JP2004084364A - Structure of pc steel wire anchoring part of composite bridge girder - Google Patents

Structure of pc steel wire anchoring part of composite bridge girder Download PDF

Info

Publication number
JP2004084364A
JP2004084364A JP2002248598A JP2002248598A JP2004084364A JP 2004084364 A JP2004084364 A JP 2004084364A JP 2002248598 A JP2002248598 A JP 2002248598A JP 2002248598 A JP2002248598 A JP 2002248598A JP 2004084364 A JP2004084364 A JP 2004084364A
Authority
JP
Japan
Prior art keywords
steel
reaction
girder
steel wire
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248598A
Other languages
Japanese (ja)
Other versions
JP3682520B2 (en
Inventor
Eiichi Suzuki
鈴木 榮一
Shiroshi Asanuma
浅沼 素
Seiichi Yanagida
柳田 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOBAN KOSAN KK
Original Assignee
JOBAN KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOBAN KOSAN KK filed Critical JOBAN KOSAN KK
Priority to JP2002248598A priority Critical patent/JP3682520B2/en
Publication of JP2004084364A publication Critical patent/JP2004084364A/en
Application granted granted Critical
Publication of JP3682520B2 publication Critical patent/JP3682520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a PC steel wire anchoring part of a composite bridge girder whereby reaction forces produced by PC steel wires disposed inside a steel box girder are evenly distributed to concrete placed in the box girder and to steel members near each end of the box girder. <P>SOLUTION: The composite bridge girder is obtained by stretching the PC steel wires 2 in a space inside the steel box girder 1 in span direction, placing concrete 7, and prestressing the PC steel wires. The PC steel wire anchoring parts 3 are arranged at predetermined intervals on a plurality of reaction steel plates 4 in such a manner as to close cross sections at each end of the box girder, with the ends of the PC steel wires passed through penetration holes 40 formed in lines through the reaction steel plates. A connecting steel plate 6 extending in the span direction connects and integrates the reaction steel plates, which are then arranged in a matrix when seen from the top face of the box girder. Further, a ribbed steel plate 5 extending in the span direction is disposed at the mounting part of each reaction steel plate on the inner surface of the box girder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、桁橋の技術分野に属し、特に、鋼箱桁、コンクリート、及びPC鋼線からなる複合橋桁におけるPC鋼線定着部の構造に関する。
【0002】
【発明の前提】
一般に桁橋は、橋台および橋脚上に橋桁を架設し、その上に床版を形成し、さらにその上にアスファルト等を敷設して床版を形成して構築されるものである。
【0003】
従来の桁橋には、型枠成形によるコンクリート桁橋や鋼材(鋼板)のみで構築した鋼桁橋があり、広く用いられていた。
【0004】
