JP3682520B2 - PC steel wire anchorage structure in composite bridge girder - Google Patents

PC steel wire anchorage structure in composite bridge girder Download PDF

Info

Publication number
JP3682520B2
JP3682520B2 JP2002248598A JP2002248598A JP3682520B2 JP 3682520 B2 JP3682520 B2 JP 3682520B2 JP 2002248598 A JP2002248598 A JP 2002248598A JP 2002248598 A JP2002248598 A JP 2002248598A JP 3682520 B2 JP3682520 B2 JP 3682520B2
Authority
JP
Japan
Prior art keywords
steel
steel wire
girder
steel plate
bridge girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248598A
Other languages
Japanese (ja)
Other versions
JP2004084364A (en
Inventor
榮一 鈴木
素 浅沼
聖一 柳田
Original Assignee
常磐興産ピーシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常磐興産ピーシー株式会社 filed Critical 常磐興産ピーシー株式会社
Priority to JP2002248598A priority Critical patent/JP3682520B2/en
Publication of JP2004084364A publication Critical patent/JP2004084364A/en
Application granted granted Critical
Publication of JP3682520B2 publication Critical patent/JP3682520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、桁橋の技術分野に属し、特に、鋼箱桁、コンクリート、及びPC鋼線からなる複合橋桁におけるPC鋼線定着部の構造に関する。
【0002】
【発明の前提】
一般に桁橋は、橋台および橋脚上に橋桁を架設し、その上に床版を形成し、さらにその上にアスファルト等を敷設して床版を形成して構築されるものである。
【0003】
従来の桁橋には、型枠成形によるコンクリート桁橋や鋼材(鋼板)のみで構築した鋼桁橋があり、広く用いられていた。
【0004】
かかるコンクリート桁橋の橋桁は、コンクリート打設より成形し、高張力鋼線(以下、「PC鋼線」と略称する。)の内包によるプレストレスの導入によってコンクリート材の引張耐力不足を補完する構造を採っており、材料自体は安価である反面、型枠の組立・撤収および筋配などの作業コストが不可避であった。
【0005】
一方、鋼桁橋の橋桁は、コンクリート桁橋の橋桁に比べて軽量で、かつ工場生産による工期短縮を図れる利点があるが、材料費と大型工作物の運搬コストが高価なものとなる欠点があった。
【0006】
そこで、本願の出願人は、先に特願2001−333962として、上記の鋼桁橋の橋桁とコンクリート桁橋の橋桁の両方の長所を採り入れた複合橋桁を出願している。かかる複合橋桁は、コンクリート打設用の型枠に代わって鋼材よりなる鋼箱桁の内部空間にプレストレスコンクリートを打設する構造のものである。
【0007】
【従来の技術及び発明が解決しようとする課題】
上記の複合橋桁は所期の目的を達成し、優れた技術的効果を奏するものであったが、PC鋼線を両端部で保持する定着部においては、複合橋桁への荷重やプレストレス(張力)の導入により、PC鋼線から大きな反力(圧縮力)が作用し、その反力は、ヤング係数が鋼材(鋼箱桁)の約1/7程度であるコンクリートにその殆どが作用するものであった。そこで、本願発明者は、上記定着部の機能をより高めて複合橋桁の耐久性を向上させる、更なる改良開発を重ねた結果、新たな発明するに至った。
【0008】
【目的】
すなわち、本願発明は、上記課題をもとに為されたものであり、鋼材より成る箱桁のPC鋼線による反力が、打設コンクリート及び箱桁の両端部近傍の鋼材に対して均等に分配することを目的した新規な複合橋桁におけるPC鋼線定着部の構造を提供するものである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本願発明の複合橋桁におけるPC鋼線定着部の構造は、以下のように構成している。
