で直接多結晶シリコン膜を堆積する方法の他にも多々可能で有る。例えばモノシラン(SiH4)やジシラン(Si26)を原料として550℃程度以下の温度で非晶質半導体膜を堆積した後、600℃程度以下の炉内で熱処理を施して結晶化させる方法やレーザー光やアークランプ光の光を短時間照射して結晶化させる方法等も有効で有る。又、半導体膜もシリコンに限られず、シリコン・ゲルマニウム膜等各種半導体膜も可能で有る。これらの工程はいずれも600℃程度以下とデータ線等の金属材料の融点に比べて可成低温なのでデータ線等が熱劣下する事は無い。続いてフォト・リソグラフィ工程に依り半導体膜を加工し、その後ECRーPECVD法等でゲート絶縁膜106を形成する。 Next, a method of manufacturing an AM substrate according to the present invention will be described. First, a metal film is deposited on an insulating substrate such as a glass substrate by an evaporation method or a sputtering method. As the metal, the above-mentioned high melting point metal is preferable, but a nonmetal such as metal silicide is also possible as long as it is an electrically conductive light-shielding substance. Next, the metal film is processed by a photolithography process to form a data line 104 and a pixel electrode extraction pad 105. Subsequently, a semiconductor film is formed. As described in the first embodiment, a semiconductor film can be formed by various methods other than the method of directly depositing a polycrystalline silicon film at a temperature of about 555 ° C. or lower by the LPCVD method. For example, a method of depositing an amorphous semiconductor film at a temperature of about 550 ° C. or less using monosilane (SiH 4 ) or disilane (Si 2 H 6 ) as a raw material and then performing a heat treatment in a furnace at about 600 ° C. or less for crystallization. For example, a method of irradiating laser light or arc lamp light for a short time to crystallize is also effective. Further, the semiconductor film is not limited to silicon, and various semiconductor films such as a silicon-germanium film are also possible. In all of these steps, the data lines and the like do not deteriorate due to heat, since the temperature is about 600 ° C. or less, which is lower than the melting point of the metal material such as the data lines. Subsequently, the semiconductor film is processed by a photolithography process, and then a gate insulating film 106 is formed by ECR-PECVD or the like.

 ECR−PECVD法を用いるとゲート絶縁膜を100℃程度の温度で形成出来る。この他にもAPCVD法やオゾン(O3)を用いたCVD法などで350℃以下の温度でゲート絶縁膜を形成しても良い。続いてゲート絶縁膜上にスパッター法などで金属膜を堆積し、フォト、リソグラフィ工程に依りゲート電極・線を形成する。スパッター法で金属膜を堆積する場合、基板温度は300℃以下が好ましい。次に質量非分離型イオン注入装置に依りドナー又はアクセプターとなる不純物をゲート電極をマスクとして半導体膜に打ち込み、チャンネル領域101とソース領域102及びドレイン領域103を形成する。質量非分離型イオン注入装置に依り、不純物元素の水素化物をイオン注入すると、350℃程度以下の低温熱処理にて不純物イオンを活性化出来る。続いて層間絶縁膜110を350℃程度以下にて各種CVD法で形成する。その後層間絶縁膜の焼き締めと注入イオンの活性化を兼ねて窒素雰囲気下350℃程度以下の温度で1時間から2時間の熱処理を施す。最後にコンタクト・ホール107を開孔し、ITO等の導電物質を層間絶縁膜上にスパッター法などで堆積し、フォト・リソグラフィ工程に依り画素電極109を形成してAM基板は完成する。スパッター法で導電物質を堆積すると基板温度は300℃程度以下に押さえる事が出来る。本実施例2に依ると、ゲート絶縁膜形成後の工程最高温度が350℃程度と低く、しかもその時間も数時間程度で有る。この為データ線やゲート電極・線等の電気伝導性遮光物質の熱劣下は全く生じない。本実施例2ではAM基板の完成迄に6回の成膜過程と5回のフォト・リソグラフィ加工工程が必要で、これは図3に示す従来技術の成膜回数とフォト・リソグラフィ回数と同じで有る。しかしながら従来データ線配線と画素電極が同層に有ったのを本発明では別層にする事が出来、これに依り、画素電極面積を拡大せしめた。のみならず、本発明では画素電極とデータ線、並びにゲート線を重ねる事が可能で、対向基板のブラック・ストライプを省略出来るので有る。又、従来は各画素に2個のコンタクト・ホールが存在したが、本発明では1個と半減させ、これに依り微細画素を有する高精細液晶表示装置も実現するので有る。
(実施例3)
 図6は本発明によるAM基板の一例を説明した図で、図7−a〜dは本発明に依るAM基板の製造工程を断面で示した図で有る。図6−aは平面図で図6−bはA−A’に於ける断面図で有る。
The gate insulating film can be formed at a temperature of about 100 ° C. by using the ECR-PECVD method. Alternatively, the gate insulating film may be formed at a temperature of 350 ° C. or lower by an APCVD method, a CVD method using ozone (O 3 ), or the like. Subsequently, a metal film is deposited on the gate insulating film by a sputtering method or the like, and a gate electrode and a line are formed by a photolithography process. When depositing a metal film by a sputter method, the substrate temperature is preferably 300 ° C. or lower. Next, an impurity serving as a donor or an acceptor is implanted into the semiconductor film using a gate electrode as a mask by a mass non-separable ion implantation apparatus, so that a channel region 101, a source region 102, and a drain region 103 are formed. When a hydride of an impurity element is ion-implanted by a mass non-separable ion implantation apparatus, impurity ions can be activated by a low-temperature heat treatment at about 350 ° C. or less. Subsequently, an interlayer insulating film 110 is formed at about 350 ° C. or lower by various CVD methods. After that, a heat treatment is performed in a nitrogen atmosphere at a temperature of about 350 ° C. or less for about 1 to 2 hours in order to bake the interlayer insulating film and activate the implanted ions. Finally, a contact hole 107 is opened, a conductive material such as ITO is deposited on the interlayer insulating film by a sputtering method or the like, and a pixel electrode 109 is formed by a photolithography process to complete the AM substrate. When a conductive material is deposited by a sputter method, the substrate temperature can be suppressed to about 300 ° C. or less. According to the second embodiment, the maximum process temperature after forming the gate insulating film is as low as about 350 ° C., and the time is about several hours. Therefore, there is no thermal degradation of the electrically conductive light-shielding material such as the data line, the gate electrode and the line. In the second embodiment, six film formation processes and five photolithography processing steps are required until the AM substrate is completed, which is the same as the number of film formations and photolithography in the prior art shown in FIG. Yes. However, in the present invention, the data line wiring and the pixel electrode are conventionally in the same layer, but can be formed in a different layer in the present invention, thereby increasing the pixel electrode area. In addition, in the present invention, the pixel electrode, the data line, and the gate line can be overlapped, and the black stripe on the opposite substrate can be omitted. Conventionally, two contact holes existed in each pixel. However, in the present invention, the number of contact holes is reduced to one, thereby realizing a high-definition liquid crystal display device having fine pixels.
(Example 3)
FIG. 6 is a diagram illustrating an example of an AM substrate according to the present invention, and FIGS. 7A to 7D are cross-sectional views illustrating a process of manufacturing an AM substrate according to the present invention. FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along AA ′.

 図6及び図7に示すAM基板はコプレナー型TFTを画素用スイッチング素子として用いており保持容量を有している。本発明のAM基板では第一絶縁層で有る絶縁性基板上にチャンネル領域101、ソース領域102、ドレイン領域103より成る能動層半導体膜と、モリブデン、タングステン、クロム、バナジウム、ニオブ、タンタル等の高融点金属に依るデータ線104と同金属より成る画素電極取り出しパッド105と、同金属より成る保持容量用下部電極611が形成されている。これらを覆う様にゲート絶縁膜106が有る。ゲート絶縁膜は第二絶縁層で有り、この上にゲート電極線108と画素電極109と保持容量用上電極を兼ねる前行のゲート線613が設けられている。画素電極109はゲート絶縁膜に開孔されたコンタクト・ホール107を通じて画素電極取り出しパッド105と電気的導通が取られ、別なコンタクト・ホール612を通じて保持容量用下部電極611と導通が取られている。この構造だと能動層半導体膜の膜厚は膜が膜として存在し得る極限の数十Åまで薄くする事が可能で有る。能動層半導体膜がコンタクト不良等を生じさせぬに十分な程厚ければ、画素電極取り出しパッドを省いてドレイン領域103に画素電極109のコンタクトを直接取っても良い。 The AM substrate shown in FIGS. 6 and 7 uses a coplanar TFT as a pixel switching element and has a storage capacitor. In the AM substrate of the present invention, an active layer semiconductor film including a channel region 101, a source region 102, and a drain region 103 and a high-level material such as molybdenum, tungsten, chromium, vanadium, niobium, and tantalum are formed on an insulating substrate which is a first insulating layer. A data line 104 made of a melting point metal, a pixel electrode extraction pad 105 made of the same metal, and a storage capacitor lower electrode 611 made of the same metal are formed. A gate insulating film 106 is provided to cover these. The gate insulating film is a second insulating layer, on which a gate electrode line 108, a pixel electrode 109, and a previous gate line 613 also serving as a storage capacitor upper electrode are provided. The pixel electrode 109 is electrically connected to the pixel electrode take-out pad 105 through the contact hole 107 formed in the gate insulating film, and is connected to the storage capacitor lower electrode 611 through another contact hole 612. . With this structure, it is possible to reduce the thickness of the active layer semiconductor film to the limit of several tens of kilometers where the film can exist as a film. If the active layer semiconductor film is thick enough not to cause a contact failure or the like, the pixel electrode take-out pad may be omitted and the pixel electrode 109 may be directly contacted with the drain region 103.

 この構造を有するAM基板の製造方法を図7に従って説明する。まず第一絶縁層で有る絶縁性基板上に金属膜等の電気伝導性物質を蒸着法或いはスパッター法などで堆積する。この金属としては前述した高融点金属が好ましいが、後の半導体膜形成過程にて被る熱環境に対して安定で有るならばその他の金属材料や非金属材料などの電気伝導性物質も可能で有る。次にフォト・リソグラフィ工程に依りこの電気伝導物質のパターニングを行い、画素電極取りだしパッド105、データ線104、保持容量用下部電極611を形成する(図7−a)。尚、画素電極取りだしパッドが不要の場合はこのパターニングで画素電極取りだしパッドを残す必要は無い。続いて半導体膜を堆積する。本発明のAM基板製造工程中の最も厳しい熱環境はこの半導体膜堆積工程で有る為、これを低温化するとデータ線等の電気伝導性物質の選択種が広がり、又絶縁性基板の大型化や低価格化も容易となる。半導体膜として多結晶シリコン膜を用いる場合、LPCVD法で原料ガスとしてモノシランを用い、堆積温度555℃以下、モノシラン分圧1mtorr以下で直接高品質膜を堆積する方法が有る。又、LPCVD法で原料ガスとしてジシラン(Si26)を用い、堆積温度450℃程度、圧力0.5torr程度で非晶質シリコン膜を堆積した後、結晶化を進める方法が有る。非晶質膜の結晶化を進めるには600℃程度の温度で数時間熱処理を行う方法や、所謂ラピッド・サーマル・アニーリング(RTA)と呼ばれる急速熱処理にて900℃程度に数秒間加熱する方法や、レーザー照射等が有る。レーザー照射では例えばXeClエキシマレーザーを50mJ/cm2から500mJ/cm2の強度で50ns程度の時間照射して、瞬間的にシリコン膜を溶融させた後結晶化させる方法で有る。この方法だと加熱時間が窮めて短い為、絶縁性基板やデータ線等の電気伝導性物質は殆ど熱劣化を受けない。又、半導体膜としてシリコン・ゲルマニウムを用いると多結晶をより低温で得る事が出来る。この他、スパッター法で非晶質半導体膜を堆積した後上記の各手法にて結晶化を進める方法も有効で有る。この様にして半導体膜が形成された後、フォト・リソグラフィ工程に依り半導体膜を加工する(図7ーb)。その後ECR−PECVD法、オゾンTEOS(Si−(CH3−CH2−O)4)法等でゲート絶縁膜106を形成し、フォト・リソグラフィ法にてコンタクト・ホール107及び612を開孔する(図7−c)。次に電気伝導物質を堆積し、更にフォト・リソグラフィ加工に依り、第二絶縁層で有るゲート絶縁膜上にゲート電極・線108画素電極109を形成する。この画素電極はコンタクト・ホール612を通じて保持容量用下部電極611と電気的に導通状態に有り、保持容量は下部電極611と前行のゲート線613にて作られる。最後にゲート電極をマスクとしてイオン注入を行い、チャンネル領域101、ソース領域102、ドレイン領域103を形成する。注入イオンの活性化はレーザ照射やRTAなどの光照射が有効で有る。ゲート電極・線や画素電極に透明物質を用いると光は殆ど透過し、これらの温度上昇は短時間の光照射では見られず熱劣下も無い。又、金属材料をこれらに用いた場合、光は殆ど反射し、やはり熱劣下は生じない。データ線や画素電極取りだしパッド等についても同様で有る。その他実施例1で説明した様に質量非分離型イオン注入装置にてイオン注入し、300℃から350℃の低温で注入イオンの活性化を行っても良い。この様にしてAM基板は完成する(図7−d)。 A method of manufacturing an AM substrate having this structure will be described with reference to FIG. First, an electrically conductive substance such as a metal film is deposited on an insulating substrate serving as a first insulating layer by a vapor deposition method, a sputtering method, or the like. As the metal, the above-described high melting point metal is preferable, but other conductive materials such as other metal materials and non-metal materials are also possible as long as they are stable against the thermal environment in the subsequent semiconductor film formation process. . Next, the electrically conductive material is patterned by a photolithography process to form a pixel electrode extraction pad 105, a data line 104, and a storage capacitor lower electrode 611 (FIG. 7A). If the pixel electrode take-out pad is unnecessary, it is not necessary to leave the pixel electrode take-out pad by this patterning. Subsequently, a semiconductor film is deposited. Since the most severe thermal environment in the AM substrate manufacturing process of the present invention is the semiconductor film deposition process, when the temperature is lowered, the selection of the electrically conductive material such as the data line is widened, and the size of the insulating substrate is increased. It is easy to reduce the price. When a polycrystalline silicon film is used as a semiconductor film, there is a method of directly depositing a high quality film at a deposition temperature of 555 ° C. or less and a monosilane partial pressure of 1 mtorr or less using monosilane as a source gas by LPCVD. Further, there is a method in which disilane (Si 2 H 6 ) is used as a source gas by LPCVD to deposit an amorphous silicon film at a deposition temperature of about 450 ° C. and a pressure of about 0.5 torr, and then proceed with crystallization. In order to promote crystallization of the amorphous film, a method of performing heat treatment at a temperature of about 600 ° C. for several hours, a method of heating to about 900 ° C. for several seconds by a rapid heat treatment called so-called rapid thermal annealing (RTA), And laser irradiation. In the laser irradiation, for example, a method of irradiating a XeCl excimer laser with an intensity of 50 mJ / cm 2 to 500 mJ / cm 2 for about 50 ns to instantaneously melt and then crystallize the silicon film is used. According to this method, since the heating time is extremely short, the electrically conductive material such as the insulating substrate and the data line hardly undergoes thermal deterioration. When silicon germanium is used as the semiconductor film, polycrystal can be obtained at a lower temperature. In addition, a method of depositing an amorphous semiconductor film by a sputtering method and then proceeding with crystallization by each of the above methods is also effective. After the semiconductor film is formed in this manner, the semiconductor film is processed by a photolithography process (FIG. 7B). Thereafter ECR-PECVD method, an ozone TEOS (Si- (CH 3 -CH 2 -O) 4) method such as a gate insulating film 106 by forming and opening a contact hole 107 and 612 by a photo-lithography method ( Fig. 7-c). Next, an electric conductive material is deposited, and a gate electrode / line 108 and a pixel electrode 109 are formed on the gate insulating film as the second insulating layer by photolithography. This pixel electrode is electrically connected to the storage capacitor lower electrode 611 through the contact hole 612, and the storage capacitor is formed by the lower electrode 611 and the previous gate line 613. Finally, ion implantation is performed using the gate electrode as a mask to form a channel region 101, a source region 102, and a drain region 103. Laser irradiation or light irradiation such as RTA is effective for activating the implanted ions. When a transparent substance is used for the gate electrode, the line, and the pixel electrode, light is almost transmitted, and the temperature rise is not seen by short-time light irradiation, and there is no thermal deterioration. Further, when a metal material is used for these, light is almost reflected, and no thermal deterioration occurs. The same applies to data lines, pixel electrode take-out pads, and the like. In addition, as described in the first embodiment, ions may be implanted by a mass non-separable ion implantation apparatus, and the implanted ions may be activated at a low temperature of 300 ° C. to 350 ° C. Thus, the AM substrate is completed (FIG. 7D).

 従来は保持容量を有するAM基板を作成するのに6回の成膜過程に6回のフォト・リソグラフィ加工工程が必要で有ったが、本発明に依り4回の成膜過程と4回のフォト・リソグラフィに簡略化が可能となった。又従来は各画素に対して3個のコンタクト・ホールが存在していたのに対し、本発明ではこれを2個に削減し得た。又、データ線及び画素電極取り出しパッドの一部をソース・ドレイン領域の一部が被覆する為、能動層半導体膜の膜厚を数十Å迄薄く出来、高性能TFTが得られる。尚、本実施例3では画素電極取り出しパッドと保持容量用下部電極を分離して形成した為、画素電極は二個のコンタクト・ホール107及び612を通じて導通が取られているが、画素電極取り出しパッドと保持容量用下部電極を分離せず、つながった一つの島で形成した場合、コンタクト・ホールは一個で済む。この場合各画素に対してコンタクト・ホールは一個となり、画素の更なる微細化が可能となる。
(実施例4)
 図10は本発明に依るAM基板の一例を説明した図で、図11−a〜dは本発明によるAM基板の製造工程を断面で示した図で有る。図10−aは平面図で図10−bはA−A’に於ける断面図で有る。
Conventionally, six photolithography processing steps were required for six film formation processes to produce an AM substrate having a storage capacity. However, according to the present invention, four film formation processes and four Photolithography can be simplified. Also, while three contact holes existed for each pixel in the past, the present invention could reduce this to two. Further, since part of the source / drain region covers a part of the data line and the pixel electrode take-out pad, the thickness of the active layer semiconductor film can be reduced to several tens of mm, and a high-performance TFT can be obtained. In the third embodiment, since the pixel electrode take-out pad and the storage capacitor lower electrode are formed separately, the pixel electrode is electrically connected through the two contact holes 107 and 612. And the lower electrode for the storage capacitor are not separated from each other and are formed by one connected island, only one contact hole is required. In this case, one contact hole is provided for each pixel, and the pixel can be further miniaturized.
(Example 4)
FIG. 10 is a diagram illustrating an example of an AM substrate according to the present invention, and FIGS. 11A to 11D are cross-sectional views illustrating a process of manufacturing an AM substrate according to the present invention. FIG. 10A is a plan view, and FIG. 10B is a sectional view taken along line AA ′.

 図10及び図11に示すAM基板はコプレナー型TFTを画素用スイッチング素子として用いており、各画素は保持容量を有している。本発明のAM基板では第一絶縁層で有る絶縁性基板上にチャンネル領域103より成る能動層半導体膜とモリブデン、タングステン、クロム、バナジウム、ニオブ、タンタル等の高融点金属に依るデータ線104と同金属より成る画素電極取り出しパッド105と同金属より成る保持容量用下部電極611が形成されている。これらを覆う様にゲート絶縁膜106が有る。ゲート絶縁膜は第二絶縁層で有り、この上にゲート電極・線108と保持容量用上電極を兼ねる前行のゲート線613が設けられている。更にこれらの上には第三絶縁層で有る層間絶縁膜110が有る。層間絶縁膜上には画素電極109が設けられている。層間絶縁膜及びゲート絶縁膜にはコンタクト・ホール107及び612が開孔されており、これらを通じて画素電極は画素電極取り出しパッド及び保持容量用下部電極と電気的に導通が取られている。画素電極取り出しパッドが有ると能動層半導体膜は数十Å迄薄くし得る。逆に能動層半導体膜が十分厚ければ画素電極取り出しパッドを省き、ドレイン領域103に直接コンタクト・ホールを開孔し画素電極との導通を取っても良い。又、本実施例4では画素電極取り出しパッドと保持容量用下部電極を分離して作成した為、画素電極は2個のコンタクト・ホールを通じて画素電極取り出しパッドと保持容量用下部電極との導通が取られているが、画素電極取り出しパッドと保持容量用下部電極が分離されず一つの島で形成されるとコンタクト・ホールは一個に削減される。本実施例4ではデータ線が第一絶縁層上に形成され、ゲート線が第二絶縁層上に、更に画素電極が第三絶縁層上にとそれぞれ別層に形成されている為、画素電極を従来よりも大きく出来る。図8に示す様に従来はデータ線と画素電極が同層上に有った為、画素電極とデータ線の間には必ず分離領域が必要で有った。しかるに本発明ではデータ線、ゲート線、画素電極がそれぞれ別層上に形成されている為、分離はゲート絶縁膜や層間絶縁膜でなされ、平面上の分離領域は不要となる。これに依り画素電極は従来よりも拡大される。しかも本実施例4では画素電極の縁辺部はゲート線やデータ線と重なっている。ゲート線やデータ線を金属などの遮光性物質にて作成するとこれらの両線はブラック・ストライプと化す。即ち、本実施例4のAM基板を用いると対向基板側に太いブラック・ストライプを形成する必要がなくなり、又AM基板と対向基板の合わせも容易になり、出来上がった液晶表示装置の実質開口率が著しく大きくなるので有る。 The AM substrate shown in FIGS. 10 and 11 uses a coplanar TFT as a pixel switching element, and each pixel has a storage capacitor. In the AM substrate of the present invention, the active layer semiconductor film composed of the channel region 103 and the data line 104 made of a refractory metal such as molybdenum, tungsten, chromium, vanadium, niobium and tantalum are formed on the insulating substrate as the first insulating layer. A pixel electrode extraction pad 105 made of metal and a storage capacitor lower electrode 611 made of the same metal are formed. A gate insulating film 106 is provided to cover these. The gate insulating film is a second insulating layer, on which a gate line 613 of the previous row which also serves as a gate electrode / line 108 and an upper electrode for a storage capacitor is provided. Further, on these, there is an interlayer insulating film 110 which is a third insulating layer. The pixel electrode 109 is provided on the interlayer insulating film. Contact holes 107 and 612 are formed in the interlayer insulating film and the gate insulating film, through which the pixel electrode is electrically connected to the pixel electrode extraction pad and the storage capacitor lower electrode. With the pixel electrode extraction pad, the active layer semiconductor film can be thinned to several tens of square meters. Conversely, if the active layer semiconductor film is sufficiently thick, the pixel electrode take-out pad may be omitted, and a contact hole may be directly formed in the drain region 103 to establish conduction with the pixel electrode. In the fourth embodiment, since the pixel electrode take-out pad and the storage capacitor lower electrode are formed separately, the pixel electrode is connected to the pixel electrode take-out pad and the storage capacitor lower electrode through two contact holes. However, if the pixel electrode take-out pad and the storage capacitor lower electrode are not separated but are formed in one island, the number of contact holes is reduced to one. In the fourth embodiment, the data line is formed on the first insulating layer, the gate line is formed on the second insulating layer, and the pixel electrode is formed on the third insulating layer. Can be made larger than before. Conventionally, as shown in FIG. 8, since the data line and the pixel electrode were on the same layer, an isolation region was always required between the pixel electrode and the data line. However, in the present invention, since the data line, the gate line, and the pixel electrode are formed on different layers, the separation is performed by the gate insulating film or the interlayer insulating film, and the separation region on the plane is not required. As a result, the pixel electrode is enlarged more than before. Moreover, in the fourth embodiment, the edge of the pixel electrode overlaps the gate line and the data line. When the gate line and the data line are made of a light-shielding material such as a metal, both of these lines become black stripes. That is, when the AM substrate of the fourth embodiment is used, it is not necessary to form a thick black stripe on the counter substrate side, and the alignment between the AM substrate and the counter substrate becomes easy, and the substantial aperture ratio of the completed liquid crystal display device is reduced. This is because it becomes extremely large.

 次に本発明によるAM基板の製造方法を図11を用いて説明する。まずガラス基板などの絶縁性基板上に金属膜等の電気伝導性物質を堆積する。これには前述した高融点金属の他、半導体膜形成工程温度に対して安定な電気伝導物質ならば金属化合物や非金属も有効で有る。次にフォト・リソグラフィ工程によりこの電気伝導物質を加工してデータ線104、画素電極取り出しパッド105、保持容量用下部電極611を形成する(図11−a)。続いて実施例3にて詳述した方法で半導体膜を堆積して、フォト・リソグラフィ工程で加工する(図11−b)。その後ゲート絶縁膜106をPECVD法、ECR−PECVD法、APCVD法、有機シリコン化合物とオゾンを用いたCVD法等で350℃程度以下の基板温度にて堆積する。続いてゲート絶縁膜上に蒸着法、スパッター法などで電気伝導性物質を堆積しフォト・リソグラフィ工程によりゲート電極・線108、613を形成する。電気伝導性物質を堆積する場合もデータ線などの下層金属及び半導体膜やゲート絶縁膜の熱変化を防ぐ為に基板温度は350℃程度以下が好ましい。次に質量非分離型イオン注入装置に依りドナー又はアクセプタ−となる不純物をゲート電極をマスクとして打ち込み 、チャンネル領域101、ソース領域102及びドレイン領域103を形成する(図11−c)。質量非分離型イオン注入装置に依り、不純物元素の水素化物をイオン注入すると、350℃程度以下の低温熱処理にて不純物イオンを活性化出来る。又通常の質量分離型イオン注入装置にて不純物イオンを注入した後、レーザー照射に依って注入イオンを活性化しても良い。次に層間絶縁膜110を各種CVD法やPVD法で基板温度を350℃程度以下で堆積する。ソース・ドレイン領域形式のイオン注入を質量非分離型イオン注入装置にて行う場合、層間絶縁膜堆積後300℃から350℃程度の温度で30分から2時間程度の熱処理を施すと、注入イオンは活性化され、同時に層間絶縁膜とゲート絶縁膜の膜質が違う場合、それらが近づいたり、或いは同一になり、次工程のコンタクト・ホールが容易に形成される。ゲート絶縁膜堆積以後で350℃以上の熱工程が有った場合、水素プラズマ照射等の水素化処理がここで施されても良い。続いてフォト・リソグラフィ工程にてコンタクト・ホール107及び612を形成した後、画素電極材料をスパッター法等で堆積し、更にフォト・リソグラフィ工程でパターニング加工を施しAM基板は完成する(図11−d)。この様に本発明に依ると、6回の成膜過程に5回のフォト・リソグラフィ加工工程で保持容量を有するAM基板が作成される。従来は図9に示す様に6回のフォト・リソグラフィ加工工程が必要で有ったから、前述の構造上の利点に加えて、製造工程もより簡略化されている。
(実施例5)
 図12は本発明に依るAM基板の一例を説明した図で、図13−a〜eは本発明に依るAM基板の製造工程を断面で示した図で有る。図12−aは平面図で図12−bはA−A’に於ける断面図で、図12−cはB−B’に於ける断面図で有る。
Next, a method of manufacturing an AM substrate according to the present invention will be described with reference to FIG. First, an electrically conductive substance such as a metal film is deposited on an insulating substrate such as a glass substrate. For this purpose, in addition to the above-described high melting point metal, a metal compound or a nonmetal is also effective as long as it is an electric conductive material that is stable at the semiconductor film forming process temperature. Next, the electric conductive material is processed by a photolithography process to form the data line 104, the pixel electrode extraction pad 105, and the storage capacitor lower electrode 611 (FIG. 11A). Subsequently, a semiconductor film is deposited by the method described in detail in Embodiment 3, and processed by a photolithography process (FIG. 11B). Thereafter, the gate insulating film 106 is deposited at a substrate temperature of about 350 ° C. or less by a PECVD method, an ECR-PECVD method, an APCVD method, a CVD method using an organic silicon compound and ozone, or the like. Subsequently, an electrically conductive material is deposited on the gate insulating film by a vapor deposition method, a sputtering method, or the like, and gate electrode lines 108 and 613 are formed by a photolithography process. Even when an electrically conductive material is deposited, the substrate temperature is preferably about 350 ° C. or less in order to prevent thermal changes in the lower metal such as data lines, the semiconductor film, and the gate insulating film. Next, an impurity serving as a donor or an acceptor is implanted by a non-mass separation type ion implantation apparatus using the gate electrode as a mask to form a channel region 101, a source region 102, and a drain region 103 (FIG. 11C). When a hydride of an impurity element is ion-implanted by a mass non-separable ion implantation apparatus, impurity ions can be activated by a low-temperature heat treatment at about 350 ° C. or less. After the impurity ions are implanted by a usual mass separation type ion implantation apparatus, the implanted ions may be activated by laser irradiation. Next, an interlayer insulating film 110 is deposited at a substrate temperature of about 350 ° C. or less by various CVD methods or PVD methods. In the case of performing source / drain region type ion implantation using a non-mass separation type ion implantation apparatus, if the heat treatment is performed at a temperature of about 300 ° C. to 350 ° C. for about 30 minutes to about 2 hours after the interlayer insulating film is deposited, the implanted ions become active. When the film quality of the interlayer insulating film and the gate insulating film are different at the same time, they approach or become the same, and the contact hole in the next step is easily formed. If a thermal process at 350 ° C. or higher is performed after the gate insulating film is deposited, a hydrogenation treatment such as irradiation with hydrogen plasma may be performed here. Subsequently, after forming contact holes 107 and 612 in a photolithography process, a pixel electrode material is deposited by a sputtering method or the like, and further subjected to a patterning process in a photolithography process to complete an AM substrate (FIG. 11D). ). As described above, according to the present invention, an AM substrate having a storage capacitor is formed by five photolithography processing steps in six film forming steps. Conventionally, as shown in FIG. 9, six photolithography processing steps were required. Therefore, in addition to the structural advantages described above, the manufacturing steps were further simplified.
(Example 5)
FIG. 12 is a diagram illustrating an example of an AM substrate according to the present invention, and FIGS. 13A to 13E are cross-sectional views illustrating a manufacturing process of the AM substrate according to the present invention. 12-a is a plan view, FIG. 12-b is a cross-sectional view along AA ', and FIG. 12-c is a cross-sectional view along BB'.

 図12及び図13に示すAM基板はコプレナー型TFTを画素用スイッチング素子として用いており、各画素は保持容量を有し、データ線・ゲート線・画素電極はそれぞれ別層上に形成されている。これは本実施例5が図10、図11に示す実施例4に対比して記述されている事を意味しているに過ぎず、本発明はこれに限定される物では無い。即ち図1、図2に画き実施例1にて記述されたAM基板や、図5を用いて実施例2に記述されたAM基板、及び図6、図7を用いて実施例3に記述されたAM基板に対しても本発明は適応され得る。 The AM substrate shown in FIGS. 12 and 13 uses a coplanar TFT as a pixel switching element, each pixel has a storage capacitor, and data lines, gate lines, and pixel electrodes are formed on different layers. . This merely means that the fifth embodiment is described in comparison with the fourth embodiment shown in FIGS. 10 and 11, and the present invention is not limited to this. That is, the AM substrate described in the first embodiment illustrated in FIGS. 1 and 2, the AM substrate described in the second embodiment with reference to FIG. 5, and the AM substrate described in the third embodiment with reference to FIGS. The present invention can be applied to an AM substrate that has been used.

 本発明のAM基板では絶縁層上にチャンネル領域101、ソース領域102、ドレイン領域103より成る能動層半導体膜とモリブデン・タングステン・クロム・バナジウム・ニオブ・タンタル等の高融点金属によるデータ線104と同金属より成る画素電極取り出しパッド105と同金属より成る保持容量用下部電極611が形成されている。これらの金属表面で半導体膜にて被覆されて居らず、且つコンタクト・ホールも開孔されていない部分は総て同金属の酸化物に依って被覆されている。金属酸化物1201の膜厚は数十Å程度以下が好ましい。能動層半導体膜が十分厚い場合は画素電極取り出しパッドを省き、ドレイン領域上に直接コンタクト・ホールを開孔しても構わない。又保持容量が不要な時は当然保持容量用下部電極も作る必要は無い。これらを覆う様にゲート絶縁膜106が有り、この上にゲート電極・線108と保持容量用上電極を兼ねる前行のゲート線613が設けられている。図12−cに示す様にゲート線とデータ線の交差部の断面はデータ線の表面がデータ線を構成する金属の酸化物にて完全に被覆されており、その上にゲート絶縁膜が設けられている。保持容量用下部電極も同様に表面は金属酸化物で完全に被覆されている。ゲート線はゲート絶縁膜上に有るから、ゲート線とデータ線の間、或いはゲート線と保持容量用下部電極の間には二種類の異なった絶縁膜が挟まれている。ゲート電極・線やゲート絶縁膜上には層間絶縁膜110が有り、更にその上に画素電極109が設けられている。層間絶縁膜を省略し、ゲート絶縁膜上に画素電極を設けても良い。又、ゲート電極・線を遮光性物質で築き、画素電極を透明物質でそれぞれ別層上或いは同層上に形成しても良いし、ゲート電極・線も画素電極も共に透明物質で同層上或いは別層上に形成しても良い。層間絶縁膜及びゲート絶縁膜にはコンタクト・ホール107及び612が開孔されており、これらを通じて画素電極は画素電極取り出しパッド及び保持容量用下部電極と電気的に導通が取られている。画素電極取り出しパッドと保持容量用下部電極が一つの島で形成されている場合や、或いは保持容量用下部電極が無い場合、コンタクト・ホールは各画素に対して一個となる。本実施例5ではデータ線、ゲート線、画素電極がそれぞれ別層に形成されている為、画素電極を従来よりも大きく出来、図12(a)ではその縁辺部がゲート線とデータ線と完全に重なっている。ゲート線を金属等の遮光性物質で築けば、対向基板上の太いブラック・ストライプを省く事が出来、実質的な開口率は更に向上する。図3や図4に示した従来技術のAM基板でゲート線とデータ線に依りブラック・ストライプを代用させるにはデータ線と画素電極を別層に形成せねばならぬが故、必然的に層間絶縁膜306ないしは408の上にもう一層別の層間絶縁膜を堆積し、その上に画素電極を形成せねばならない。この場合、基板上にはゲート絶縁膜(この上にゲート電極が有る。)、一番目の層間絶縁膜(この上にデータ線が有る。)二番目の層間絶縁膜(この上に画素電極が有る。)と少なくとも三層の絶縁膜が出来る。これらをSiO2膜に依り作成する場合、三層の総膜厚が厚くなると、これらの絶縁膜にひび割れが生じAM基板として使用出来なくなる。この為絶縁膜の総膜厚は1.5μm程度以下にする必要が有る。今ゲート絶縁膜の膜厚が1000Åから2000Å程度とすると二つの層間絶縁膜の膜厚はそれぞれ7000Å程度となり、画素電極とデータ線は7000ÅのSiO2膜を介して重なる事となる。所で画素用薄膜トランジスタがオフ状態で、オン状態時に記憶したデータを保持している期間もデータ線には様々な情報が伝わり、電位が変動している。画素電極とデータ線の重なりが大きくそれらの間の膜厚が薄いと、画素電極とデータ線の間に生ずる容量の値が大きくなり、その結果オフ状態で一定を保つべき画素電極電位がデータ線に伝わる情報の影響を受けて変動してしまい、液晶画面にクロストークを発生させる等の画質劣下をもたらす。従って画素電極とデータ線の重なりは小さい方が、又画素電極とデータ線を隔てる層間絶縁膜は厚い方が好ましい。この要請は画素電極が小さくなるに従い、或いは保持容量が小さくなるに従い強くなる。前述の如く従来のAM基板では画素電極とデータ線を隔てる層間絶縁膜の膜厚は最大でも7000Å程度で有る。これに対して図5、図10に示す本発明のAM基板ではデータ線が絶縁基板上に有り、画素電極とデータ線を隔てる絶縁膜(即ちゲート絶縁膜と層間絶縁膜)の膜厚を1.5μm程度に厚く出来る。それ故、従来のAM基板と比べて画素ピッチが同じで、画素電極とデータ線との重なり面積が同一ならば、本発明のAM基板の方が絶縁膜の膜厚が厚い分だけより良質な画像が得られるので有る。或いは画質を同じにするのならば、本発明のAM基板の方が画素面積に対する重なり面積の割合を大きくする事が出来、微細画素を有する高精細AM基板を作成出来るので有る。一方図12に示し本実施例5に述べる本発明のAM基板ではデータ線の表面は金属酸化膜にて被覆されており、その上にゲート絶縁膜と層間絶縁膜が乗るから、画素電極とデータ線のカップリングは図5、図10に示すAM基板に比べても更に小さくなるとの利点を有する。加えて図12−cが示す様にデータ線の表面は金属酸化物という絶縁膜で被覆されており、この上に金属酸化膜とは異なる絶縁膜でゲート絶縁膜が形成され、更にその上にゲート線が設けられているからゲート線とソース線の絶縁破壊や漏洩電流が減少するとの利点を有する。絶縁膜の膜中を流れる電流の種類或いは原因は一般に絶縁膜種に従って異なる。この為膜厚が同程度で有れば一種類の厚い絶縁膜よりも、多少薄くとも二種類の異なった絶縁膜の方が絶縁破壊や漏洩電流に対して強いので有る。この原理に基付き図12、図13に示す本発明のAM基板ではデータ線とゲート線の交差部に発生する短絡等の不良率を著しく低減するので有る。 In the AM substrate of the present invention, an active layer semiconductor film including a channel region 101, a source region 102, and a drain region 103 and a data line 104 made of a high melting point metal such as molybdenum, tungsten, chromium, vanadium, niobium, and tantalum are formed on an insulating layer. A pixel electrode extraction pad 105 made of metal and a storage capacitor lower electrode 611 made of the same metal are formed. The portions of these metal surfaces which are not covered with the semiconductor film and in which the contact holes are not opened are all covered with the oxide of the same metal. The thickness of the metal oxide 1201 is preferably about several tens of degrees or less. If the active layer semiconductor film is sufficiently thick, the pixel electrode extraction pad may be omitted, and a contact hole may be formed directly on the drain region. When the storage capacitor is unnecessary, it is not necessary to form the lower electrode for the storage capacitor. A gate insulating film 106 is provided so as to cover these, and a gate line 613 of the previous row which also serves as a gate electrode / line 108 and a storage capacitor upper electrode is provided thereon. As shown in FIG. 12C, in the cross section of the intersection of the gate line and the data line, the surface of the data line is completely covered with a metal oxide constituting the data line, and a gate insulating film is provided thereon. Have been. Similarly, the surface of the lower electrode for the storage capacitor is completely covered with the metal oxide. Since the gate line is on the gate insulating film, two types of different insulating films are interposed between the gate line and the data line or between the gate line and the storage capacitor lower electrode. An interlayer insulating film 110 is provided on the gate electrode / line and the gate insulating film, and a pixel electrode 109 is further provided thereon. The pixel electrode may be provided on the gate insulating film without the interlayer insulating film. The gate electrodes and lines may be made of a light-blocking material, and the pixel electrodes may be formed of a transparent material on separate layers or on the same layer. Both the gate electrodes and lines and the pixel electrodes may be formed of a transparent material on the same layer. Alternatively, it may be formed on another layer. Contact holes 107 and 612 are formed in the interlayer insulating film and the gate insulating film, through which the pixel electrode is electrically connected to the pixel electrode extraction pad and the storage capacitor lower electrode. If the pixel electrode extraction pad and the storage capacitor lower electrode are formed of one island, or if there is no storage capacitor lower electrode, there is one contact hole for each pixel. In the fifth embodiment, the data line, the gate line, and the pixel electrode are formed in different layers, respectively, so that the pixel electrode can be made larger than before. In FIG. 12A, the edge is completely separated from the gate line and the data line. Overlaps. If the gate line is made of a light-shielding substance such as a metal, the thick black stripe on the opposing substrate can be omitted, and the substantial aperture ratio is further improved. In the prior art AM substrate shown in FIGS. 3 and 4, the data lines and the pixel electrodes must be formed in different layers in order to substitute the black stripes by the gate lines and the data lines. Another interlayer insulating film must be deposited on the insulating film 306 or 408, and a pixel electrode must be formed thereon. In this case, a gate insulating film (on which a gate electrode is provided), a first interlayer insulating film (on which data lines are provided), a second interlayer insulating film (on which a pixel electrode is provided) are provided on the substrate. ) To form at least three layers of insulating films. When these are formed using a SiO 2 film, when the total thickness of the three layers is increased, these insulating films are cracked and cannot be used as an AM substrate. Therefore, the total thickness of the insulating film needs to be about 1.5 μm or less. Assuming that the thickness of the gate insulating film is about 1000 ° to 2000 °, the thickness of each of the two interlayer insulating films is about 7000 °, and the pixel electrode and the data line overlap with each other via the 7000 ° SiO 2 film. In the meantime, various information is transmitted to the data line during the period in which the pixel thin film transistor is in the off state and the data stored in the on state is held, and the potential fluctuates. If the pixel electrode and the data line overlap greatly and the film thickness between them is thin, the value of the capacitance generated between the pixel electrode and the data line increases, and as a result, the pixel electrode potential that should be kept constant in the off state becomes the data line. Fluctuates under the influence of the information transmitted to the LCD, resulting in poor image quality such as generation of crosstalk on the liquid crystal screen. Therefore, it is preferable that the overlap between the pixel electrode and the data line is small and that the interlayer insulating film separating the pixel electrode and the data line is thick. This requirement becomes stronger as the pixel electrode becomes smaller or as the storage capacitance becomes smaller. As described above, in the conventional AM substrate, the thickness of the interlayer insulating film separating the pixel electrode and the data line is about 7000 ° at the maximum. On the other hand, in the AM substrate of the present invention shown in FIG. 5 and FIG. 10, the data line is on the insulating substrate, and the thickness of the insulating film (that is, the gate insulating film and the interlayer insulating film) separating the pixel electrode and the data line is 1 It can be as thick as about 0.5 μm. Therefore, if the pixel pitch is the same as that of the conventional AM substrate and the overlapping area between the pixel electrode and the data line is the same, the AM substrate of the present invention has higher quality because of the thicker insulating film. An image is obtained. Alternatively, if the image quality is the same, the AM substrate of the present invention can increase the ratio of the overlapping area to the pixel area, and can produce a high-definition AM substrate having fine pixels. On the other hand, in the AM substrate of the present invention shown in FIG. 12 and described in the fifth embodiment, the surface of the data line is covered with a metal oxide film, and the gate insulating film and the interlayer insulating film are placed thereon. The advantage is that the coupling of the lines is even smaller than in the AM substrate shown in FIGS. In addition, as shown in FIG. 12C, the surface of the data line is covered with an insulating film called a metal oxide, and a gate insulating film is formed thereon with an insulating film different from the metal oxide film. Since the gate line is provided, there is an advantage that dielectric breakdown and leakage current between the gate line and the source line are reduced. The type or cause of the current flowing in the insulating film generally differs according to the type of the insulating film. For this reason, if the film thicknesses are almost the same, two types of different insulating films are more resistant to dielectric breakdown and leakage current than a single type of thick insulating film, even if they are slightly thinner. Based on this principle, the AM substrate of the present invention shown in FIGS. 12 and 13 significantly reduces the failure rate such as a short circuit generated at the intersection of the data line and the gate line.

 次に本発明に依るAM基板の製造方法を図13を用いて説明する。まずガラス基板などの絶縁性基板上に金属膜等の電気伝導性物質を堆積する。これには前述した高融点金属の他、半導体膜形成工程に対して安定な金属ならばいずれも有効で有る。次にフォト・リソグラフィ工程に依りこの電気伝導物質を加工してデータ線104、画素電極取り出しパッド105、保持容量用下部電極611を形成する(図13−a)。続いて実施例3にて詳述した方法で半導体膜を形成してフォト・リソグラフィ工程で加工する(図13−b)。次に600℃以下の酸化性雰囲気下にてデータ線等の金属膜の表面を酸化させる(図13−c)。600℃以下の低温ではシリコン膜の酸化は殆ど進まないから雰囲気と温度を適当に調整すると所望の膜厚を有する金属酸化物1201が得られ、同時に極薄膜の半導体膜を能動層に用いる事が可能となる。例えば同金属にタンタルを用いると酸素一気圧で300℃程度の温度から数十Å以上の酸化膜を作成出来るが、この条件ではシリコンの酸化は全く進まないが故、半導体膜の膜減りは生じない。よしんば半導体膜の酸化が多少進んでも、それらはゲート絶縁膜の一部と化すに過ぎぬから何の問題も生じない。ここでは半導体膜を実施例3に詳述した方法で形成したが、その他も可能で有る。例えば非晶質半導体膜を堆積・パターニング後(図13−b)、酸素や笑気ガス(N2O)や二酸化炭素(CO2)、水(H2O)を数ppmから1%程度含む弱酸化性雰囲気下で600℃程度以下の温度環境下にて数時間から24時間程度の熱処理を施す。これに依り非晶質膜は結晶化し、しかも同時に金属酸化膜1201が形成される(図13−c)。弱酸化性雰囲気下で熱処理を施すと非晶質の結晶化に際して生ずる結晶内欠陥を酸素が補充して、しきい値電圧が低く高移動度の半導体膜が得られるとの利点が有る。熱処理時の酸化物気体の種類や濃度は、データ線等に用いる金属の材質と求める金属酸化物の膜厚に依って適宜決定される。その後は実施例4に詳述したのと同じ手法でゲート絶縁膜106、ゲート電極・線108及び613を形成し、更にイオン注入法にてチャンネル領域101、ソース領域102、ドレイン領域103を作成する(図13−d)。続いて層間絶縁膜110を実施例4にて詳述した方法等で堆積し、フォト・リソグラフィ工程に依りコンタクト・ホール107及び612を形成する。このコンタクト・ホールは層間絶縁膜とゲート絶縁膜、及び金属酸化物という少なくとも二種類の絶縁膜に開けねばならぬから、一般には連続した2回の開孔作業を施さねばならない。例えば画素電極取り出しパッド等を構成する金属にタンタルを用い、金属酸化物はタンタル酸化物で、ゲート絶縁膜と層間絶縁膜に酸化シリコン膜を用いた場合、第一回目の開孔作業で酸化シリコン膜にコンタクト・ホールを作り、引き続いてタンタル酸化物に対する開孔作業を施す。しかし反応性イオン・エッチング(RIE)や化学ドライエッチング(CDE)等を利用すれば、二種類の絶縁膜に一回の開孔作業でコンタクト・ホールを形成する事も可能で有る。こうしてコンタクト・ホールを形成した後、画素電極材料をスパッタ法等で堆積し、更にフォト・リソグラフィ工程でパターニング加工を施しAM基板は完成する(図13−e)。この様に本発明に依ると実施例4に詳述したのと同じ6回の成膜過程と5回のフォト・リソグラフィ加工工程で前述の構造上の利点が得られるので有る。 Next, a method of manufacturing an AM substrate according to the present invention will be described with reference to FIG. First, an electrically conductive substance such as a metal film is deposited on an insulating substrate such as a glass substrate. For this purpose, any metal that is stable in the semiconductor film forming step, other than the above-described high melting point metal, is effective. Next, the data line 104, the pixel electrode extraction pad 105, and the storage capacitor lower electrode 611 are formed by processing the electric conductive material by a photolithography process (FIG. 13A). Subsequently, a semiconductor film is formed by the method described in detail in Embodiment 3 and processed by a photolithography process (FIG. 13B). Next, the surface of the metal film such as a data line is oxidized in an oxidizing atmosphere of 600 ° C. or lower (FIG. 13C). At a low temperature of 600 ° C. or less, oxidation of the silicon film hardly progresses, so that by appropriately adjusting the atmosphere and temperature, a metal oxide 1201 having a desired film thickness can be obtained. At the same time, an extremely thin semiconductor film can be used as an active layer. It becomes possible. For example, if tantalum is used for the same metal, an oxide film of several tens of degrees or more can be formed from a temperature of about 300 ° C. at one atmosphere of oxygen. However, under this condition, oxidation of silicon does not proceed at all, and the film thickness of the semiconductor film is reduced. Absent. Even if the oxidation of the semiconductor film progresses to some extent, no problem arises because they only become a part of the gate insulating film. Here, the semiconductor film is formed by the method described in detail in Embodiment 3, but other methods are also possible. For example, after depositing and patterning an amorphous semiconductor film (FIG. 13B), it contains oxygen, laughing gas (N 2 O), carbon dioxide (CO 2 ), and water (H 2 O) in an amount of about several ppm to 1%. Heat treatment is performed in a weak oxidizing atmosphere at a temperature of about 600 ° C. or lower for several hours to about 24 hours. Accordingly, the amorphous film is crystallized, and at the same time, the metal oxide film 1201 is formed (FIG. 13C). When heat treatment is performed in a weakly oxidizing atmosphere, oxygen has the advantage of replenishing intracrystalline defects generated during crystallization of an amorphous phase, so that a semiconductor film with low threshold voltage and high mobility can be obtained. The type and concentration of the oxide gas at the time of the heat treatment are appropriately determined depending on the material of the metal used for the data line and the like and the required thickness of the metal oxide. Thereafter, the gate insulating film 106, the gate electrodes / lines 108 and 613 are formed in the same manner as described in detail in Embodiment 4, and the channel region 101, the source region 102, and the drain region 103 are formed by ion implantation. (FIG. 13-d). Subsequently, an interlayer insulating film 110 is deposited by the method described in detail in Embodiment 4 or the like, and contact holes 107 and 612 are formed by a photolithography process. Since this contact hole must be formed in at least two types of insulating films, an interlayer insulating film, a gate insulating film, and a metal oxide, two successive opening operations are generally required. For example, if tantalum is used as the metal forming the pixel electrode extraction pad and the like, the metal oxide is tantalum oxide, and the silicon oxide film is used as the gate insulating film and the interlayer insulating film, the silicon oxide film is used in the first opening operation. A contact hole is formed in the film, and subsequently a hole opening operation is performed on the tantalum oxide. However, if reactive ion etching (RIE) or chemical dry etching (CDE) is used, it is possible to form contact holes in two types of insulating films by a single opening operation. After forming the contact holes in this manner, a pixel electrode material is deposited by a sputtering method or the like, and further subjected to a patterning process in a photolithography process to complete the AM substrate (FIG. 13-e). As described above, according to the present invention, the above-described structural advantage can be obtained by the same six film forming steps and five photolithographic processing steps as described in detail in the fourth embodiment.

 ここまで本実施例5ではデータ線104等の金属膜表面の酸化を600℃程度以下の酸化性雰囲気下で行ってきたが、最初に総てのデータ線を短絡して置き、陽極酸化法で金属酸化物を形成しても良い。この場合データ線104と離れている画素電極取り出しパッド105や保持容量用下部電極611は酸化されず、コンタクト・ホールの開口は容易となる。陽極酸化法に依ってデータ線上に酸化膜を形成した場合でもデータ線とゲート線の交差部は異なった種類の絶縁膜の二層構造になり絶縁破壊や漏洩電流はやはり減少する。又、データ線と画素電極が重なっている場合、これらの間のカップリングも減少する。更にこの方法に依ると保持容量用下部電極611の表面には金属酸化膜は形成されないから、保持容量が増えるとの利点も有る。 In the fifth embodiment, the oxidation of the surface of the metal film such as the data line 104 has been performed in an oxidizing atmosphere at about 600 ° C. or less. A metal oxide may be formed. In this case, the pixel electrode extraction pad 105 and the storage capacitor lower electrode 611 that are separated from the data line 104 are not oxidized, and the opening of the contact hole is facilitated. Even when an oxide film is formed on the data line by the anodic oxidation method, the intersection of the data line and the gate line has a two-layer structure of different types of insulating films, so that dielectric breakdown and leakage current are also reduced. Also, when the data line and the pixel electrode overlap, the coupling between them also decreases. Further, according to this method, since the metal oxide film is not formed on the surface of the storage capacitor lower electrode 611, there is an advantage that the storage capacitor is increased.

 以上述べて来た様に、本発明のアクティブマトリックス基板においては、データ線及びゲート線の交差部分においては、データ線とゲート線との間に互いに絶縁膜種が異なる複数の絶縁膜が形成されてなるので、データ線とゲート線との短絡数が大きく減少する。 As described above, in the active matrix substrate of the present invention, at the intersection of the data line and the gate line, a plurality of insulating films having different insulating film types are formed between the data line and the gate line. Therefore, the number of short circuits between the data line and the gate line is greatly reduced.

 本発明は薄膜トランジスタを有するアクティブマトリックス基板に利用でき、特に、液晶表示装置に適用すると好適である。 The present invention can be used for an active matrix substrate having a thin film transistor, and is particularly preferable when applied to a liquid crystal display device.

本発明の一実施例を示すアクティブマトリックス基板を示す図。FIG. 1 is a view showing an active matrix substrate according to one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板製造の各工程に於ける素子断面図。FIG. 4 is a sectional view of an element in each step of manufacturing an active matrix substrate, showing one embodiment of the present invention. 従来技術に依るアクティブマトリックス基板を示す図。The figure which shows the active matrix substrate based on a prior art. 従来技術に依るアクティブマトリックス基板を示す図。The figure which shows the active matrix substrate based on a prior art. 本発明の一実施例を示すアクティブマトリックス基板を示す図。FIG. 1 is a view showing an active matrix substrate according to one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板を示す図。FIG. 1 is a view showing an active matrix substrate according to one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板製造の各工程に於ける素子断面図。FIG. 4 is a sectional view of an element in each step of manufacturing an active matrix substrate, showing one embodiment of the present invention. 従来技術に依るアクティブマトリックス基板を示す図。The figure which shows the active matrix substrate based on a prior art. 従来技術に依るアクティブマトリックス基板製造の各工程に於ける素子断面図。FIG. 7 is a sectional view of an element in each step of manufacturing an active matrix substrate according to the conventional technique. 本発明の一実施例を示すアクティブマトリックス基板を示す図。FIG. 1 is a view showing an active matrix substrate according to one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板製造の各工程に於ける素子断面図。FIG. 4 is a sectional view of an element in each step of manufacturing an active matrix substrate, showing one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板を示す図。FIG. 1 is a view showing an active matrix substrate according to one embodiment of the present invention. 本発明の一実施例を示すアクティブマトリックス基板製造の各工程に於ける素子断面図。FIG. 4 is a sectional view of an element in each step of manufacturing an active matrix substrate, showing one embodiment of the present invention.

符号の説明Explanation of reference numerals

101…チャンネル領域
102…ソース領域
103…ドレイン領域
104…データ線
105…画素電極取り出しパッド
106…ゲート絶縁膜
107…コンタクト・ホール
108…ゲート電極・線
109…画素電極
110…層間絶縁膜
301…チャンネル領域
302…ソース領域
303…ドレイン領域
304…ゲート絶縁膜
305…ゲート電極・線
306…層間絶縁膜
307…コンタクト・ホール
308…画素電極
309…データ線
401…チャンネル領域
402…ソース領域
403…ドレイン領域
404…ソース・パッド
405…ドレイン・パッド
406…ゲート絶縁膜
407…ゲート電極・線
408…層間絶縁膜
409…コンタクト・ホール
410…画素電極
411…データ線
611…保持容量用下部電極
612…コンタクト・ホール
613…前行のゲート線
811…保持容量用下部電極
812…コンタクト・ホール
813…前行のゲート線
901…フォト・レジスト
902…不純物イオン注入
1201…金属酸化膜
101 ... channel region 102 ... source region 103 ... drain region 104 ... data line 105 ... pixel electrode take-out pad 106 ... gate insulating film 107 ... contact hole 108 ... gate electrode / line 109 ... pixel electrode 110 ... interlayer insulating film 301 ... channel Region 302 source region 303 drain region 304 gate insulating film 305 gate electrode / line 306 interlayer insulating film 307 contact hole 308 pixel electrode 309 data line 401 channel region 402 source region 403 drain region 404 ... source pad 405 ... drain pad 406 ... gate insulating film 407 ... gate electrode / line 408 ... interlayer insulating film 409 ... contact hole 410 ... pixel electrode 411 ... data line 611 ... storage capacitor lower electrode 612 ... contact Hall 61 ... lower electrode 812 ... gate line 811 ... holding capacity before line contact holes 813 ... previous row gate line 901 ... photoresist 902 ... impurity ion implantation 1201 ... metal oxide film

Claims (2)

薄膜トランジスタと、前記薄膜トランジスタに接続されたデータ線及びゲート線と、を有するアクティブマトリックス基板において、
 前記データ線と前記ゲート線とは互いに交差するよう配置され、
 前記データ線及び前記ゲート線の交差部分においては、前記データ線と前記ゲート線との間に互いに絶縁膜種が異なる複数の絶縁膜が形成されてなることを特徴とするアクティブマトリックス基板
In an active matrix substrate having a thin film transistor and a data line and a gate line connected to the thin film transistor,
The data line and the gate line are arranged to cross each other,
An active matrix substrate, wherein a plurality of insulating films having different insulating film types are formed between the data lines and the gate lines at intersections of the data lines and the gate lines.
請求項1に記載のアクティブマトリックス基板と対向基板とが対向配置されてなることを特徴とする液晶表示装置。










































A liquid crystal display device comprising the active matrix substrate according to claim 1 and a counter substrate arranged opposite to each other.










































JP2003356613A 1992-11-04 2003-10-16 Active matrix substrate and liquid crystal display device Expired - Lifetime JP3792688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356613A JP3792688B2 (en) 1992-11-04 2003-10-16 Active matrix substrate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29473592 1992-11-04
JP2003356613A JP3792688B2 (en) 1992-11-04 2003-10-16 Active matrix substrate and liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002183390A Division JP2003078145A (en) 1992-11-04 2002-06-24 Active matrix substrate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004088121A true JP2004088121A (en) 2004-03-18
JP3792688B2 JP3792688B2 (en) 2006-07-05

Family

ID=32071431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356613A Expired - Lifetime JP3792688B2 (en) 1992-11-04 2003-10-16 Active matrix substrate and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3792688B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125917A (en) * 2011-12-16 2013-06-24 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
WO2014049967A1 (en) * 2012-09-26 2014-04-03 凸版印刷株式会社 Layered structure and thin-film-transistor array, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125917A (en) * 2011-12-16 2013-06-24 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
US9048291B2 (en) 2011-12-16 2015-06-02 Renesas Electronics Corporation Method of manufacturing a semiconductor device having multi-layered interconnect structure
WO2014049967A1 (en) * 2012-09-26 2014-04-03 凸版印刷株式会社 Layered structure and thin-film-transistor array, and method for producing same
JP2014067883A (en) * 2012-09-26 2014-04-17 Toppan Printing Co Ltd Laminated structure body, thin-film transistor array, and method of manufacturing them
US9530809B2 (en) 2012-09-26 2016-12-27 Toppan Printing Co., Ltd. Layered structure, thin film transistor array, and method of manufacturing the same

Also Published As

Publication number Publication date
JP3792688B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US5717224A (en) Semiconductor device having an insulated gate field effect thin film transistor
KR100292922B1 (en) A thin film transistor, a method for manufacturing thereof and liquid crystal display
US6475837B2 (en) Electro-optical device
US5818070A (en) Electro-optical device incorporating a peripheral dual gate electrode TFT driver circuit
US6362028B1 (en) Method for fabricating TFT array and devices formed
JP3615556B2 (en) Active matrix substrate and manufacturing method thereof
US6387738B2 (en) Method for manufacturing a thin film transistor
JP2003517203A (en) Method for manufacturing transistor
EP0683525B1 (en) Thin-film transistor array for display
JPH04283729A (en) Active matrix display device
JP2007311453A (en) Thin film transistor, and manufacturing method thereof
JPH10133233A (en) Active matrix type display circuit and its manufacture
JP3786631B2 (en) Active matrix substrate and liquid crystal display device
JP3792688B2 (en) Active matrix substrate and liquid crystal display device
JP3786667B2 (en) Active matrix substrate and liquid crystal display device
JP3671943B2 (en) Active matrix substrate
JPH11111991A (en) Thin-film transistor and method of manufacturing the thin-film transistor
JPH04369229A (en) Thin-film transistor and manufacture thereof
US6482685B1 (en) Method for fabricating a low temperature polysilicon thin film transistor incorporating multi-layer channel passivation step
KR100489167B1 (en) Thin film transistor and its manufacturing method
JP2003078145A (en) Active matrix substrate and its manufacturing method
JP2905641B2 (en) Method for manufacturing thin film transistor
TWI392941B (en) Liquid crystal display and method for fabricating the same
JP2709214B2 (en) Method for manufacturing thin film transistor
JP2694912B2 (en) Active matrix substrate manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050218

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term