かかるコンクリート桁橋の橋桁は、コンクリート打設より成形し、高張力鋼線(以下、「PC鋼線」と略称する。)の内包によるプレストレスの導入によってコンクリート材の引張耐力不足を補完する構造を採っており、材料自体は安価である反面、型枠の組立・撤収および筋配などの作業コストが不可避であった。
【0005】
一方、鋼桁橋の橋桁は、コンクリート桁橋の橋桁に比べて軽量で、かつ工場生産による工期短縮を図れる利点があるが、材料費と大型工作物の運搬コストが高価なものとなる欠点があった。
【0006】
そこで、本願の出願人は、先に特願2001−333962として、上記の鋼桁橋の橋桁とコンクリート桁橋の橋桁の両方の長所を採り入れた複合橋桁を出願している。かかる複合橋桁は、コンクリート打設用の型枠に代わって鋼材よりなる鋼箱桁の内部空間にプレストレスコンクリートを打設する構造のものである。
【0007】
【従来の技術及び発明が解決しようとする課題】
上記の複合橋桁は所期の目的を達成し、優れた技術的効果を奏するものであったが、PC鋼線を両端部で保持する定着部においては、複合橋桁への荷重やプレストレス(張力)の導入により、PC鋼線から大きな反力(圧縮力)が作用し、その反力は、ヤング係数が鋼材(鋼箱桁)の約1/7程度であるコンクリートにその殆どが作用するものであった。そこで、本願発明者は、上記定着部の機能をより高めて複合橋桁の耐久性を向上させる、更なる改良開発を重ねた結果、新たな発明するに至った。
【0008】
【目的】
すなわち、本願発明は、上記課題をもとに為されたものであり、鋼材より成る箱桁のPC鋼線による反力が、打設コンクリート及び箱桁の両端部近傍の鋼材に対して均等に分配することを目的した新規な複合橋桁におけるPC鋼線定着部の構造を提供するものである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本願発明の複合橋桁におけるPC鋼線定着部の構造は、以下のように構成している。
すなわち、鋼箱桁(1)の内部空間に、両端支持のPC鋼線(2)をスパン方向へ張り渡し、コンクリート(7)を打設した後、該PC鋼線(2)にプレストレスを導入して成る複合橋桁において、PC鋼線(2)の定着部(3)を、箱桁(1)の両端付近の断面を閉塞するようにそれぞれ1個、又はスパン方向に所定間隔をもって複数個の反力鋼板(4)を配置し、該反力鋼板(4)を貫通させてPC鋼線(2)の両端部を定着させた構造としたことを特徴としている。
【0010】
また、反力鋼板(4)に1個又は複数個の貫通口(40)を行列状に形成し、各貫通口(40)を貫通させてPC鋼線(2)を定着させたことを特徴としている。
【0011】
さらに、スパン方向に所定間隔をもって複数個の反力鋼板(4)を配置した場合において、スパン方向に延びる連結鋼板(6)によって、各反力鋼板(4)間を連結して一体化させ、連結鋼板(6)と反力鋼板(4)との連結において、箱桁(1)の上面視で格子状となるように配置したことを特徴としている。
【0012】
さらにまた、箱桁(1)の内面における反力鋼板(4)の取付部に、スパン方向へ延びるリブ鋼板(5)を配設したことを特徴としている。
【0013】
なお、上記の特許請求の範囲及び課題を解決するための手段の欄で記載した括弧付き符号は、発明の構成の理解を容易にするため参考として図面符号を付記したもので、この図面上の形態に限定するものでないことはもちろんである。
【0014】
【発明の実施の形態】
以下に、本願発明に係る複合橋桁におけるPC鋼線定着部の構造の具体的な実施形態例について、図面に基づき詳細に説明する。
【0015】
図1は桁橋の構築例を示す概観図である。また、図2は本実施形態例を示す斜視図とその一部を抽出して一部切欠いて示す拡大図であり、図3は本実施形態例を示す図であってスパン方向に切断して示す縦断面図(A)、図(A)のAA線拡大断面図(B)であり、図4は本実施形態例を一部切り欠いて示す平面図である。さらに、図5は本実施形態例における力の作用状態を示す説明図である。
【0016】
先ず、橋桁構造による桁橋Bは、図1に示すように、複合橋桁Mbを橋台Aや橋脚Pに並設または横桁Cで連結状にして架設し、その上部に床版Dを形成した後、その上面にアスファルト等を敷設して構築されるものである。
【0017】
本願発明の複合橋桁におけるPC鋼線定着部の構造は、図2に示すように、主に、箱桁1、PC鋼線(高張力鋼線材)2、反力鋼板4、連結鋼板6、及びコンクリート7、から構成している。
【0018】
箱桁1は、鋼板等の鋼材から成り、スパン方向(又は橋延長方向)に延びる長尺矩形状の底板10と、その両側に対向させて立設形成したウェブ11とで上方開放断面形の略コ字状の長尺箱体状を成すものである。両ウェブ11のそれぞれ上端からは床版Dを支えるための長尺帯状のフランジ12を外側水平方向かつスパン方向へ連続して形成している。
【0019】
PC鋼線2は、充填コンクリートへプレストレスを導入するための高張力鋼線からなる線材であり、シース(被覆管)20に挿通して、箱桁1の内部空間のスパン方向に張り渡し、両端付近の定着部3において保持している。本実施形態例では、その総数は3行4列の12本である。このPC鋼線2の配設状態は、図3の(A)に示すように、箱桁1の中央部を挟んで対向配設したラック21を経由させて、該ラック21間で底板10側に接近かつ収束させた状態で水平になるように構成している。これは桁荷重による断面力の分布を考慮したものである。
【0020】
次に、本願の主眼である定着部3は、図2、図3(B)に示すように、反力鋼板4、連結鋼板6、及びリブ鋼板5により構成することを特徴としている。
【0021】
反力鋼板4は、剛性板で形成され箱桁1の両端付近の横断面を閉塞するよう、かつスパン方向に所定の離隔距離をもって複数枚(本実施形態例では3枚)を箱桁1の内面壁に取付て一体化している。これら反力鋼板4の各板面には、PC鋼線2を挿通させたシース20が十分な間隙をもって貫通し得る開口形(本実施形態例では矩形状)をもった複数個の貫通口40を形成している。この貫通口40は、略等間隔の行列状(本実施例では4行3列で計12個)に、かつ各反力鋼板4の対応する貫通口40がPC鋼線の配設に倣って直線状に連絡するようにして配列形成している。なお、この反力鋼板4の配置個数は、1又は複数枚の適宜なものである。
【0022】
また、箱桁1のウェブ11の内面に垂直にかつ反力鋼板4と直交して、スパン方向に延びる帯状のリブ鋼板5を取り付けている。このリブ鋼板5には、反力鋼板4との直交部に半円形の切欠き50を形成して、反力鋼板4の貫通口40の位置(本実施例では4個所。)に対応する上下方向に配設して、各反力鋼板4を連結している。この配置によりウェブ11に対する反力鋼板4の取り付けを補強している。
【0023】
さらに、スパン方向へ離隔配置した各反力鋼板4の間には、該反力鋼板4の板面と直交させ、かつウェブ11と平行に配設して連結した連結鋼板6を設けている。該連結鋼板6は、行列形成の貫通口40の各列間(本実施例では2個所)に取り付けることにより、図4に示すように、定着部3の上面視において、反力鋼板4との位置関係において格子状となるように配置している。
【0024】
この反力鋼板4と連結鋼板6が成す格子状配置により定着部3は、言うなれば矩形箱体の積層構造となって、スパン方向及びこれと直交する方向において、強固な保形力を発揮することとなる。
【0025】
箱桁1内にシース20に挿通させて張り渡した多数のPC鋼線2は、各線毎に分配して、各反力鋼板4の貫通口40をそれぞれ貫通させ、両端部を定着部3において保持する。
【0026】
かかる構成のもと、箱桁1の内部空間にコンクリート7を打設して硬化させる。硬化後にはPC鋼線2の先端部に、直円錐台状を成して一定の拡底板30aをもった定着具30を取り付けると共に、牽引して所定の張力を付加して固定する。この定着部3における反力状態は、図5に示すように、定着具30の拡底板30aを介して、PC鋼線2の残留張力の反力が打設硬化したコンクリート7へプレストレス(圧縮力)として作用することとなる。
【0027】
この結果、拡底板30aの反力は、これと接するコンクリート7内に分散して分布し、反力鋼板4の板面へ分散して作用する。そして、この作用による反力鋼板4から伝達される作用力はさらに、反力鋼板4と連結鋼板6の格子状配置により多数形成された矩形箱体状の積層空間内にそれぞれ充填されたコンクリート7内に、3次元的に分散分布して伝達され、より均等に作用することとなる。その結果、応力集中によるコンクリート7や箱桁1の欠損の発生を防止して、定着部3のより耐久性のある保形力と保持力とを実現することとなる。
【0028】
【効果】
本願発明は以上のように構成しているため、複合橋桁におけるPC鋼線の定着部において、より耐久性のある保形力・保持力を実現することができ、複合橋桁を用いた桁橋の全体的な強度の向上と、長寿命化を図ることができる。
【図面の簡単な説明】
【図1】桁橋の構築例を示す概観図である。
【図2】本実施形態例を示す斜視図とその一部を抽出して一部切欠いて示す拡大図である。
【図3】本実施形態例を示す図であってスパン方向に切断して示す縦断面図(A)、図(A)のAA線拡大断面図(B)である。
【図4】本実施形態例を一部切り欠いて示す平面図である。
【図5】本実施形態例における力の作用状態を示す説明図である。
【符号の説明】
1 箱桁
10 底板
11 ウェブ
12 フランジ
2 PC鋼線
20 シース(被覆管)
21 ラック
3 定着部
30 定着具
30a 拡底板
4 反力鋼板
40 貫通口
5 リブ鋼板
50 切欠き
6 連結鋼板
7 コンクリート
A 橋台
B 桁橋
C 横桁
D 床版
P 橋脚
Mb 複合橋桁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of girder bridges, and particularly relates to a structure of a PC steel wire anchoring portion in a composite bridge girder including a steel box girder, concrete, and a PC steel wire.
[0002]
[Premise of the invention]
Generally, a girder bridge is constructed by constructing a bridge girder on an abutment and a pier, forming a floor slab thereon, and laying asphalt or the like thereon to form a floor slab.
[0003]
Conventional girder bridges include concrete girder bridges formed by formwork and steel girder bridges constructed only of steel materials (steel plates), which have been widely used.
[0004]
The bridge girder of such a concrete girder bridge is formed by casting concrete and compensating for the lack of tensile strength of the concrete material by introducing a prestress by enclosing a high-strength steel wire (hereinafter abbreviated as “PC steel wire”). Although the material itself is inexpensive, the operation costs of assembling / removing the formwork and arranging the formwork were inevitable.
[0005]
On the other hand, the bridge girder of the steel girder bridge is lighter than the bridge girder of the concrete girder bridge, and has the advantage of shortening the construction period by factory production.However, it has the disadvantage that the material cost and the transportation cost of large workpieces are expensive. there were.
[0006]
The applicant of the present application has previously filed a Japanese Patent Application No. 2001-333962 for a composite bridge girder that incorporates the advantages of both the bridge girder of the steel girder bridge and the bridge girder of the concrete girder bridge. Such a composite bridge girder has a structure in which prestressed concrete is cast in the internal space of a steel box girder made of steel instead of a concrete casting formwork.
[0007]
Problems to be solved by the prior art and the invention
Although the above composite bridge girder achieved the intended purpose and achieved excellent technical effects, the load on the composite bridge girder and the pre-stress (tension ) Introduces a large reaction force (compression force) from the PC steel wire, and most of the reaction force acts on concrete whose Young's modulus is about 1/7 that of steel (steel box girder). Met. Therefore, the inventor of the present application has made further improvements and developments to further enhance the function of the fixing section and improve the durability of the composite bridge girder, and as a result, has come to a new invention.
[0008]
【Purpose】
That is, the present invention has been made based on the above-described problem, and the reaction force of the PC steel wire of the box girder made of steel material is uniformly applied to the cast concrete and the steel materials near both ends of the box girder. An object of the present invention is to provide a structure of a PC steel wire anchoring portion in a novel composite bridge girder for distribution.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the PC steel wire anchoring portion in the composite bridge girder of the present invention is configured as follows.
That is, a PC steel wire (2) supported at both ends is stretched in the span direction into the inner space of the steel box girder (1), and concrete (7) is cast. Then, prestress is applied to the PC steel wire (2). In the composite bridge girder that is introduced, one or more anchoring portions (3) of the PC steel wire (2) are provided so as to close the cross sections near both ends of the box girder (1), or a plurality thereof at predetermined intervals in the span direction. Characterized in that the reaction steel plate (4) is penetrated, and the reaction steel plate (4) is penetrated to fix both ends of the PC steel wire (2).
[0010]
One or more through-holes (40) are formed in a matrix in the reaction steel plate (4), and the PC steel wire (2) is fixed by penetrating each of the through-holes (40). And
[0011]
Further, when a plurality of reaction steel plates (4) are arranged at predetermined intervals in the span direction, the respective reaction steel plates (4) are connected and integrated by a connection steel plate (6) extending in the span direction, The connection between the connection steel plate (6) and the reaction steel plate (4) is characterized in that the box girder (1) is arranged in a lattice shape when viewed from above.
[0012]
Still further, a rib steel plate (5) extending in the span direction is provided at an attachment portion of the reaction steel plate (4) on the inner surface of the box girder (1).
[0013]
Note that the reference numerals in parentheses described in the section of the claims and means for solving the problems are provided with reference numerals for reference in order to facilitate understanding of the structure of the invention. Of course, it is not limited to the form.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the structure of the PC steel wire anchoring portion in the composite bridge girder according to the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic view showing an example of building a girder bridge. FIG. 2 is a perspective view showing the embodiment, and an enlarged view showing a part of the embodiment, and a part of the embodiment is cut out. FIG. 3 is a view showing the embodiment. FIG. 4A is a longitudinal sectional view (A), and FIG. 4A is an enlarged sectional view taken along the line AA of FIG. 4A. FIG. FIG. 5 is an explanatory view showing the state of action of the force in the embodiment.
[0016]
First, a girder bridge B having a bridge girder structure was constructed such that a composite bridge girder Mb was juxtaposed with an abutment A or a pier P or connected with a cross girder C as shown in FIG. Later, it is constructed by laying asphalt or the like on the upper surface.
[0017]
As shown in FIG. 2, the structure of the PC steel wire anchoring portion in the composite bridge girder of the present invention mainly includes a box girder 1, a PC steel wire (high-strength steel wire) 2, a reaction steel plate 4, a connection steel plate 6, and It is composed of concrete 7.
[0018]
The box girder 1 is formed of a steel material such as a steel plate, and has an elongated rectangular bottom plate 10 extending in a span direction (or a bridge extension direction), and a web 11 formed on the both sides thereof so as to be opposed to both sides to form an upward open cross section. It has a substantially U-shaped long box shape. From each upper end of both webs 11, a long strip-like flange 12 for supporting the floor slab D is formed continuously in the outer horizontal direction and the span direction.
[0019]
The PC steel wire 2 is a wire made of a high-strength steel wire for introducing prestress into the filled concrete. The PC steel wire 2 is inserted through a sheath (cladding tube) 20 and stretched in the span direction of the internal space of the box girder 1. It is held in the fixing section 3 near both ends. In the present embodiment, the total number is 12 in 3 rows and 4 columns. As shown in FIG. 3 (A), the arrangement state of the PC steel wires 2 is via the racks 21 arranged opposite to each other with the central portion of the box girdle sandwiched therebetween, and between the racks 21 on the bottom plate 10 side. , And it is configured to be horizontal in a state where it converges and approaches. This takes into account the distribution of the section force due to the girder load.
[0020]
Next, as shown in FIGS. 2 and 3B, the fixing unit 3, which is the main feature of the present application, is characterized by comprising a reaction steel plate 4, a connection steel plate 6, and a rib steel plate 5.
[0021]
The reaction steel plate 4 is formed of a rigid plate, and a plurality (three in this embodiment) of the box girder 1 is formed so as to close the cross sections near both ends of the box girder 1 and at a predetermined separation distance in the span direction. It is integrated with the inner wall. A plurality of through-holes 40 having an opening shape (rectangular shape in the present embodiment) through which the sheath 20 into which the PC steel wire 2 is inserted can be penetrated with a sufficient gap in each plate surface of the reaction steel plate 4. Is formed. The through holes 40 are arranged in a matrix at substantially equal intervals (in this embodiment, a total of 12 in 4 rows and 3 columns), and the corresponding through holes 40 of each reaction steel plate 4 follow the arrangement of PC steel wires. They are arranged so as to be connected in a straight line. The number of the reaction steel plates 4 may be one or more.
[0022]
A strip-shaped rib steel plate 5 extending in the span direction perpendicular to the inner surface of the web 11 of the box girder 1 and perpendicular to the reaction steel plate 4 is attached. A semicircular notch 50 is formed in the rib steel plate 5 at a portion orthogonal to the reaction steel plate 4, and the upper and lower corresponding to the position of the through hole 40 of the reaction steel plate 4 (four places in this embodiment). And the reaction steel plates 4 are connected to each other. With this arrangement, the attachment of the reaction steel plate 4 to the web 11 is reinforced.
[0023]
Further, between the reaction steel plates 4 spaced apart in the span direction, there is provided a connection steel plate 6 arranged to be orthogonal to the plate surface of the reaction steel plate 4 and connected in parallel with the web 11. The connecting steel plate 6 is attached between the rows of the through holes 40 for forming the matrix (two locations in the present embodiment), and as shown in FIG. They are arranged so as to form a lattice in a positional relationship.
[0024]
Due to the lattice-like arrangement of the reaction steel plate 4 and the connection steel plate 6, the fixing part 3 has a so-called laminated structure of rectangular boxes, and exhibits a strong shape-retaining force in the span direction and the direction perpendicular thereto. Will be done.
[0025]
A large number of PC steel wires 2 penetrating through the sheath 20 in the box girder 1 are distributed for each wire, penetrate through the through-holes 40 of each reaction steel plate 4, and both ends are fixed in the fixing portion 3. Hold.
[0026]
With this configuration, concrete 7 is poured into the internal space of box girder 1 and hardened. After the hardening, a fixing tool 30 having a truncated right circular cone shape and having a fixed bottom plate 30a is attached to the tip of the PC steel wire 2, and is pulled and fixed with a predetermined tension. As shown in FIG. 5, the reaction force state of the fixing unit 3 is such that the reaction force of the residual tension of the PC steel wire 2 is pre-stressed (compressed) on the concrete 7 which has been poured and hardened via the bottom plate 30 a of the fixing tool 30. Force).
[0027]
As a result, the reaction force of the expanded bottom plate 30 a is dispersed and distributed in the concrete 7 in contact with the bottom plate 30 a and acts on the plate surface of the reaction steel plate 4. The acting force transmitted from the reaction steel plate 4 by this operation is further increased by the concrete 7 filled in the rectangular box-shaped laminated space formed by the lattice-like arrangement of the reaction steel plate 4 and the connecting steel plate 6. , And are transmitted in a three-dimensionally distributed manner and act more evenly. As a result, it is possible to prevent the concrete 7 and the box girder 1 from being broken due to stress concentration and to realize more durable shape retaining force and retaining force of the fixing portion 3.
[0028]
【effect】
Since the invention of the present application is configured as described above, more durable shape retention and holding power can be realized in the anchoring portion of the PC steel wire in the composite bridge girder, and the girder bridge using the composite bridge girder can be realized. It is possible to improve the overall strength and extend the life.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of building a girder bridge.
FIG. 2 is a perspective view showing the present embodiment and an enlarged view showing a part of the perspective view extracted and partially cut away.
FIG. 3 is a view showing the embodiment, and is a longitudinal sectional view (A) cut along the span direction and an enlarged sectional view (A) taken along the line AA in FIG. 3 (A).
FIG. 4 is a plan view showing the embodiment with a part cut away.
FIG. 5 is an explanatory diagram showing an action state of a force in the embodiment.
[Explanation of symbols]
1 Box girder 10 Bottom plate 11 Web 12 Flange 2 PC steel wire 20 Sheath (Clad tube)
21 Rack 3 Anchor 30 Anchor 30a Expanded bottom plate 4 Reaction steel plate 40 Through hole 5 Rib steel plate 50 Notch 6 Connecting steel plate 7 Concrete A Abutment B Girder bridge C Cross girder D Floor slab P Pier Mb Composite bridge girder

Claims (5)

鋼箱桁(1)の内部空間に、両端支持のPC鋼線(2)をスパン方向へ張り渡し、コンクリート(7)を打設した後、該PC鋼線(2)にプレストレスを導入して成る複合橋桁において、
箱桁(1)の両端付近の断面を閉塞するようにそれぞれ1個、又はスパン方向に所定間隔をもって複数個の反力鋼板(4)を配置し、
該反力鋼板(4)を貫通させてPC鋼線(2)の両端部を定着させたことを特徴とした複合橋桁におけるPC鋼線定着部の構造。
After a PC steel wire (2) supported at both ends is stretched in the span direction into the internal space of the steel box girder (1) and concrete (7) is cast, prestress is introduced into the PC steel wire (2). Composite bridge girder
One or a plurality of reaction steel plates (4) are arranged at predetermined intervals in the span direction so as to close the cross sections near both ends of the box girder (1),
A PC steel wire anchoring portion in a composite bridge girder, wherein both ends of the PC steel wire (2) are anchored by penetrating the reaction steel plate (4).
反力鋼板(4)に1個又は複数個の貫通口(40)を行列状に形成し、各貫通口(40)を貫通させてPC鋼線(2)を定着させたことを特徴とする請求項1記載の複合橋桁におけるPC鋼線定着部の構造。One or more through holes (40) are formed in a matrix in the reaction steel plate (4), and the PC steel wire (2) is fixed by penetrating each through hole (40). The structure of the PC steel wire anchoring part in the composite bridge girder according to claim 1. スパン方向に所定間隔をもって複数個の反力鋼板(4)を配置した場合において、
スパン方向に延びる連結鋼板(6)によって、各反力鋼板(4)間を連結して一体化させたことを特徴とする請求項1、又は2記載の複合橋桁におけるPC鋼線定着部の構造。
When a plurality of reaction steel plates (4) are arranged at predetermined intervals in the span direction,
The structure of the PC steel wire anchoring part in the composite bridge girder according to claim 1 or 2, wherein the reaction steel plates (4) are connected and integrated by a connection steel plate (6) extending in the span direction. .
連結鋼板(6)と反力鋼板(4)との連結において、箱桁(1)の上面視で格子状となるように配置したことを特徴とする請求項3記載の複合橋桁におけるPC鋼線定着部の構造。4. The PC steel wire in a composite bridge girder according to claim 3, wherein the connecting steel plate (6) and the reaction steel plate (4) are arranged so as to form a lattice shape in a top view of the box girder. Structure of fixing unit. 箱桁(1)の内面における反力鋼板(4)の取付部に、スパン方向へ延びるリブ鋼板(5)を配設したことを特徴とする請求項1、2、3、又は4記載の複合橋桁におけるPC鋼線定着部の構造。5. The composite according to claim 1, wherein a rib steel plate (5) extending in the span direction is disposed at an attachment portion of the reaction steel plate (4) on the inner surface of the box girder (1). Structure of PC steel wire anchoring part in bridge girder.