すなわち、鋼箱桁(1)の内部空間に、両端支持のPC鋼線(2)をスパン方向へ張り渡し、コンクリート(7)を打設した後、該PC鋼線(2)にプレストレスを導入して成る複合橋桁において、PC鋼線(2)の定着部(3)を、箱桁(1)の両端付近の断面を閉塞するようにそれぞれ1個、又はスパン方向に所定間隔をもって複数個の反力鋼板(4)を配置し、該反力鋼板(4)を貫通させてPC鋼線(2)の両端部を打設硬化させたコンクリート(7)に定着させた構造としたことを特徴としている。
【0010】
また、反力鋼板(4)に1個又は複数個の貫通口(40)を行列状に形成し、各貫通口(40)を貫通させてPC鋼線(2)を定着させたことを特徴としている。
【0011】
さらに、特に、スパン方向に所定間隔をもって複数個の反力鋼板(4)を配置した場合において、スパン方向に延びる連結鋼板(6)によって、各反力鋼板(4)間を連結して一体化させ、連結鋼板(6)と反力鋼板(4)との連結において、箱桁(1)の上面視で格子状となるように配置したことを特徴としている。
【0012】
さらにまた、箱桁(1)の内面における反力鋼板(4)の取付部に、スパン方向へ延びるリブ鋼板(5)を配設したことを特徴としている。
【0013】
なお、上記の特許請求の範囲及び課題を解決するための手段の欄で記載した括弧付き符号は、発明の構成の理解を容易にするため参考として図面符号を付記したもので、この図面上の形態に限定するものでないことはもちろんである。
【0014】
【発明の実施の形態】
以下に、本願発明に係る複合橋桁におけるPC鋼線定着部の構造の具体的な実施形態例について、図面に基づき詳細に説明する。
【0015】
図1は桁橋の構築例を示す概観図である。また、図2は本実施形態例を示す斜視図とその一部を抽出して一部切欠いて示す拡大図であり、図3は本実施形態例を示す図であってスパン方向に切断して示す縦断面図(A)、図(A)のAA線拡大断面図(B)であり、図4は本実施形態例を一部切り欠いて示す平面図である。さらに、図5は本実施形態例における力の作用状態を示す説明図である。
【0016】
先ず、橋桁構造による桁橋Bは、図1に示すように、複合橋桁Mbを橋台Aや橋脚Pに並設または横桁Cで連結状にして架設し、その上部に床版Dを形成した後、その上面にアスファルト等を敷設して構築されるものである。
【0017】
本願発明の複合橋桁におけるPC鋼線定着部の構造は、図2に示すように、主に、箱桁1、PC鋼線(高張力鋼線材)2、反力鋼板4、連結鋼板6、及びコンクリート7、から構成している。
【0018】
箱桁1は、鋼板等の鋼材から成り、スパン方向(又は橋延長方向)に延びる長尺矩形状の底板10と、その両側に対向させて立設形成したウェブ11とで上方開放断面形の略コ字状の長尺箱体状を成すものである。両ウェブ11のそれぞれ上端からは床版Dを支えるための長尺帯状のフランジ12を外側水平方向かつスパン方向へ連続して形成している。
【0019】
PC鋼線2は、充填コンクリートへプレストレスを導入するための高張力鋼線からなる線材であり、シース(被覆管)20に挿通して、箱桁1の内部空間のスパン方向に張り渡し、両端付近の定着部3において保持している。本実施形態例では、その総数は3行4列の12本である。このPC鋼線2の配設状態は、図3の(A)に示すように、箱桁1の中央部を挟んで対向配設したラック21を経由させて、該ラック21間で底板10側に接近かつ収束させた状態で水平になるように構成している。これは桁荷重による断面力の分布を考慮したものである。
【0020】
次に、本願の主眼である定着部3は、図2、図3(B)に示すように、反力鋼板4、連結鋼板6、及びリブ鋼板5により構成することを特徴としている。
【0021】
反力鋼板4は、剛性板で形成され箱桁1の両端付近の横断面を閉塞するよう、かつスパン方向に所定の離隔距離をもって複数枚(本実施形態例では3枚)を箱桁1の内面壁に取付て一体化している。これら反力鋼板4の各板面には、PC鋼線2を挿通させたシース20が十分な間隙をもって貫通し得る開口形(本実施形態例では矩形状)をもった複数個の貫通口40を形成している。この貫通口40は、略等間隔の行列状(本実施例では4行3列で計12個)に、かつ各反力鋼板4の対応する貫通口40がPC鋼線の配設に倣って直線状に連絡するようにして配列形成している。なお、この反力鋼板4の配置個数は、1又は複数枚の適宜なものである。
【0022】
また、箱桁1のウェブ11の内面に垂直にかつ反力鋼板4と直交して、スパン方向に延びる帯状のリブ鋼板5を取り付けている。このリブ鋼板5には、反力鋼板4との直交部に半円形の切欠き50を形成して、反力鋼板4の貫通口40の位置(本実施例では4個所。)に対応する上下方向に配設して、各反力鋼板4を連結している。この配置によりウェブ11に対する反力鋼板4の取り付けを補強している。
【0023】
さらに、スパン方向へ離隔配置した各反力鋼板4の間には、該反力鋼板4の板面と直交させ、かつウェブ11と平行に配設して連結した連結鋼板6を設けている。該連結鋼板6は、行列形成の貫通口40の各列間(本実施例では2個所)に取り付けることにより、図4に示すように、定着部3の上面視において、反力鋼板4との位置関係において格子状となるように配置している。
【0024】
この反力鋼板4と連結鋼板6が成す格子状配置により定着部3は、言うなれば矩形箱体の積層構造となって、スパン方向及びこれと直交する方向において、強固な保形力を発揮することとなる。
【0025】
箱桁1内にシース20に挿通させて張り渡した多数のPC鋼線2は、各線毎に分配して、各反力鋼板4の貫通口40をそれぞれ貫通させ、両端部を定着部3において保持する。
【0026】
かかる構成のもと、箱桁1の内部空間にコンクリート7を打設して硬化させる。硬化後にはPC鋼線2の先端部に、直円錐台状を成して一定の拡底板30aをもった定着具30を取り付けると共に、牽引して所定の張力を付加して固定する。この定着部3における反力状態は、図5に示すように、定着具30の拡底板30aを介して、PC鋼線2の残留張力の反力が打設硬化したコンクリート7へプレストレス(圧縮力)として作用することとなる。
【0027】
この結果、拡底板30aの反力は、これと接するコンクリート7内に分散して分布し、反力鋼板4の板面へ分散して作用する。そして、この作用による反力鋼板4から伝達される作用力はさらに、反力鋼板4と連結鋼板6の格子状配置により多数形成された矩形箱体状の積層空間内にそれぞれ充填されたコンクリート7内に、3次元的に分散分布して伝達され、より均等に作用することとなる。その結果、応力集中によるコンクリート7や箱桁1の欠損の発生を防止して、定着部3のより耐久性のある保形力と保持力とを実現することとなる。
【0028】
【効果】
本願発明は以上のように構成しているため、複合橋桁におけるPC鋼線の定着部において、より耐久性のある保形力・保持力を実現することができ、複合橋桁を用いた桁橋の全体的な強度の向上と、長寿命化を図ることができる。
【図面の簡単な説明】
【図1】 桁橋の構築例を示す概観図である。
【図2】 本実施形態例を示す斜視図とその一部を抽出して一部切欠いて示す拡大図である。
【図3】 本実施形態例を示す図であってスパン方向に切断して示す縦断面図(A)、図(A)のAA線拡大断面図(B)である。
【図4】 本実施形態例を一部切り欠いて示す平面図である。
【図5】 本実施形態例における力の作用状態を示す説明図である。
【符号の説明】
1 箱桁
10 底板
11 ウェブ
12 フランジ
2 PC鋼線
20 シース(被覆管)
21 ラック
3 定着部
30 定着具
30a 拡底板
4 反力鋼板
40 貫通口
5 リブ鋼板
50 切欠き
6 連結鋼板
7 コンクリート
A 橋台
B 桁橋
C 横桁
D 床版
P 橋脚
Mb 複合橋桁
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of girder bridges, and particularly relates to the structure of a PC steel wire fixing portion in a composite bridge girder composed of a steel box girder, concrete, and PC steel wire.
[0002]
[Premise of the invention]
Generally, a girder bridge is constructed by building a bridge girder on an abutment and a pier, forming a floor slab on the bridge girder, and further laying asphalt or the like thereon to form a floor slab.
[0003]
Conventional girder bridges include a concrete girder bridge formed by formwork and a steel girder bridge constructed only of steel materials (steel plates) and have been widely used.
[0004]
The bridge girder of such a concrete girder bridge is formed by casting concrete and has a structure that complements the lack of tensile strength of the concrete material by introducing prestress due to the inclusion of high-strength steel wire (hereinafter abbreviated as “PC steel wire”). The material itself is inexpensive, but the work costs such as assembly / removal of the formwork and the layout are inevitable.
[0005]
On the other hand, steel girder bridge girder is lighter than concrete girder bridge girder and has the advantage of shortening the construction period by factory production, but it has the disadvantage that material cost and transportation cost of large workpiece are expensive. there were.
[0006]
Therefore, the applicant of the present application has previously filed a composite bridge girder that takes advantage of both the steel girder bridge girder and the concrete girder bridge girder as Japanese Patent Application No. 2001-333926. Such a composite bridge girder has a structure in which prestressed concrete is cast in the internal space of a steel box girder made of steel instead of a concrete casting form.
[0007]
[Prior art and problems to be solved by the invention]
The above composite bridge girder achieved the intended purpose and had excellent technical effects. However, in the fixing part that holds the PC steel wire at both ends, the load and pre-stress (tension) ) Introduces a large reaction force (compression force) from the PC steel wire, and most of the reaction force acts on concrete whose Young's modulus is about 1/7 that of steel materials (steel box girders). Met. Therefore, the inventor of the present application has come up with a new invention as a result of further improving and developing the function of the fixing portion to improve the durability of the composite bridge girder.
[0008]
【the purpose】
That is, the present invention has been made on the basis of the above problems, and the reaction force by the PC steel wire of the box girder made of steel is equally applied to the cast concrete and the steel near the both ends of the box girder. The structure of the PC steel wire anchoring part in the new composite bridge girder intended to be distributed is provided.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the PC steel wire fixing portion in the composite bridge girder of the present invention is configured as follows.
That is, the PC steel wire (2) supported at both ends is stretched in the span direction in the internal space of the steel box girder (1), and after placing concrete (7), prestress is applied to the PC steel wire (2). In the composite bridge girder that is introduced, the fixing part (3) of the PC steel wire (2) is plural one each so as to close the cross section near the both ends of the box girder (1), or at a predetermined interval in the span direction. The reaction steel plate (4) was placed, and the reaction steel plate (4) was penetrated so that both ends of the PC steel wire (2 ) were fixed to the concrete (7) cast and hardened. It is a feature.
[0010]
Further, one or a plurality of through holes (40) are formed in a matrix in the reaction steel plate (4), and the PC steel wire (2) is fixed by passing through each through hole (40). It is said.
[0011]
Further, particularly, when a plurality of reaction force steel plates (4) are arranged at predetermined intervals in the span direction, the reaction force steel plates (4) are connected and integrated by a connection steel plate (6) extending in the span direction. In the connection between the connecting steel plate (6) and the reaction steel plate (4), the box girder (1) is arranged in a lattice shape when viewed from above.
[0012]
Furthermore, the rib steel plate (5) extended to a span direction is arrange | positioned in the attachment part of the reaction force steel plate (4) in the inner surface of a box girder (1), It is characterized by the above-mentioned.
[0013]
In addition, the reference numerals in parentheses described in the section of the claims and means for solving the problems are added with reference numerals for reference to facilitate understanding of the configuration of the invention. Of course, it is not limited to the form.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Below, the concrete embodiment example of the structure of the PC steel wire fixing part in the composite bridge girder according to the present invention will be described in detail based on the drawings.
[0015]
FIG. 1 is an overview diagram showing a construction example of a girder bridge. FIG. 2 is a perspective view showing the present embodiment and an enlarged view showing a part of the extracted perspective view. FIG. 3 is a view showing the embodiment, and is cut in the span direction. FIG. 4 is a longitudinal sectional view (A) and an enlarged sectional view (B) taken along line AA in FIG. (A), and FIG. 4 is a plan view partially cut away from the present embodiment. Further, FIG. 5 is an explanatory view showing the action state of the force in this embodiment.
[0016]
First, as shown in FIG. 1, the girder bridge B having the bridge girder structure is constructed by laying the composite bridge girder Mb in parallel with the abutment A or the pier P or by connecting with the cross girder C and forming the floor slab D on the upper part. Later, asphalt or the like is laid on the upper surface.
[0017]
As shown in FIG. 2, the structure of the PC steel wire fixing portion in the composite bridge girder of the present invention is mainly a box girder 1, a PC steel wire (high-strength steel wire) 2, a reaction steel plate 4, a connecting steel plate 6, and It consists of concrete 7.
[0018]
The box girder 1 is made of a steel material such as a steel plate and has a long rectangular bottom plate 10 extending in a span direction (or a bridge extending direction) and a web 11 formed so as to be opposed to both sides of the long rectangular bottom plate 10. It is a long box-like body that is substantially U-shaped. Long web-like flanges 12 for supporting the floor slab D are formed continuously from the upper ends of both webs 11 in the outer horizontal direction and in the span direction.
[0019]
The PC steel wire 2 is a wire made of a high-strength steel wire for introducing prestress into the filled concrete, and is inserted through a sheath (cladding tube) 20 and stretched in the span direction of the internal space of the box girder 1, It is held in the fixing unit 3 near both ends. In this embodiment, the total number is 12 in 3 rows and 4 columns. As shown in FIG. 3 (A), the PC steel wire 2 is disposed through a rack 21 disposed opposite to the central portion of the box girder 1, and the bottom plate 10 side is disposed between the racks 21. It is configured to be horizontal in a state of being close to and converged with. This takes into account the distribution of cross-sectional force due to girder loads.
[0020]
Next, as shown in FIGS. 2 and 3B, the fixing unit 3 that is the main subject of the present application is configured by a reaction force steel plate 4, a connecting steel plate 6, and a rib steel plate 5.
[0021]
The reaction force steel plate 4 is formed of a rigid plate and blocks a plurality of pieces (three pieces in the present embodiment) of the box girder 1 with a predetermined separation distance in the span direction so as to close a cross section near both ends of the box girder 1. It is integrated with the inner wall. A plurality of through-holes 40 having an opening shape (rectangular shape in the present embodiment) through which the sheath 20 through which the PC steel wire 2 is inserted can pass through each plate surface of the reaction steel plate 4 with a sufficient gap. Is forming. The through holes 40 are arranged in a substantially equidistant matrix (in this embodiment, a total of 12 in 4 rows and 3 columns), and the corresponding through holes 40 of each reaction steel plate 4 follow the arrangement of the PC steel wires. The array is formed so as to communicate in a straight line. In addition, the arrangement | positioning number of this reaction force steel plate 4 is an appropriate thing of 1 or several sheets.
[0022]
Further, a strip-shaped rib steel plate 5 extending in the span direction is attached perpendicularly to the inner surface of the web 11 of the box girder 1 and perpendicular to the reaction force steel plate 4. A semicircular cutout 50 is formed in the rib steel plate 5 at a portion perpendicular to the reaction force steel plate 4 so as to correspond to the positions of the through holes 40 of the reaction force steel plate 4 (four in this embodiment). It arrange | positions in a direction and each reaction force steel plate 4 is connected. This arrangement reinforces the attachment of the reaction steel plate 4 to the web 11.
[0023]
Further, between the reaction force steel plates 4 that are spaced apart in the span direction, there is provided a connection steel plate 6 that is orthogonal to the plate surface of the reaction force steel plate 4 and arranged in parallel with the web 11. The connecting steel plates 6 are attached between the rows of the matrix-formed through-holes 40 (two locations in this embodiment), so that, as shown in FIG. It arrange | positions so that it may become a grid | lattice in positional relationship.
[0024]
Due to the lattice arrangement formed by the reaction steel plate 4 and the connecting steel plate 6, the fixing unit 3 has a laminated structure of rectangular boxes, and exhibits a strong shape retaining force in the span direction and the direction orthogonal thereto. Will be.
[0025]
A large number of PC steel wires 2 inserted and stretched through the sheath 20 in the box girder 1 are distributed for each wire and penetrate the through holes 40 of the respective reaction force steel plates 4, and both ends are fixed at the fixing portion 3. Hold.
[0026]
Under such a configuration, the concrete 7 is placed in the internal space of the box girder 1 and cured. After the hardening, a fixing tool 30 having a right truncated cone shape and having a fixed bottom plate 30a is attached to the tip of the PC steel wire 2 and is pulled and fixed with a predetermined tension. As shown in FIG. 5, the reaction force state in the fixing unit 3 is prestressed (compressed) into the concrete 7 in which the reaction force of the residual tension of the PC steel wire 2 is cast and hardened through the expanded base plate 30 a of the fixing tool 30. Force).
[0027]
As a result, the reaction force of the bottom expansion plate 30a is distributed and distributed in the concrete 7 in contact therewith, and acts on the plate surface of the reaction force steel plate 4 in a distributed manner. The acting force transmitted from the reaction force steel plate 4 due to this action is further filled with concrete 7 filled in a rectangular box-like laminated space formed by a lattice arrangement of the reaction force steel plate 4 and the connecting steel plate 6. It is transmitted in a three-dimensional distributed manner and acts more evenly. As a result, it is possible to prevent the concrete 7 and the box girder 1 from being broken due to the stress concentration, thereby realizing a more durable shape retaining force and retaining force of the fixing unit 3.
[0028]
【effect】
Since the present invention is configured as described above, it is possible to realize more durable shape retaining force / holding force in the fixing portion of the PC steel wire in the composite bridge girder, and the girder bridge using the composite bridge girder The overall strength can be improved and the life can be extended.
[Brief description of the drawings]
FIG. 1 is an overview diagram showing a construction example of a girder bridge.
FIG. 2 is a perspective view showing an example of the present embodiment and an enlarged view showing a part extracted from the perspective view.
FIG. 3 is a view showing an example of the present embodiment, and is a longitudinal sectional view (A) cut along a span direction and an enlarged sectional view (A) taken along line AA in FIG.
FIG. 4 is a plan view showing a part of the embodiment cut away.
FIG. 5 is an explanatory diagram showing a force application state in the embodiment.
[Explanation of symbols]
1 Box girder 10 Bottom plate 11 Web 12 Flange 2 PC steel wire 20 Sheath (cladding tube)
21 Rack 3 Fixing part 30 Fixing tool 30a Bottom plate 4 Reaction force steel plate 40 Through hole 5 Rib steel plate 50 Notch 6 Connection steel plate 7 Concrete A Abutment B Girder bridge C Girder D Floor slab P Bridge pier Mb Composite bridge girder

Claims (5)

鋼箱桁(1)の内部空間に、両端支持のPC鋼線(2)をスパン方向へ張り渡し、コンクリート(7)を打設した後、該PC鋼線(2)にプレストレスを導入して成る複合橋桁において、
箱桁(1)の両端付近の断面を閉塞するようにそれぞれ1個、又はスパン方向に所定間隔をもって複数個の反力鋼板(4)を配置し、
該反力鋼板(4)を貫通させてPC鋼線(2)の両端部を打設硬化させたコンクリート(7)に定着させたことを特徴とした複合橋桁におけるPC鋼線定着部の構造。
PC steel wire (2) supported at both ends is stretched in the span direction in the internal space of the steel box girder (1), and concrete (7) is placed, and then prestress is introduced into the PC steel wire (2). In the composite bridge girder
A plurality of reaction force steel plates (4) are arranged so as to block the cross section near both ends of the box girder (1), respectively, or at a predetermined interval in the span direction,
A structure of a PC steel wire fixing portion in a composite bridge girder characterized in that the reaction steel plate (4) is penetrated and both ends of the PC steel wire (2 ) are fixed to concrete (7) cast and hardened .
反力鋼板(4)に1個又は複数個の貫通口(40)を行列状に形成し、各貫通口(40)を貫通させてPC鋼線(2)を定着させたことを特徴とする請求項1記載の複合橋桁におけるPC鋼線定着部の構造。  One or a plurality of through holes (40) are formed in a matrix in the reaction steel plate (4), and the PC steel wire (2) is fixed by passing through each through hole (40). The structure of the PC steel wire fixing part in the composite bridge girder according to claim 1. 請求項1、又は2記載の複合橋桁におけるPC鋼線定着部の構造であって、特に、スパン方向に所定間隔をもって複数個の反力鋼板(4)を配置した場合において、
スパン方向に延びる連結鋼板(6)によって、各反力鋼板(4)間を連結して一体化させたことを特徴とする複合橋桁におけるPC鋼線定着部の構造。
In the structure of the PC steel wire fixing part in the composite bridge girder according to claim 1 or 2, particularly when a plurality of reaction force steel plates (4) are arranged at a predetermined interval in the span direction,
The structure of the PC steel wire fixing part in the composite bridge girder, wherein the reaction steel plates (4) are connected and integrated by the connecting steel plates (6) extending in the span direction.
連結鋼板(6)と反力鋼板(4)との連結において、箱桁(1)の上面視で格子状となるように配置したことを特徴とする請求項3記載の複合橋桁におけるPC鋼線定着部の構造。  4. The PC steel wire in the composite bridge girder according to claim 3, wherein the connection steel plate (6) and the reaction force steel plate (4) are arranged so as to have a lattice shape in a top view of the box girder (1). The structure of the fixing unit. 箱桁(1)の内面における反力鋼板(4)の取付部に、スパン方向へ延びるリブ鋼板(5)を配設したことを特徴とする請求項1、2、3、又は4記載の複合橋桁におけるPC鋼線定着部の構造。  5. The composite according to claim 1, 2, 3, or 4, wherein a rib steel plate (5) extending in the span direction is disposed on a mounting portion of the reaction steel plate (4) on the inner surface of the box girder (1). Structure of PC steel wire fixing part in bridge girder.
JP2002248598A 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder Expired - Fee Related JP3682520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248598A JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248598A JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Publications (2)

Publication Number Publication Date
JP2004084364A JP2004084364A (en) 2004-03-18
JP3682520B2 true JP3682520B2 (en) 2005-08-10

Family

ID=32055935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248598A Expired - Fee Related JP3682520B2 (en) 2002-08-28 2002-08-28 PC steel wire anchorage structure in composite bridge girder

Country Status (1)

Country Link
JP (1) JP3682520B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682790B1 (en) * 2004-12-24 2007-02-15 재단법인 포항산업과학연구원 Girder of steel box girder type bridge
KR101621341B1 (en) * 2015-09-30 2016-05-16 (주)에스앤씨산업 Open type prestressed steel box girder and bridge construction method therewith
CN105908615A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Pretensioned prestressing steel tank concrete beam
CN105908616A (en) * 2016-04-28 2016-08-31 四川省交通运输厅公路规划勘察设计研究院 Calculating method for pretensioned prestressing steel tank concrete beam
CN109356017B (en) * 2018-10-30 2023-06-27 南昌大学 Concrete continuous box girder bridge with self-recovery limiting and prestress loss reducing combined structure
CN109914216B (en) * 2019-03-29 2024-04-16 湖南大学 Assembled large-span ultra-high-performance concrete box girder combined node and connecting method thereof
CN111593664A (en) * 2020-05-08 2020-08-28 中电建十一局工程有限公司 Construction method for penetrating full-length prestressed tendons of segment prefabricated assembled beam

Also Published As

Publication number Publication date
JP2004084364A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP2005180162A (en) Connecting structure and connecting method of i-type prestressed concrete beam with steel bracket
JP3682520B2 (en) PC steel wire anchorage structure in composite bridge girder
JP4226399B2 (en) How to build a bridge
JP4644146B2 (en) PC box girder bridge
JP4073746B2 (en) Construction method of corrugated steel web bridge
JP2006265976A (en) Corrugated steel-plate web u component bridge and its construction method
JP2012509421A (en) Prestressed slab element
JP3832651B2 (en) Corrugated steel web bridge construction method
JP4001058B2 (en) Seismic reinforcement method for wall structures
JP3996043B2 (en) Joint structure of bridge corrugated steel web composite girder
KR102139851B1 (en) PSC Girder With Variable Cross Section And Slab Construction Method Using Thereof
KR100485060B1 (en) Joint between steel superstructure and reinforced concrete substructure of rahmen typed hybrid bridge
JP4379703B2 (en) Synthetic floor slab and method for constructing synthetic floor slab
JP2003138520A (en) Bridge girder structure
JPH0542553B2 (en)
JP2001090240A (en) Deck plate and concrete floor
JP2004232229A (en) Precast concrete slab
JPH1162085A (en) Formation of surface part and panel thereof
JP4040535B2 (en) Bridge
KR101044469B1 (en) Combined projection beam and prestressed concrete girder
JP7228337B2 (en) beam floor structure
JP3691948B2 (en) Floor slabs and structures
JP4284410B2 (en) Suspended roof material and suspended roof structure
KR200316119Y1 (en) Joint between steel superstructure and reinforced concrete substructure of rahmen typed hybrid bridge
JP2568987B2 (en) Support member for reinforcing steel assembly and bridge construction method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees