JP2004087847A - Multi-piece wiring board and its manufacturing method - Google Patents

Multi-piece wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004087847A
JP2004087847A JP2002247681A JP2002247681A JP2004087847A JP 2004087847 A JP2004087847 A JP 2004087847A JP 2002247681 A JP2002247681 A JP 2002247681A JP 2002247681 A JP2002247681 A JP 2002247681A JP 2004087847 A JP2004087847 A JP 2004087847A
Authority
JP
Japan
Prior art keywords
wiring board
conductor
wiring
conductors
guide hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247681A
Other languages
Japanese (ja)
Inventor
Shogo Matsuo
松尾 省吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002247681A priority Critical patent/JP2004087847A/en
Publication of JP2004087847A publication Critical patent/JP2004087847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-piece wiring board wherein upper and lower wiring conductors are correctly and surely connected to each other via a through conductor in each wiring board region. <P>SOLUTION: The multi-piece wiring board is constituted of a nearly tabular mother substrate 1 which consists of a plurality of insulation layers 11 stacked in layers. In a central part of the mother substrate 1, many wiring board regions are integrally formed, and arranged lengthwise and crosswise, which include a plurality of layers of wiring conductors 4 constituted of conductor layers 12 attached to upper and/or lower surfaces of the insulation layers 11 and the through conductors 7 for electrically connecting wiring conductors 5 located on the upper and lower surfaces of the insulation layers 11 from an upper surface to a lower surface of the mother substrate 1. In a peripheral part of the mother substrate 1, circular guide holes 3 extended through the mother substrate 1 in the up and down direction are formed and a plurality of layers of recognition marks 4 are also formed which are constituted of the conductor layers 12 attached to the upper or lower surfaces of the insulation layers 11 through which the guide holes 3 are extended. The recognition marks 4 located on the upper and lower surfaces of the insulation layers 11 through which the identical guide hole 3 is extended are formed in different shapes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子や抵抗器等の電子部品を搭載するための多数個取り配線基板およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、半導体素子や抵抗器等の電子部品を搭載するために用いられる小型の配線基板として、ガラス基材および熱硬化性樹脂から成る絶縁層と銅箔等から成る配線導体とを交互に複数積層するとともにその上面から下面にかけて前記絶縁層を挟んで上下に位置する配線導体同士を電気的に接続する銅めっき膜から成る貫通導体を形成して成る配線基板が知られている。このような小型の配線基板は、その生産効率を高めるために多数個取り配線基板の形態で製造されている。この多数個取り配線基板は、絶縁層と配線導体用の導体層とを複数積層して成る広面積の母基板中に配線導体および貫通導体を有する多数の配線基板領域を縦横の並びに一体的に配列形成して成り、その母基板を各配線基板領域の境界に沿って分割することにより、多数の配線基板を同時集約的に製造するようになしたものである。
【0003】
このような多数個取り配線基板は、まず、上面および/または下面に導体層を被着させて成るとともに、中央部に前記配線基板領域となる配線基板用領域を縦横の並びに有する母基板用の絶縁層を複数枚準備し、次に各絶縁層の導体層にエッチング加工を施してその絶縁層の各配線基板用領域に前記導体層から成る配線導体を形成し、次にそれらの絶縁層を各配線基板用領域が上下に重なるように積層して母基板を形成するとともにその上面から下面にかけて前記貫通導体を形成するための貫通孔を穿孔し、最後に、その貫通孔内にめっき膜を被着させて貫通導体を形成することによって製作されている。なお、母基板の上面から下面にかけて貫通導体を形成するための貫通孔を穿孔するには、母基板の外周部の所定位置に前記導体層の一つを位置合わせの基準にして円形のガイド孔を予め複数穿孔しておくとともに、それらのガイド孔を位置合わせの基準として各配線基板領域に貫通導体用の貫通孔を穿孔する方法が採用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の多数個取り配線基板は、貫通導体用の貫通孔を形成するためのガイド孔が、導体層の一つを位置合わせの基準として穿孔されており、積層される母基板用の各絶縁層に吸湿や加熱による伸縮の差や積層ずれ等が発生すると、そのガイド孔を位置合わせの基準として穿孔された貫通導体用の貫通孔が他の導体層に対して大きくずれてしまい、その結果、各配線基板領域における上下の配線導体同士が貫通導体を介して電気的に正確かつ確実に接続されないことがあるという問題点を有していた。
【0005】
本発明は上記従来技術における問題点に鑑み完成されたものであり、その目的は、積層される母基板用の各絶縁層に吸湿や加熱による伸縮の差や積層ずれ等が発生したとしても、貫通導体用の貫通孔の位置が各導体層に対して大きくずれることがなく、各配線基板領域における上下の配線導体同士が貫通導体を介して電気的に正確かつ確実に接続された多数個取り配線基板を提供することにある。
【0006】
【課題を解決するための手段】
本発明の多数個取り配線基板は、複数の絶縁層を積層して成る略平板状の母基板の中央部に、前記絶縁層の上面および/または下面に被着させた導体層から成る配線導体を内部に複数層備えるとともに前記母基板の上面から下面にかけて上下に位置する前記配線導体同士を電気的に接続する貫通導体を備えた多数の配線基板領域が縦横の並びに一体的に配列形成され、かつ前記母基板の外周部に、この母基板を上下に貫通する円形のガイド孔およびこのガイド孔により貫通される前記絶縁層の上面または下面に被着させた導体層から成る複数層の認識マークが形成された多数個取り配線基板であって、同一の前記ガイド孔に貫通された上下に位置する前記認識マークは、互いに異なる形状で形成されていることを特徴とするものである。
【0007】
また、本発明の多数個取り配線基板の製造方法は、上面および/または下面に導体層が被着されているとともに中央部に多数の配線基板用領域が縦横の並びに配列された複数の絶縁層を準備する工程と、前記各絶縁層の前記導体層にエッチング加工を施して前記各絶縁層の前記各配線基板用領域の上面および/または下面に前記導体層から成る配線導体を形成するとともに前記各絶縁層の外周部の上面または下面のそれぞれ対応する位置に前記導体層から成る認識マークをそれぞれ互いに異なる形状で形成する工程と、前記複数の絶縁層を積層して中央部に前記配線基板用領域同士が積層された配線基板領域を有するとともに外周部に前記認識マークが互いに上下に重なるように積層された略平板状の母基板を形成する工程と、前記母基板の前記外周部に前記上下に重なった各認識マークのそれぞれ一部を貫通して前記母基板を上下に貫通する円形のガイド孔を穿孔する工程と、前記ガイド孔を基準として前記母基板の上面から下面にかけて前記各配線基板領域に前記配線導体同士を接続する貫通導体を形成するための貫通孔を穿孔するとともに該貫通孔内に前記配線導体同士を接続する貫通導体を形成する工程とを具備することを特徴とするものである。
【0008】
本発明の多数個取り配線基板によれば、同一のガイド孔に貫通された上下に位置する認識マークが互いに異なる形状で形成されていることから、積層された各絶縁層に伸縮の差や積層ずれがあったとしても各導体層の認識マークをそれぞれ別々に認識してそれらの各中心から最も近い位置にガイド孔を設けることができ、そのガイド孔を基準として貫通導体用の貫通孔を各導体層に対して大きなずれを発生させることなく設けることができる。
【0009】
また、本発明の多数個取り配線基板の製造方法によれば、母基板の外周部に上下に重なった各認識マークのそれぞれ一部を貫通して母基板を上下に貫通する円形のガイド孔を穿孔し、ガイド孔を基準として母基板の上面から下面にかけて各配線基板領域に配線導体同士を接続する貫通導体を形成するための貫通孔を穿孔するとともにその貫通孔内に配線導体同士を接続する貫通導体を形成することから、積層された各絶縁層に伸縮の差や積層ずれがあったとしても、ガイド孔が各導体層に対して大きくずれることはなく、その結果、そのガイド孔を位置合わせの基準として貫通導体用の貫通孔を互いに接続される上下の配線導体に対して最も近接する位置に設けることができる。
【0010】
【発明の実施の形態】
次に、本発明の多数個取り配線基板を添付の図面に基づいて詳細に説明する。
【0011】
図1は本発明の多数個取り配線基板の実施の形態の一例を示す断面図である。1は母基板、2は配線基板領域、3はガイド孔、4は配線導体、5は認識マーク、であり、主にこれらで本発明の多数個取り配線基板が構成されている。
【0012】
母基板1は、ガラス繊維基材にエポキシ樹脂等の熱硬化性樹脂を含浸させて成る複数の絶縁層11を積層して成る略四角平板状であり、例えば、その厚みが0.1〜3mmで縦横の大きさが200〜600mm程度である。また、絶縁層11の上面および/または下面には導体層12から成る配線導体4が被着している。
【0013】
母基板1の中央部には、それぞれが小型の配線基板となる多数の配線基板領域2が縦横の並びに一体的に配列形成されており、各配線基板領域2には導体層12から成る複数層の配線導体4と上下の配線導体4同士を電気的に接続するめっき導体膜から成る貫通導体7とが配設されている。なお、貫通導体7は母基板1を上下に貫通する貫通孔6の内壁に被着されている。そして、この母基板1を各配線基板領域2毎に分割することによって多数の小型の配線基板を同時集約的に得ることができる。
【0014】
また、母基板1の外周部には、中央部に配列形成された複数の配線基板領域2を取り囲むようにして四角枠状の捨て代領域8が形成されている。この捨て代領域8は、母基板1の製造の際にこの捨て代領域8を用いて母基板1の位置決めや搬送を行なうための領域であり、例えばその相対向する2辺に円形のガイド孔3が形成されている。そして、これらのガイド孔3を位置合わせの基準として母基板1の各配線基板領域2に貫通導体7を設けるための貫通孔6が穿孔されている。
【0015】
さらに、捨て代領域8には、ガイド孔3が貫通する位置の内部に各導体層12から成る認識マーク5が形成されている。認識マーク5は、母基板1にガイド孔3を穿孔する際の位置合わせの基準となるマークであり、例えば図2に要部拡大上面図で示すように同一のガイド孔3に貫通される上下に位置する各導体層12毎に三角、丸、四角等とその形状が異なっている。そして、これらの認識マーク5の中央部を貫通してガイド孔3が設けられている。
【0016】
なお、本発明では、このように認識マーク5が母基板1の内部の、同一のガイド孔3に貫通される上下に位置する各導体層12に互いに異なった形状で設けられており、そのことが重要である。このように、認識マーク5が母基板1の内部の、同一のガイド孔3に貫通される上下に位置する各導体層12に互いに異なった形状で設けられていることから、各導体層12の認識マーク5を例えばX線画像により別々に認識することができ、各絶縁層11に伸縮の差や積層ずれがあったとしても、各認識マーク5の中心に最も近接する位置にガイド孔3を設けることができ、そのガイド孔3を基準として各配線基板領域2の互いに接続される上下の配線導体4同士に最も近接する位置に貫通孔6を穿孔することができる。従って、各配線基板領域2における上下の配線導体4同士を貫通孔6内に被着させた貫通導体7により電気的に正確かつ確実に接続することができる。なお、この認識マーク5の大きさは、1〜5mm程度にするのが良い。これは、1mmより小さいと、X線画像により認識マーク5を認識する際に認識マーク5が小さすぎて正確に認識することが困難となり、他方、5mmよりも大きいと、そのような認識マーク5を設けるために捨て代領域8を広いものとする必要があり、母基板1に無駄な領域が大きくなるためである。また、認識マーク5は中抜き形状とすることが望ましい。中抜き形状とすることによってその輪郭をX線画像により良好に認識しやすい。
【0017】
かくして、本発明の多数個取り配線基板によれば、母基板1を構成する各絶縁層11に伸縮の差や積層ずれがあったとしても各配線基板領域2の上下の配線導体4同士が貫通導体7で電気的に正確かつ確実に接続された多数個取り配線基板を提供することができる。
【0018】
次に、本発明の多数個取り配線基板の製造方法について説明する。図3(a)〜(f)は本発明の多数個取り配線基板の製造方法を説明するための各工程毎の断面図である。
【0019】
まず、図3(a)に示すように、上面および/または下面に導体層12が被着されているとともに中央部に配線基板用領域21が配列形成されて成る複数の絶縁層11を準備する。このような絶縁層11は、ガラス繊維基材にエポキシ樹脂等の熱硬化性樹脂を含浸させたものであり、導体層12は銅箔である。絶縁層11と導体層12とは絶縁層11の熱硬化樹脂により接着されている。
【0020】
次に、図3(b)に示すように、各絶縁層11に被着させた導体層12にエッチング加工を施して各絶縁層11の各配線基板用領域21に導体層12から成る配線導体4を形成するとともに各絶縁層11の外周部に導体層12から成る認識マーク5を形成する。なお、このとき、図2に要部拡大上面図で示すように各絶縁層11における認識マーク5の形成位置は互いに同じ位置とし、各絶縁層11の上面毎および下面毎の認識マーク5の形状は互いに異なるものとする。また、最表層の導体層12にはエッチング加工を施さずにそのまま残しておく。
【0021】
次に、図3(c)に示すように、各絶縁層11を各認識マーク5同士が重なるように積層して中央部に各絶縁層11の各配線基板用領域21同士が積層された多数の配線基板領域2および外周部に枠状の捨て代領域8を有する略平板状の母基板1を形成する。
【0022】
次に、図3(d)に示すように、母基板1の外周部の捨て代領域8に、例えば、上下に重なった各認識マーク5の、平面視したときの中心点を中心として円形のガイド孔3をドリル加工により穿孔する。なお、各認識マーク5はX線画像により認識してその中心点を演算処理により求める。このとき、各導体層12に形成された認識マーク5は互いに異なった形状であることから、X線画像により別々に認識することが可能であり、各認識マーク5の中心点を演算処理により正確に求めることができる。従って、各認識マーク5の中心点を中心としてガイド孔3をドリル加工により穿孔することにより、各絶縁層11に伸縮の差や積層ずれがあったとしても、母基板1の内部に形成した各導体層12から成る配線導体4に対してガイド孔3が大きくずれることはない。
【0023】
次に、図3(e)に示すように、ガイド孔3を位置合わせの基準として、母基板1の各配線基板領域2に上下の配線導体4を接続する貫通導体7を形成するための貫通孔6を穿孔するとともに貫通孔6の内壁に貫通導体7を被着形成する。このとき、位置合わせの基準となるガイド孔3は前述したように母基板1の内部に形成した各導体層12から成る配線導体4に対して大きなずれがないことから、このガイド孔3を基準として貫通孔6を互いに接続される上下の配線導体4にそれぞれ最も近接する位置に穿孔することができる。従って、母基板1内部の配線導体4同士を貫通導体7を介して正確かつ確実に電気的に接続することができる。
【0024】
最後に、図2(f)に示すように、最表層の導体層12にエッチング加工を施して各配線基板領域2の最表層に導体層12から成る配線導体4を形成することによって本発明による多数個取り配線基板が完成する。
【0025】
かくして、本発明の多数個取り配線基板の製造方法によれば、上下の配線導体4同士が貫通導体7を介して正確かつ確実に電気的に接続された多数個取り配線基板を提供することができる。
【0026】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0027】
【発明の効果】
本発明の多数個取り配線基板によれば、同一のガイド孔に貫通された上下に位置する認識マークが互いに異なる形状で形成されていることから、積層された各絶縁層に伸縮の差や積層ずれがあったとしても各導体層の認識マークをそれぞれ別々に認識してそれらの各中心から最も近い位置にガイド孔を設けることができ、そのガイド孔を基準として貫通導体用の貫通孔を各導体層に対して大きなずれを発生させることなく設けることができる。
【0028】
また、本発明の多数個取り配線基板の製造方法によれば、母基板の外周部に上下に重なった各認識マークのそれぞれ一部を貫通して母基板を上下に貫通する円形のガイド孔を穿孔し、ガイド孔を基準として母基板の上面から下面にかけて各配線基板領域に配線導体同士を接続する貫通導体を形成するための貫通孔を穿孔するとともにその貫通孔内に配線導体同士を接続する貫通導体を形成することから、積層された各絶縁層に伸縮の差や積層ずれがあったとしても、ガイド孔が各導体層に対して大きくずれることはなく、その結果、そのガイド孔を位置合わせの基準として貫通導体用の貫通孔を互いに接続される上下の配線導体に対して最も近接する位置に設けることができる。
【図面の簡単な説明】
【図1】本発明の多数個取り配線基板の実施の形態の一例を示す断面図である。
【図2】図1に示す多数個取り配線基板の要部拡大平面図である。
【図3】(a)〜(f)は本発明の多数個取り配線基板の製造方法を説明するための工程毎の断面図である。
【符号の説明】
1・・・・・・母基板
2・・・・・・配線基板領域
3・・・・・・ガイド孔
4・・・・・・配線導体
5・・・・・・認識マーク
6・・・・・・貫通孔
7・・・・・・貫通導体
8・・・・・・捨て代領域
11・・・・・・絶縁層
12・・・・・・導体層
21・・・・・・配線基板用領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-piece wiring board for mounting electronic components such as semiconductor elements and resistors, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as a small wiring board used for mounting electronic components such as semiconductor elements and resistors, an insulating layer made of a glass base material and a thermosetting resin and a wiring conductor made of a copper foil and the like are alternately laminated. In addition, there is known a wiring board formed by forming a through conductor made of a copper plating film for electrically connecting wiring conductors positioned above and below the insulating layer from the upper surface to the lower surface with the insulating layer interposed therebetween. Such a small-sized wiring board is manufactured in the form of a multi-piece wiring board in order to increase the production efficiency. This multi-cavity wiring board is composed of a large-area mother board formed by laminating a plurality of insulating layers and conductor layers for wiring conductors. A large number of wiring boards are manufactured simultaneously and intensively by dividing the mother board along the boundaries of the wiring board areas.
[0003]
Such a multi-cavity wiring board is formed by first depositing a conductor layer on the upper surface and / or the lower surface, and has a wiring board area which is the wiring board area in a center portion in a vertical and horizontal direction. A plurality of insulating layers are prepared, and then the conductor layers of the respective insulating layers are subjected to etching to form wiring conductors composed of the conductor layers in the respective wiring board regions of the insulating layers. Each motherboard is formed by laminating each wiring board region so as to overlap vertically, and a through hole for forming the through conductor is formed from the upper surface to the lower surface, and finally, a plating film is formed in the through hole. It is manufactured by being applied to form a through conductor. In order to form a through hole for forming a through conductor from the upper surface to the lower surface of the mother substrate, a circular guide hole is formed at a predetermined position on the outer peripheral portion of the mother substrate using one of the conductor layers as a reference for alignment. Are formed in advance, and a through hole for a through conductor is formed in each wiring board region using the guide holes as a reference for positioning.
[0004]
[Problems to be solved by the invention]
However, in the conventional multi-cavity wiring board, a guide hole for forming a through hole for a through conductor is perforated with one of the conductor layers as a reference for alignment, and each of If a difference in expansion or contraction or lamination displacement occurs due to moisture absorption or heating in the insulating layer, the through hole for the through conductor drilled using the guide hole as a reference for alignment is greatly shifted with respect to other conductor layers, and As a result, there is a problem that the upper and lower wiring conductors in each wiring board region may not be electrically and accurately and reliably connected via the through conductors.
[0005]
The present invention has been completed in view of the above-described problems in the prior art, the purpose is, even if a difference in expansion and contraction or lamination misalignment due to moisture absorption or heating occurs in each insulating layer for the mother substrate to be laminated, The position of the through hole for the through conductor does not largely deviate with respect to each conductor layer, and the upper and lower wiring conductors in each wiring board area are electrically and accurately connected to each other via the through conductor in a multi-cavity manner. It is to provide a wiring board.
[0006]
[Means for Solving the Problems]
A multi-cavity wiring board according to the present invention is a wiring conductor comprising a conductor layer adhered to an upper surface and / or a lower surface of an insulating layer at a central portion of a substantially flat mother substrate formed by laminating a plurality of insulating layers. A plurality of wiring board areas provided with a plurality of layers inside and provided with through conductors electrically connecting the wiring conductors located above and below from the upper surface to the lower surface of the mother board are vertically and horizontally arranged and integrally formed, A multi-layer recognition mark formed on the outer peripheral portion of the mother substrate by a circular guide hole vertically penetrating the mother substrate and a conductor layer attached to the upper or lower surface of the insulating layer penetrated by the guide hole; Are formed, and the recognition marks positioned vertically above and below the same guide hole are formed in shapes different from each other.
[0007]
Further, the method for manufacturing a multi-cavity wiring board according to the present invention is a method of manufacturing a multi-cavity wiring board, comprising: Preparing a wiring conductor formed of the conductor layer on the upper surface and / or lower surface of each wiring board region of each insulation layer by etching the conductor layer of each insulation layer. Forming a recognition mark made of the conductor layer in a shape different from each other at a position corresponding to an upper surface or a lower surface of an outer peripheral portion of each of the insulating layers; and Forming a substantially plate-shaped mother substrate having a wiring board region in which regions are stacked and having the recognition marks stacked on an outer peripheral portion thereof so as to vertically overlap each other; and Perforating a circular guide hole vertically penetrating the motherboard by partially penetrating each of the recognition marks vertically stacked on the outer peripheral portion, and from the upper surface of the motherboard based on the guide hole. Perforating a through hole for forming a through conductor connecting the wiring conductors in each of the wiring board regions over the lower surface, and forming a through conductor connecting the wiring conductors in the through hole. It is characterized by the following.
[0008]
According to the multi-cavity wiring board of the present invention, since the recognition marks positioned vertically above and below the same guide hole are formed in different shapes from each other, the difference in expansion and contraction and the difference Even if there is a deviation, the recognition marks of each conductor layer can be separately recognized and guide holes can be provided at positions closest to their respective centers, and the through holes for the through conductors can be formed on the basis of the guide holes. It can be provided without causing a large displacement with respect to the conductor layer.
[0009]
Further, according to the method for manufacturing a multi-cavity wiring board of the present invention, a circular guide hole that penetrates a part of each of the recognition marks vertically overlapping the outer peripheral portion of the mother board and vertically penetrates the mother board is formed. Drilling, drilling through holes for forming through conductors connecting each of the wiring conductors in each wiring board region from the upper surface to the lower surface of the mother board with reference to the guide holes, and connecting the wiring conductors within the through holes. Since the through conductor is formed, even if there is a difference in expansion or contraction or a misalignment between the laminated insulating layers, the guide holes do not largely displace with respect to the conductor layers. As a reference for alignment, a through hole for a through conductor can be provided at a position closest to upper and lower wiring conductors connected to each other.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a multi-cavity wiring board of the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 is a sectional view showing an example of an embodiment of a multi-cavity wiring board according to the present invention. 1 is a mother board, 2 is a wiring board area, 3 is a guide hole, 4 is a wiring conductor, and 5 is a recognition mark. These mainly constitute a multi-cavity wiring board of the present invention.
[0012]
The mother board 1 has a substantially rectangular flat plate shape obtained by laminating a plurality of insulating layers 11 each formed by impregnating a thermosetting resin such as an epoxy resin into a glass fiber base material, and has a thickness of, for example, 0.1 to 3 mm. And the size in the vertical and horizontal directions is about 200 to 600 mm. The wiring conductor 4 made of the conductor layer 12 is attached to the upper surface and / or lower surface of the insulating layer 11.
[0013]
A large number of wiring board regions 2, each of which is a small wiring board, are vertically and horizontally arranged in a central portion of the mother board 1. And a through conductor 7 formed of a plated conductor film for electrically connecting the upper and lower wiring conductors 4 to each other. Note that the through conductor 7 is attached to the inner wall of the through hole 6 that penetrates the motherboard 1 vertically. Then, by dividing the mother board 1 into each wiring board area 2, a large number of small wiring boards can be obtained simultaneously and collectively.
[0014]
Further, on the outer peripheral portion of the mother substrate 1, a quadrangular frame-shaped discard margin region 8 is formed so as to surround the plurality of wiring substrate regions 2 arranged and formed in the central portion. The discarding allowance area 8 is an area for positioning and transporting the mother board 1 using the discarding allowance area 8 at the time of manufacturing the mother board 1. For example, circular guide holes are formed in two opposing sides thereof. 3 are formed. Then, through holes 6 for providing through conductors 7 in each wiring board area 2 of mother board 1 are drilled using these guide holes 3 as a reference for alignment.
[0015]
Further, in the discard allowance area 8, a recognition mark 5 composed of each conductor layer 12 is formed inside a position where the guide hole 3 penetrates. The recognition mark 5 is a mark that serves as a reference for positioning when the guide hole 3 is formed in the mother board 1. For example, as shown in the main part enlarged top view in FIG. Are different from each other in the shape of a triangle, a circle, a square, or the like for each conductor layer 12. A guide hole 3 is provided to penetrate the center of these recognition marks 5.
[0016]
In the present invention, the recognition marks 5 are provided in different shapes on the upper and lower conductor layers 12 penetrating through the same guide hole 3 inside the mother board 1 as described above. is important. As described above, the recognition marks 5 are provided in different shapes on the upper and lower conductor layers 12 penetrating through the same guide hole 3 inside the mother board 1. The recognition marks 5 can be separately recognized by, for example, an X-ray image, and even if there is a difference in expansion and contraction or lamination displacement in each insulating layer 11, the guide hole 3 is located at the position closest to the center of each recognition mark 5. The through hole 6 can be formed at a position closest to the upper and lower wiring conductors 4 connected to each other in each wiring board region 2 with the guide hole 3 as a reference. Therefore, the upper and lower wiring conductors 4 in each wiring board area 2 can be electrically and accurately connected to each other by the through conductors 7 attached in the through holes 6. The size of the recognition mark 5 is preferably about 1 to 5 mm. This is because if the recognition mark 5 is smaller than 1 mm, it is difficult to accurately recognize the recognition mark 5 when recognizing the recognition mark 5 from the X-ray image. This is because it is necessary to widen the allowance margin area 8 in order to provide the area, and a useless area in the mother substrate 1 increases. It is desirable that the recognition mark 5 has a hollow shape. By using the hollow shape, the outline can be more easily recognized from the X-ray image.
[0017]
Thus, according to the multi-cavity wiring board of the present invention, even if there is a difference in expansion and contraction or a lamination displacement in each of the insulating layers 11 constituting the mother board 1, the wiring conductors 4 above and below each of the wiring board regions 2 penetrate. A multi-piece wiring board electrically and accurately connected by the conductor 7 can be provided.
[0018]
Next, a method for manufacturing a multi-cavity wiring board of the present invention will be described. 3 (a) to 3 (f) are cross-sectional views for respective steps for explaining the method for manufacturing a multi-cavity wiring board of the present invention.
[0019]
First, as shown in FIG. 3A, a plurality of insulating layers 11 are prepared in which a conductor layer 12 is provided on the upper surface and / or lower surface and a wiring board region 21 is arranged and formed in the center. . Such an insulating layer 11 is obtained by impregnating a glass fiber base material with a thermosetting resin such as an epoxy resin, and the conductor layer 12 is a copper foil. The insulating layer 11 and the conductor layer 12 are bonded by a thermosetting resin of the insulating layer 11.
[0020]
Next, as shown in FIG. 3B, the conductor layer 12 applied to each insulating layer 11 is subjected to an etching process so that each wiring board region 21 of each insulating layer 11 has a wiring conductor made of the conductor layer 12. 4 and a recognition mark 5 composed of a conductor layer 12 is formed on the outer periphery of each insulating layer 11. At this time, as shown in the main part enlarged top view of FIG. 2, the formation positions of the recognition marks 5 on each insulating layer 11 are the same as each other, and the shape of the recognition marks 5 on each upper surface and each lower surface of each insulating layer 11 is Are different from each other. In addition, the outermost conductor layer 12 is left without being subjected to etching.
[0021]
Next, as shown in FIG. 3C, a plurality of insulating layers 11 are stacked so that the recognition marks 5 overlap each other, and the wiring board regions 21 of each insulating layer 11 are stacked at the center. A substantially flat mother board 1 having a wiring board area 2 and a frame-shaped waste margin area 8 on the outer peripheral portion is formed.
[0022]
Next, as shown in FIG. 3 (d), for example, a circular shape centered on the center point of the recognition marks 5 vertically stacked in the discard margin area 8 on the outer peripheral portion of the mother substrate 1 when viewed in a plan view. The guide hole 3 is formed by drilling. Note that each recognition mark 5 is recognized by an X-ray image, and the center point thereof is obtained by arithmetic processing. At this time, since the recognition marks 5 formed on the respective conductor layers 12 have mutually different shapes, it is possible to separately recognize the X-ray images, and the center point of each recognition mark 5 can be accurately determined by arithmetic processing. Can be sought. Accordingly, by drilling the guide hole 3 around the center point of each recognition mark 5 by drilling, even if there is a difference in expansion and contraction or a lamination displacement in each insulating layer 11, each of the insulating layers 11 formed inside the mother substrate 1 The guide hole 3 does not significantly deviate from the wiring conductor 4 composed of the conductor layer 12.
[0023]
Next, as shown in FIG. 3E, the through holes for forming the through conductors 7 connecting the upper and lower wiring conductors 4 to the respective wiring board regions 2 of the mother board 1 are set using the guide holes 3 as a reference for alignment. The hole 6 is formed and a through conductor 7 is formed on the inner wall of the through hole 6. At this time, since the guide hole 3 serving as a reference for positioning does not have a large displacement with respect to the wiring conductor 4 formed of each conductor layer 12 formed inside the mother substrate 1 as described above, the guide hole 3 is used as a reference. The through holes 6 can be formed at positions closest to the upper and lower wiring conductors 4 connected to each other. Accordingly, the wiring conductors 4 inside the motherboard 1 can be electrically connected accurately and reliably via the through conductors 7.
[0024]
Finally, as shown in FIG. 2 (f), the outermost conductor layer 12 is subjected to etching to form the wiring conductor 4 composed of the conductor layer 12 on the outermost layer of each wiring board region 2 according to the present invention. A multi-cavity wiring board is completed.
[0025]
Thus, according to the method for manufacturing a multi-cavity wiring board of the present invention, it is possible to provide a multi-cavity wiring board in which the upper and lower wiring conductors 4 are accurately and reliably electrically connected to each other via the through conductors 7. it can.
[0026]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0027]
【The invention's effect】
According to the multi-cavity wiring board of the present invention, since the recognition marks positioned vertically above and below the same guide hole are formed in different shapes from each other, the difference in expansion and contraction and the difference Even if there is a deviation, the recognition marks of each conductor layer can be separately recognized and guide holes can be provided at positions closest to their respective centers, and the through holes for the through conductors can be formed on the basis of the guide holes. It can be provided without causing a large displacement with respect to the conductor layer.
[0028]
Further, according to the method for manufacturing a multi-cavity wiring board of the present invention, a circular guide hole that penetrates a part of each of the recognition marks vertically overlapping the outer peripheral portion of the mother board and vertically penetrates the mother board is formed. Drilling, drilling through holes for forming through conductors connecting each of the wiring conductors in each wiring board region from the upper surface to the lower surface of the mother board with reference to the guide holes, and connecting the wiring conductors within the through holes. Since the through conductor is formed, even if there is a difference in expansion or contraction or a misalignment between the laminated insulating layers, the guide holes do not largely displace with respect to the conductor layers. As a reference for alignment, a through hole for a through conductor can be provided at a position closest to upper and lower wiring conductors connected to each other.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a multi-cavity wiring board according to the present invention.
FIG. 2 is an enlarged plan view of a main part of the multi-cavity wiring board shown in FIG.
FIGS. 3A to 3F are cross-sectional views for explaining steps of a method for manufacturing a multi-cavity wiring board according to the present invention.
[Explanation of symbols]
1 ... mother board 2 ... wiring board area 3 ... guide hole 4 ... wiring conductor 5 ... recognition mark 6 ... ... Through hole 7 ... Through conductor 8 ... Discarding allowance area 11 ... Insulating layer 12 ... Conductor layer 21 ... Wiring Substrate area

Claims (2)

複数の絶縁層を積層して成る略平板状の母基板の中央部に、前記絶縁層の上面および/または下面に被着させた導体層から成る配線導体を内部に複数層備えるとともに前記母基板の上面から下面にかけて上下に位置する前記配線導体同士を電気的に接続する貫通導体を備えた多数の配線基板領域が縦横の並びに一体的に配列形成され、かつ前記母基板の外周部に、該母基板を上下に貫通する円形のガイド孔および該ガイド孔により貫通される前記絶縁層の上面または下面に被着させた導体層から成る複数層の認識マークが形成された多数個取り配線基板であって、同一の前記ガイド孔に貫通された上下に位置する前記認識マークは、互いに異なる形状で形成されていることを特徴とする多数個取り配線基板。A plurality of wiring conductors each including a conductor layer attached to the upper surface and / or lower surface of the insulating layer are provided at a central portion of a substantially flat mother substrate formed by laminating a plurality of insulating layers. A large number of wiring board regions having through conductors that electrically connect the wiring conductors located vertically from the upper surface to the lower surface of the mother board are vertically and horizontally arranged integrally, and the outer peripheral portion of the mother board has A multi-cavity wiring board having a plurality of recognition marks formed of a circular guide hole vertically penetrating the mother board and a conductor layer attached to the upper or lower surface of the insulating layer penetrated by the guide hole. The multi-piece wiring board, wherein the recognition marks positioned vertically above and below the same guide hole are formed in mutually different shapes. 上面および/または下面に導体層が被着されているとともに中央部に多数の配線基板用領域が縦横の並びに配列された複数の絶縁層を準備する工程と、前記各絶縁層の前記導体層にエッチング加工を施して前記各絶縁層の前記各配線基板用領域の上面および/または下面に前記導体層から成る配線導体を形成するとともに前記各絶縁層の外周部の上面または下面のそれぞれ対応する位置に前記導体層から成る認識マークをそれぞれ互いに異なる形状で形成する工程と、前記複数の絶縁層を積層して中央部に前記配線基板用領域同士が積層された配線基板領域を有するとともに外周部に前記認識マークが互いに上下に重なるように積層された略平板状の母基板を形成する工程と、前記母基板の前記外周部に前記上下に重なった各認識マークのそれぞれ一部を貫通して前記母基板を上下に貫通する円形のガイド孔を穿孔する工程と、前記ガイド孔を基準として前記母基板の上面から下面にかけて前記各配線基板領域に前記配線導体同士を接続する貫通導体を形成するための貫通孔を穿孔するとともに該貫通孔内に前記配線導体同士を接続する貫通導体を形成する工程とを具備することを特徴とする多数個取り配線基板の製造方法。A step of preparing a plurality of insulating layers in which a conductor layer is attached to the upper surface and / or lower surface and a large number of wiring board regions are arranged vertically and horizontally in a central portion; Etching is performed to form a wiring conductor made of the conductor layer on the upper surface and / or lower surface of each wiring board region of each insulating layer, and at a position corresponding to the upper surface or lower surface of the outer peripheral portion of each insulating layer. Forming a recognition mark composed of the conductor layer in a shape different from each other, and having a wiring board region in which the plurality of insulating layers are stacked and the wiring board regions are stacked in the center at the outer peripheral portion. Forming a substantially flat motherboard in which the recognition marks are stacked one on top of the other, and identifying each of the recognition marks vertically stacked on the outer periphery of the motherboard. Drilling a circular guide hole penetrating a part of the mother board up and down through each part, and connecting the wiring conductors to each of the wiring board regions from the upper surface to the lower surface of the mother substrate based on the guide hole. Forming a through-hole for forming a through-conductor connecting the wiring conductors and forming a through-conductor connecting the wiring conductors in the through-hole in the through-hole. Method.
JP2002247681A 2002-08-27 2002-08-27 Multi-piece wiring board and its manufacturing method Pending JP2004087847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247681A JP2004087847A (en) 2002-08-27 2002-08-27 Multi-piece wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247681A JP2004087847A (en) 2002-08-27 2002-08-27 Multi-piece wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004087847A true JP2004087847A (en) 2004-03-18

Family

ID=32055268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247681A Pending JP2004087847A (en) 2002-08-27 2002-08-27 Multi-piece wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004087847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056513A (en) * 2008-07-28 2010-03-11 Kyocera Corp Method for manufacturing multi-piece wiring board, and multi-piece wiring board, wiring board and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056513A (en) * 2008-07-28 2010-03-11 Kyocera Corp Method for manufacturing multi-piece wiring board, and multi-piece wiring board, wiring board and electronic device

Similar Documents

Publication Publication Date Title
JP5826532B2 (en) Semiconductor device and manufacturing method thereof
US7977580B2 (en) Intermediate multilayer wiring board product, and method for manufacturing multilayer wiring board
JP5895635B2 (en) Wiring board manufacturing method, wiring board and via structure
US20150271923A1 (en) Printed wiring board and method for manufacturing printed wiring board
TW201251556A (en) Printed circuit board and method for manufacturing the same
US20140085833A1 (en) Chip packaging substrate, method for manufacturing same, and chip packaging structure having same
KR20140086824A (en) Method of manufacturing wiring substrate
JP2009224415A (en) Method of manufacturing multilayer wiring board, and intermediate product of multilayer wiring board,
KR20150094719A (en) Wiring substrate and production method therefor
TWI466610B (en) Package structure and method for manufacturing same
US20130299227A1 (en) New printed circuit board and method for manufacturing same
TWI531291B (en) Package board and method for manufactuing same
TWI472273B (en) Printed circuit board and method for manufacturing same
US10321558B2 (en) Printed circuit board
JP2004087847A (en) Multi-piece wiring board and its manufacturing method
JP6105517B2 (en) Wiring board
JP6195514B2 (en) Wiring board and manufacturing method thereof
JP5955050B2 (en) Wiring board manufacturing method
US20140299363A1 (en) Structure of via hole of electrical circuit board and manufacturing method thereof
JP4975664B2 (en) Manufacturing method of multi-cavity wiring board and intermediate product of multi-cavity wiring board
JP5392720B2 (en) Multi-wiring board
JP2004247690A (en) Multilayer printed circuit board and multilayer board
JPH0964542A (en) Multilayered printed wiring board
CN117279232A (en) Circuit board and manufacturing method thereof
JP2016034007A (en) Wiring board manufacturing method