JP2002248598A 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder Expired - Fee Related JP3682520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248598A JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248598A JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Publications (2)

Publication Number Publication Date
JP2004084364A true JP2004084364A (en) 2004-03-18
JP3682520B2 JP3682520B2 (en) 2005-08-10

Family

ID=32055935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248598A Expired - Fee Related JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Country Status (1)

Country Link
JP (1) JP3682520B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682790B1 (en) * 2004-12-24 2007-02-15 재단법인 포항산업과학연구원 Girder of steel box girder type bridge
KR101621341B1 (en) * 2015-09-30 2016-05-16 (주)에스앤씨산업 Open type prestressed steel box girder and bridge construction method therewith
CN105908615A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Pretensioned prestressing steel tank concrete beam
CN105908616A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Calculating method for pretensioned prestressing steel tank concrete beam
CN109356017A (en) * 2018-10-30 2019-02-19 南昌大学 It is a kind of to limit the Continuous Concrete Box Girders for reducing loss of prestress composite structure with self- recoverage
CN109914216A (en) * 2019-03-29 2019-06-21 湖南大学 A kind of assembled box beam combined type node across ultra-high performance concrete greatly and attaching method thereof
CN111593664A (en) * 2020-05-08 2020-08-28 中电建十一局工程有限公司 Construction method for penetrating full-length prestressed tendons of segment prefabricated assembled beam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682790B1 (en) * 2004-12-24 2007-02-15 재단법인 포항산업과학연구원 Girder of steel box girder type bridge
KR101621341B1 (en) * 2015-09-30 2016-05-16 (주)에스앤씨산업 Open type prestressed steel box girder and bridge construction method therewith
CN105908615A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Pretensioned prestressing steel tank concrete beam
CN105908616A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Calculating method for pretensioned prestressing steel tank concrete beam
CN109356017A (en) * 2018-10-30 2019-02-19 南昌大学 It is a kind of to limit the Continuous Concrete Box Girders for reducing loss of prestress composite structure with self- recoverage
CN109914216A (en) * 2019-03-29 2019-06-21 湖南大学 A kind of assembled box beam combined type node across ultra-high performance concrete greatly and attaching method thereof
CN109914216B (en) * 2019-03-29 2024-04-16 湖南大学 Assembled large-span ultra-high-performance concrete box girder combined node and connecting method thereof
CN111593664A (en) * 2020-05-08 2020-08-28 中电建十一局工程有限公司 Construction method for penetrating full-length prestressed tendons of segment prefabricated assembled beam

Also Published As

Publication number Publication date
JP3682520B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP2005180162A (en) Connecting structure and connecting method of i-type prestressed concrete beam with steel bracket
JPH1096263A (en) Precast concrete support and assembling method of slab
CN101418630B (en) Pretensioned prestressing composite girder and method for producing the same
JP2007254974A (en) Prestressed concrete floor slab bridge of composite structure of steel/concrete using shape steel, and construction method of the prestressed concrete floor slab bridge
JP2004084364A (en) Structure of pc steel wire anchoring part of composite bridge girder
JP2001348815A (en) Cantilever type installing construction method of bridge
JP2006265976A (en) Corrugated steel-plate web u component bridge and its construction method
KR101389044B1 (en) Steel girders for bridges and its production method
JP2020125675A (en) Pre-stressed concrete floor slab and construction method for floor slab using pre-stressed concrete floor slab
JP4001058B2 (en) Seismic reinforcement method for wall structures
JP3603085B2 (en) Bridge girder construction method
JP2702365B2 (en) Building construction method using precast concrete members
KR100734172B1 (en) PC Beam
KR101439867B1 (en) Compact tendon structure and prestressed concrete girder of the same
JP3703760B2 (en) Girder bridge
KR100485060B1 (en) Joint between steel superstructure and reinforced concrete substructure of rahmen typed hybrid bridge
JPS6241869A (en) Reinforcement of existing structure
JPH06146472A (en) Precast ferro-concrete beam
JP2004232229A (en) Precast concrete slab
KR101044469B1 (en) Combined projection beam and prestressed concrete girder
JPH0673203U (en) Beam-column joint structure
JPH07102529A (en) Precast concrete slab for road bridge
JP2568987B2 (en) Support member for reinforcing steel assembly and bridge construction method using the same
JPS60181452A (en) Construction of floor panel
JPH0782836A (en) U-shaped beam of precast prestressed concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees