JP2004084022A - Sputtering system and sputtering method for curved surface substrate - Google Patents

Sputtering system and sputtering method for curved surface substrate Download PDF

Info

Publication number
JP2004084022A
JP2004084022A JP2002247891A JP2002247891A JP2004084022A JP 2004084022 A JP2004084022 A JP 2004084022A JP 2002247891 A JP2002247891 A JP 2002247891A JP 2002247891 A JP2002247891 A JP 2002247891A JP 2004084022 A JP2004084022 A JP 2004084022A
Authority
JP
Japan
Prior art keywords
target
curved substrate
substrate
vacuum vessel
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002247891A
Other languages
Japanese (ja)
Inventor
Noriyuki Sakakibara
榊原 紀幸
Katsu Kodama
児玉  克
Katsuhiko Kondo
近藤 勝彦
Kazuo Koeda
小枝 和雄
Norihiko Idota
井戸田 典彦
Kazuyuki Oguri
小栗 和幸
Koki Higashide
東出 光喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002247891A priority Critical patent/JP2004084022A/en
Publication of JP2004084022A publication Critical patent/JP2004084022A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering system and sputtering method for curved surface substrates which realize depositing of uniform thin films even on the substrates having a curved surface shape and improvement in the versatility of the deposited substrates and the reliability of products. <P>SOLUTION: The sputtering system 2 is provided with a vacuum vessel 3, a flat planar target 4 which is disposed in the vacuum vessel 3, a substrate fixing drum 5 which is disposed in the vacuum vessel 3 and holds on its circumferential surface the curved surface substrate 1 arranged so that a projecting surface 1a faces the target 4, and driving mechanisms 6 and 7 which rotate and horizontally move the fixing drum 5. The system deposits the thin film on the projecting surface 1a of the substrate 1 in the state of maintaining the distance between the target 4 and the projecting surface 1a of the substrate 1 always constant by rotating and horizontally moving the fixing drum 5 by means of the driving mechanisms 6 and 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、曲面基板の凹凸表面に薄膜を形成する際に用いられるスパッタ装置及びスパッタ法に関するものである。
【0002】
【従来の技術】
スパッタ法は、加速された粒子(またはイオン)が固体表面に衝突したとき、その粒子の持つ運動量の一部を得て固体表面近傍の原子が空間にたたき出されるというスパッタ現象を利用して薄膜形成を行う方法であり、直流電界を印加する直流(DC)スパッタ法や、高周波電界を印加する高周波(RF)スパッタ法などがある。このようなスパッタ法では、例えば、図12に示すようなスパッタ装置71が用いられている。
【0003】
このスパッタ装置71は、真空容器72内の上下に対向して配置される基板ホルダ73とターゲット74を備えており、水平移動可能な基板ホルダ73の下面には基板75が取付けられている。したがって、スパッタ装置71では、真空容器72中にアルゴンなどの放電用ガスを注入し、電極に電圧を加えてグロー放電を起こし、プラズマの中のイオンが陰極のターゲット74に衝突してターゲット原子をはじき出し、ターゲット74から基板75へ向けて放出させることにより、薄膜が基板75の表面に形成されるようになっている。
【0004】
【発明が解決しようとする課題】
ところで、上述した従来のスパッタ装置71では、ターゲット74が平板状に形成されているので、成膜する基板75も平板のものがほとんどである。しかしながら、近年においては、平板状の基板75のみならず、使用機種や使用部位などに適合した曲面基板のニーズが生まれて来ている。このような基板の曲面に対し、平板状のターゲット74を用いて成膜することも可能であるが、基板の曲面とターゲット74との距離が部位によって異なることから、全面に均一に成膜するのは困難であり、膜厚の厚い部分と薄い部分とが形成されることになり、製品の信頼性に問題を有していた。
【0005】
本発明はこのような実状に鑑みてなされたものであって、その目的は、曲面形状の基板に対しても均一な薄膜の形成が可能であり、成膜基板の汎用性及び製品の信頼性の向上を図ることが可能な曲面基板のスパッタ装置及びスパッタ法を提供することにある。
【0006】
【課題を解決するための手段】
上記従来技術の有する課題を解決するために、本発明においては、真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凸面が前記ターゲットに対向して配置される曲面基板を外周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記ターゲットと前記曲面基板の凸面との間の距離を常に一定にした状態で、前記曲面基板の凸面に薄膜を形成するようにしている。
【0007】
また、本発明においては、真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凹面が前記ターゲットに対向して配置される曲面基板を内周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記筒状体内に前記ターゲットを配置し、前記ターゲットと前記曲面基板の凹面との間の距離を常に一定にした状態で、前記曲面基板の凹面に薄膜を形成するようにしている。
【0008】
さらに、本発明において、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構に加えて、前記ターゲット又は前記筒状体を高さ方向へ移動させる駆動機構が設けられていることが好ましい。
そして、本発明において、前記ターゲット又は前記筒状体の回転駆動機構は、前記曲面基板の周方向の両端部付近まで前記ターゲット又は前記筒状体を往復運動させる回動機構に構成されていることが好ましい。
【0009】
また、本発明においては、真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせながら対向して配置される複数の小型ターゲットと、前記筒状体又は前記小型ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記小型ターゲットを水平移動させることにより、前記曲面基板の表面と前記小型ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしている。
さらに、本発明においては、真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせた曲面形状に形成されて対向配置されるターゲットと、前記筒状体又は前記ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記ターゲットを水平移動させることにより、前記曲面基板の表面と前記ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしている。
【0010】
また、本発明においては、真空容器内にターゲットと曲面基板とを対向して配置し、前記ターゲット又は前記曲面基板を成膜ピッチの10〜50%にわたりオーバラップさせながら移動させることにより、前記曲面基板の表面に薄膜を形成している。
さらに、本発明において、前記薄膜の2層目以後は、前層のオーバラップ部分の中心を中心にして、前記曲面基板の表面に薄膜を積層することが好ましい。
【0011】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて詳細に説明する。ここで、図1は本発明の第1実施形態に係るスパッタ装置によって凸面に薄膜が形成される曲面基板の概念的斜視図、図2は本実施形態に係る曲面基板のスパッタ装置の概念図である。
【0012】
図1に示す如く、本発明の第1実施形態に係る曲面基板1は、半径Rが300mm、長さLが300mm及び角度θが120°である横断面円弧状の凸面形状に形成されており、その凸面1aには、図2のスパッタ装置2によって透明導電膜(ITO、インジウム・スズ複合酸化物)の薄膜が形成されるようになっている。
【0013】
本実施形態のスパッタ装置2は、下向きにスパッタさせる方式に構成されており、ボックス状の真空容器3と、該真空容器3内の上方に設けられる平板状のターゲット4と、真空容器3内でターゲット4の下方に設けられる基板固定ドラム(筒状体)5と、該固定ドラム5を回転及び水平移動させる駆動機構6,7とを備え、基板固定ドラム5の外周面には、凸面1aがターゲット4に対向して配置される曲面基板1が固定保持されている。したがって、スパッタ装置2は、駆動機構6,7にて固定ドラム5を回転及び水平移動させることにより、ターゲット4と曲面基板1の凸面1aとの間の距離を常に一定にした状態で、曲面基板1の凸面1aに薄膜を形成するようになっている。なお、真空容器3には、図示しないAr/Oガスの供給源や真空ポンプなどが接続され、ターゲット4には、図示しない直流電源ケーブルまたは高周波電源ケーブルなどが接続されている。
【0014】
上記回転駆動機構6は、水平移動駆動機構7の上部に長手方向へ移動可能に載置されており、固定ドラム5を回転自在に支持するシャフト8と、該シャフト8を回転駆動させるモータ9と、シャフト8及びモータ9を支持する左右一対の支柱10とを備えている。シャフト8の一端はモータ9に連結され、他端は図示しない軸受を介して支柱10の上部に取付けられている。また、支柱10の下端部は、ガイド部材11及び一対のローラ12を介して長尺のローラ受け13に案内支持され、ローラ受け13は真空容器3のほぼ全長にわたって延びている。
一方、上記水平移動駆動機構7は、ラックとピニオン式の構造となっており、図示しない駆動装置にてガイド部材11を作動させることにより固定ドラム5を長手方向へ沿って移動できるように構成されている。
【0015】
(具体的な実施例)
次に、本発明の第1実施形態に係るスパッタ装置2を用いて、曲面基板1の凸面1aに薄膜を形成するには、まず、図1に示すような寸法形状に形成されたアクリル製の曲面基板1を基板固定ドラム5の外周面にセットして固定する。次いで、回転駆動機構6及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を回転させながら長手方向へ水平移動させ、ターゲット4に対向すべく配置し、その後、ターゲット4と曲面基板1の凸面1aとの間の距離を常に一定にした状態で、曲面基板1の凸面1aに透明導電膜を直流スパッタ法にて成膜した。ここで、スパッタ装置2の運転条件として、曲面基板1の回転数は0.3rpm、曲面基板1の長手方向の移動速度は20mm/minで、長手方向に5往復させた。また、ターゲット4の寸法はφ101.6mm(4インチ)、ターゲット4/基板1間距離(以下、T/Sという)は80mmである。そして、成膜の際のガスはAr/Oの雰囲気で流量はそれぞれ100sccm(sccmとはガスの流量単位であり、標準立法センチメートル毎分をいう)、1sccmである。成膜時の圧力は0.5Pa、放電パワーは300Wである。
【0016】
また、比較のため、同様の曲面基板を従来のように平行移動だけさせる従来法でも同様の条件で成膜した。成膜後、図1で示すように、曲面基板の長手方向5点(A,B,C,D,E)と周方向4点(F,G,H,I)の膜厚をそれぞれ測定した。その結果は、下記の表1に表示されている。
【0017】
【表1】

Figure 2004084022
【0018】
本発明に係る第1実施形態のスパッタ装置2では、曲面基板1を基板固定ドラム5の外周面に固定保持し、回転駆動機構6及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を回転させながら長手方向へ水平移動させ、ターゲット4に対向すべく配置し、ターゲット4と曲面基板1の凸面1aとの間の距離を常に一定にした状態で、曲面基板1の凸面1aに透明導電膜の薄膜を形成しているため、表1の具体的実施例(1)で示す如く、標準偏差が従来法に比べて約1/3程度小さく、膜厚のばらつきを小さく抑えることができ、曲面基板1の凸面1aに対してもほぼ均一な膜を形成できることが判かる。
【0019】
図3は本発明の第2実施形態に係る曲面基板のスパッタ装置の概念図である。本実施形態のスパッタ装置22が上記第1実施形態のスパッタ装置2と異なる点は、図3に示す如く、曲面基板1が基板固定ドラム5の内周面に固定保持され、真空容器3内のターゲット4が容器側壁面の上下中間位置から内方へ突出するステー23の先端上部に取付けられていることである。また、回転駆動機構26のシャフト8及びモータ9を支持する支柱10は、高さが低くなるように短く形成され、シャフト8の外周部には、固定ドラム5を回転自在に支持するカラー24が取付けられ、該カラー24が固定ドラム5の外周面に圧接して回転させていることである。したがって、スパッタ装置22は、駆動機構26,7にて固定ドラム5を回転及び水平移動させることにより、固定ドラム5内にターゲット4を位置させ、曲面基板1の凹面1bとターゲット4とを対向して配置し、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに薄膜を形成するようになっている。その他の構成は、上記第1実施形態と同様である。
【0020】
(具体的な実施例)
次に、本発明の第2実施形態に係るスパッタ装置22を用いて、曲面基板1の凹面1bに薄膜を形成するには、まず、図1と同じ寸法形状及び材質の曲面基板1を基板固定ドラム5の内周面にセットして固定する。次いで、回転駆動機構26及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を回転させながら長手方向へ水平移動させ、固定ドラム5内にターゲット4を位置させてターゲット4に対向すべく配置し、その後、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜を直流スパッタ法にて成膜した。
本実施形態のスパッタ装置22及び従来法の運転条件は第1実施形態の実施例(1)と同じであり、その結果は下記の表2に表示されている。
【0021】
【表2】
Figure 2004084022
【0022】
本発明に係る第2実施形態のスパッタ装置22では、曲面基板1を基板固定ドラム5の内周面に固定保持し、回転駆動機構26及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を回転させながら長手方向へ水平移動させ、ターゲット4に対向すべく配置し、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜の薄膜を形成しているため、表2の具体的実施例(2)で示す如く、標準偏差が従来法に比べて約1/3程度小さく、膜厚のばらつきを小さく抑えることができ、曲面基板1の凹面1bに対してもほぼ均一な膜を形成できることが判かる。
【0023】
図4は本発明の第3実施形態に係るスパッタ装置によって凹面に薄膜が形成される曲面基板の概念的斜視図、図5は本実施形態に係る曲面基板のスパッタ装置の概念図である。
本発明の第3実施形態に係る曲面基板31は、幅Wが600mm、長さLが300mm及び高さHが200mmである横断面半楕円状の凸面形状に形成されており、その凹面31bには、図5のスパッタ装置32によって透明導電膜の薄膜が形成されるようになっている。
【0024】
本実施形態のスパッタ装置32が上記第2実施形態のスパッタ装置22と異なる点は、回転駆動機構26及び水平移動駆動機構7に加えて、固定ドラム5を高さ方向へ移動させる上下方向駆動機構33が設けられていることである。この上下方向駆動機構33は、ラックとピニオン式の構造となっており、支柱10の下端フレーム34及びガイド部材13を介して回転駆動機構26及び水平移動駆動機構7に取付けられ、図示しない駆動装置にて固定ドラム5を上下方向へ移動できるように構成されている。
したがって、スパッタ装置32は、プログラムで同時制御を行い、駆動機構26,7にて固定ドラム5を回転及び水平移動させると共に、上下方向駆動機構33にて上下動させることにより、固定ドラム5内にターゲット4を位置させ、曲面基板31の凹面31bとターゲット4と対向して配置し、曲率が変化する曲面に対してターゲット4と曲面基板31の凹面31bとの間の距離を常に一定にした状態で、曲面基板31の凹面31bに薄膜を形成するようになっている。その他の構成は、上記第2実施形態と同様である。
【0025】
(具体的な実施例)
次に、本発明の第3実施形態に係るスパッタ装置32を用いて、曲面基板31の凹面31bに薄膜を形成するには、まず、図4に示すような寸法形状に形成されたアクリル製の曲面基板31を基板固定ドラム5の内周面にセットして固定する。次いで、回転駆動機構26、水平移動駆動機構7及び上下方向駆動機構33により固定ドラム5を介して曲面基板1を回転させながら長手方向へ水平移動させると共に上下方向へ移動させ、固定ドラム5内にターゲット4を位置させてターゲット4に対向すべく配置し、その後、ターゲット4と曲面基板31の凹面31bとの間の距離を常に一定にした状態で、曲面基板31の凹面31bに透明導電膜を直流スパッタ法にて成膜した。
本実施形態のスパッタ装置32及び従来法の運転条件は第1実施形態の実施例(1)と同じであり、その結果は下記の表3に表示されている。
【0026】
【表3】
Figure 2004084022
【0027】
本発明に係る第3実施形態のスパッタ装置32では、曲面基板31を基板固定ドラム5の内周面に固定保持し、回転駆動機構26及び水平移動駆動機構7により固定ドラム5を介して曲面基板31を回転させながら長手方向へ水平移動させると共に、上下方向駆動機構33にて上下動させターゲット4に対向すべく配置し、ターゲット4と曲面基板31の凹面31bとの間の距離を常に一定にした状態で、曲面基板31の凹面31bに透明導電膜の薄膜を形成しているため、表3の具体的実施例(3)で示す如く、標準偏差が従来法に比べて約1/3程度小さく、膜厚のばらつきを小さく抑えることができ、曲面基板31の凹面31bに対してもほぼ均一な膜を形成できることが判かる。
【0028】
図6は本発明の第4実施形態に係る曲面基板のスパッタ装置の概念図である。本実施形態のスパッタ装置42が上記第1〜第3実施形態のスパッタ装置2,22,32と異なる点は、図6(a)〜(c)に示す如く、回転駆動機構6,26が曲面基板1の周方向の両端部付近まで基板固定ドラム5を往復運動させる回動機構(図示せず)に構成されていることである。したがって、スパッタ装置42は、曲面基板1の凹面1bとターゲット4とを対向して配置し、360°回転させるのではなく、図6(a)と図6(b)に示す範囲、図6(b)と図6(c)に示す範囲で回動機構にて固定ドラム5を繰り返し回動させることにより、固定ドラム5内にターゲット4を位置させ、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに薄膜を形成するようになっている。その他の構成は、上記第2実施形態と同様である。
【0029】
(具体的な実施例)
次に、本発明の第4実施形態に係るスパッタ装置42を用いて、曲面基板1の凹面1bに薄膜を形成するには、まず、図1と同じ寸法形状及び材質の曲面基板1を基板固定ドラム5の内周面にセットして固定する。次いで、回動機構(図示せず)及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を回動させながら長手方向へ水平移動させ、固定ドラム5内にターゲット4を位置させてターゲット4に対向すべく配置し、その後、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜を直流スパッタ法にて成膜した。
本実施形態のスパッタ装置42及び従来法の運転条件は、回動方向の速度が0.3rpmと同等の速度(約565mm/min)である他、第2実施形態の実施例(2)と同じであり、その結果は下記の表2に表示されている。
【0030】
本発明に係る第4実施形態のスパッタ装置42では、曲面基板1を基板固定ドラム5の内周面に固定保持すると共に、ターゲット4に対向すべく配置し、回動機構(図示せず)及び水平移動駆動機構7により固定ドラム5を介して曲面基板1を繰り返し周方向の両端部付近まで回動させながら長手方向へ水平移動させ、ターゲット4と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜の薄膜を形成しているため、表2の具体的実施例(4)で示す如く、標準偏差が従来法に比べて約1/3程度小さく、膜厚のばらつきを小さく抑えることができ、曲面基板1の凹面1bに対してもほぼ均一な膜を形成できることが判かる。しかも、本実施形態のスパッタ装置42では、固定ドラム5が360°回転する場合と異なり、ターゲット4の対向位置に基板1がないとき、蒸発粒子が飛散しないため、無駄を少なくすることが可能となり、コストダウンを図ることができる。
【0031】
図7及び図8は本発明の第5実施形態に係る曲面基板のスパッタ装置であり、図7はその一部概念的平面図、図8はその一部概念的正面図である。
本実施形態のスパッタ装置52が上記第1〜第3実施形態のスパッタ装置2,22,32と異なる点は、図7及び図8に示す如く、曲面基板1の曲率に合わせながら対向して傾斜配置される複数個(本実施形態では3個)の小型ターゲット54が組み合わせて配置され、かつ曲面基板1が図示しない水平移動駆動機構によって矢印X方向へ平行移動のみができるように構成されていることである。したがって、スパッタ装置52は、水平移動駆動機構にて曲面基板1を矢印X方向へ水平移動させることにより、曲面基板1の凹面1bと3個の小型ターゲット54とを対向して配置し、小型ターゲット54と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに薄膜を形成するようになっている。その他の構成は、上記第2実施形態と同様である。
【0032】
本発明に係る第5実施形態のスパッタ装置52では、図示しない水平移動駆動機構により曲面基板1を矢印X方向へ水平移動のみさせて、小型ターゲット54に対向すべく配置し、3個の小型ターゲット54と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜の薄膜を形成しているため、表2の具体的実施例(5)で示す如く、標準偏差が従来法に比べて約1/3以上小さく、膜厚のばらつきを小さく抑えることができ、曲面基板1の凹面1bに対してもほぼ均一な膜を形成できることが判かる。しかも、本実施形態のスパッタ装置52では、曲面基板1を矢印X方向へ水平移動のみさせているため、駆動機構が簡便となり、コストダウンを図ることができる。
【0033】
図9は本発明の第6実施形態に係る曲面基板のスパッタ装置の概念図である。本実施形態のスパッタ装置62が上記第1〜第3実施形態のスパッタ装置2,22,32と異なる点は、図9に示す如く、曲面基板1の曲率に合わせた曲面形状に形成されて対向配置される湾曲ターゲット64が設けられ、かつ曲面基板1が図示しない水平移動駆動機構によって矢印X方向へ平行移動のみができるように構成されていることである。したがって、スパッタ装置62は、水平移動駆動機構にて曲面基板1を矢印X方向へ水平移動させることにより、曲面基板1の凹面1bと湾曲ターゲット64とを対向して配置し、湾曲ターゲット64と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに薄膜を形成するようになっている。その他の構成は、上記第2実施形態と同様である。
【0034】
本発明に係る第6実施形態のスパッタ装置62では、図示しない水平移動駆動機構により曲面基板1を矢印X方向へ水平移動のみさせて、湾曲ターゲット64に対向すべく配置し、湾曲ターゲット64と曲面基板1の凹面1bとの間の距離を常に一定にした状態で、曲面基板1の凹面1bに透明導電膜の薄膜を形成しているため、表2の具体的実施例(6)で示す如く、標準偏差が従来法に比べて約1/4以上小さく、膜厚のばらつきを小さく抑えることができ、曲面基板1の凹面1bに対してもほぼ均一な膜を形成できることが判かる。しかも、本実施形態のスパッタ装置62では、曲面基板1を矢印X方向へ水平移動のみさせているため、駆動機構が簡便となり、コストダウンを図ることができる。
【0035】
図10及び図11は本発明の2つの実施形態に係る曲面基板のスパッタ法の説明図である。
本実施形態のスパッタ法には、既述の実施形態に係るスパッタ装置のいずれを用いても良いが、例えば上記発明の第2実施形態のスパッタ装置22を用いた方法について説明する。
一の実施形態のスパッタ法では、曲面基板1の表面に薄膜100を1層のみ形成する方法であり、真空容器3内にターゲット4と曲面基板1とを対向して配置し、図10に示す如く、曲面基板1を成膜ピッチPの10〜50%(R部分)にわたりオーバラップさせながら移動させることにより、曲面基板1の表面(凹面)に薄膜100を形成している。R部分が成膜ピッチPの10%以下であると、形成される薄膜100の平滑性が十分でなく、成膜ピッチPの50%以上であると、膜材料の使用量が多くなり、コスト高を招くと共に、作業性を低下させることになる。
本実施形態のスパッタ法によれば、曲面基板1を成膜ピッチPの10〜50%(R部分)にわたりオーバラップさせながら移動させることにより、曲面基板1の表面に薄膜100を形成しているため、薄膜100の平滑性を向上させることができる。
【0036】
また、他の実施形態のスパッタ法では、曲面基板1の表面に薄膜100を2層以上にわたって形成する方法であり、真空容器3内にターゲット4と曲面基板1とを対向して配置し、図11に示す如く、1層目は上記一の実施形態と同様、曲面基板1を成膜ピッチPの10〜50%(R部分)にわたりオーバラップさせながら移動させることにより、曲面基板1の表面(凹面)に薄膜100を形成し、2層目以降は前層のオーバラップ部分の中心Cを中心にして、曲面基板1の表面に薄膜100を形成している。
本実施形態のスパッタ法によれば、2層目以降は前層のオーバラップ部分の中心Cを中心にして、成膜ピッチPの10〜50%(R部分)にわたりオーバラップさせながら移動させることにより、曲面基板1の表面に薄膜100を積層形成しているため、薄膜100の平滑性をより向上させることができる。
【0037】
以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び変更を加え得るものである。
例えば、既述の実施の形態のスパッタ装置2等では、曲面基板側を駆動機構により回転、水平移動及び上下動させているが、適用機種などに応じてターゲット側を駆動機構により回転、水平移動及び上下動させても良い。
【0038】
【発明の効果】
上述の如く、本発明に係る曲面基板のスパッタ装置は、真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凸面が前記ターゲットに対向して配置される曲面基板を外周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記ターゲットと前記曲面基板の凸面との間の距離を常に一定にした状態で、前記曲面基板の凸面に薄膜を形成するようにしている。また、本発明に係る曲面基板のスパッタ装置は、真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凹面が前記ターゲットに対向して配置される曲面基板を内周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記筒状体内に前記ターゲットを配置し、前記ターゲットと前記曲面基板の凹面との間の距離を常に一定にした状態で、前記曲面基板の凹面に薄膜を形成するようにしている。
したがって、本発明のスパッタ装置を使用すれば、曲面形状の基板に対しても均一な薄膜を安価に形成することができ、成膜基板の汎用性及び製品の信頼性の向上を図ることができる。
【0039】
本発明に係る曲面基板のスパッタ装置は、真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせながら対向して配置される複数の小型ターゲットと、前記筒状体又は前記小型ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記小型ターゲットを水平移動させることにより、前記曲面基板の表面と前記小型ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしている。また、本発明に係る曲面基板のスパッタ装置は、真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせた曲面形状に形成されて対向配置されるターゲットと、前記筒状体又は前記ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記ターゲットを水平移動させることにより、前記曲面基板の表面と前記ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしている。
したがって、本発明のスパッタ装置を使用すれば、上記発明と同様の効果を得ることができる上、曲面基板を水平移動のみさせていることから、駆動機構が簡便となり、コストダウンを図ることができる。
【0040】
本発明に係る曲面基板のスパッタ法は、真空容器内にターゲットと曲面基板とを対向して配置し、前記ターゲット又は前記曲面基板を成膜ピッチの10〜50%にわたりオーバラップさせながら移動させることにより、前記曲面基板の表面に薄膜を形成し、さらに、前記薄膜の2層目以後は、前層のオーバラップ部分の中心を中心にして、前記曲面基板の表面に薄膜を積層しているので、形成される薄膜を平滑に仕上げることができ、優れた品質の製品を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るスパッタ装置によって凸面に薄膜が形成される曲面基板を示す概念的斜視図である。
【図2】本発明の第1実施形態に係る曲面基板のスパッタ装置を示す概念図である。
【図3】本発明の第2実施形態に係る曲面基板のスパッタ装置を示す概念図である。
【図4】本発明の第3実施形態に係るスパッタ装置によって凹面に薄膜が形成される曲面基板を示す概念的斜視図である。
【図5】本発明の第3実施形態に係る曲面基板のスパッタ装置を示す概念図である。
【図6】(a)〜(c)は本発明の第4実施形態に係るスパッタ装置によって曲面基板を往復運動させて、凹面に薄膜が形成される曲面基板を示す概念図である。
【図7】本発明の第5実施形態に係る曲面基板のスパッタ装置の一部を示す概念的平面図である。
【図8】本発明の第5実施形態に係る曲面基板のスパッタ装置の一部を示す概念的正面図である。
【図9】本発明の第6実施形態に係る曲面基板のスパッタ装置の一部を示す概念図である。
【図10】本発明の一の実施形態に係る曲面基板のスパッタ法を説明する一部概念図である。
【図11】本発明の他の実施形態に係る曲面基板のスパッタ法を説明する一部概念図である。
【図12】従来の基板のスパッタ装置を示す概念図である。
【符号の説明】
1,31 曲面基板
1a 凸面
1b,31b 凹面
2,22,32,42,52,62 スパッタ装置
3 真空容器
4,54,64 ターゲット
5 基板固定ドラム
6,26 回転駆動機構
7 水平移動駆動機構
8 シャフト
9 モータ
10 支柱
11 ガイド部材
12 ローラ
13 ローラ受け
23 ステー
24 カラー
33 上下方向駆動機構
34 下端フレーム
100 薄膜
P 成膜ピッチ
R ラップ部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sputtering apparatus and a sputtering method used when forming a thin film on an uneven surface of a curved substrate.
[0002]
[Prior art]
Sputtering is a thin film that utilizes the phenomenon that when accelerated particles (or ions) collide with a solid surface, a portion of the momentum of the particles is obtained and atoms near the solid surface are knocked out into space. This is a method of forming, and includes a direct current (DC) sputtering method in which a direct current electric field is applied, and a high frequency (RF) sputtering method in which a high frequency electric field is applied. In such a sputtering method, for example, a sputtering apparatus 71 as shown in FIG. 12 is used.
[0003]
The sputtering apparatus 71 includes a substrate holder 73 and a target 74 that are arranged vertically opposite each other in a vacuum vessel 72, and a substrate 75 is mounted on the lower surface of the horizontally movable substrate holder 73. Therefore, in the sputtering apparatus 71, a discharge gas such as argon is injected into the vacuum vessel 72, a voltage is applied to the electrodes to cause glow discharge, and ions in the plasma collide with the cathode target 74 to form target atoms. The thin film is formed on the surface of the substrate 75 by being ejected and emitted from the target 74 toward the substrate 75.
[0004]
[Problems to be solved by the invention]
By the way, in the above-described conventional sputtering apparatus 71, since the target 74 is formed in a flat plate shape, the substrate 75 on which a film is formed is mostly a flat plate. However, in recent years, a need has arisen not only for the flat substrate 75 but also for a curved substrate suitable for a used model, a used portion, and the like. It is also possible to form a film on such a curved surface of the substrate by using a flat target 74, but since the distance between the curved surface of the substrate and the target 74 varies depending on the region, the film is uniformly formed on the entire surface. This is difficult, and thick and thin portions are formed, which has a problem in product reliability.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to form a uniform thin film even on a substrate having a curved surface, and to improve the versatility and reliability of the product. It is an object of the present invention to provide a sputtering apparatus and a sputtering method for a curved substrate capable of improving the quality.
[0006]
[Means for Solving the Problems]
In order to solve the problems of the related art, according to the present invention, a vacuum vessel, a flat target provided in the vacuum vessel, and provided in the vacuum vessel, and a convex surface faces the target. And a drive mechanism for rotating and horizontally moving the target or the tubular body, and rotating the target or the tubular body with the drive mechanism. By moving horizontally, the thin film is formed on the convex surface of the curved substrate while keeping the distance between the target and the convex surface of the curved substrate constant.
[0007]
In the present invention, a vacuum container, a flat target provided in the vacuum container, and a curved substrate provided in the vacuum container and having a concave surface opposed to the target are formed on an inner peripheral surface. And a driving mechanism for rotating and horizontally moving the target or the cylindrical body, and rotating and horizontally moving the target or the cylindrical body with the driving mechanism, thereby forming the cylinder. The thin film is formed on the concave surface of the curved substrate with the distance between the target and the concave surface of the curved substrate kept constant while the target is arranged in the body.
[0008]
Further, in the present invention, it is preferable that a drive mechanism for moving the target or the tubular body in a height direction is provided in addition to a drive mechanism for rotating and horizontally moving the target or the tubular body.
In the present invention, the rotation mechanism for rotating the target or the cylindrical body may be configured as a rotating mechanism that reciprocates the target or the cylindrical body to near both ends in the circumferential direction of the curved substrate. Is preferred.
[0009]
Further, in the present invention, a vacuum vessel, a tubular body provided in the vacuum vessel and holding a curved substrate, and provided in the vacuum vessel and arranged to face each other while matching the curvature of the curved substrate. A plurality of small targets, and a drive mechanism for horizontally moving the tubular body or the small target, and the drive mechanism horizontally moves the tubular body or the small target, thereby obtaining a surface of the curved substrate. The thin film is formed on the surface of the curved substrate while keeping the distance between the target and the small target constant.
Further, in the present invention, a vacuum vessel, a tubular body provided in the vacuum vessel and holding a curved substrate, and provided in the vacuum vessel and formed into a curved shape conforming to the curvature of the curved substrate. And a drive mechanism for horizontally moving the cylindrical body or the target, and by horizontally moving the cylindrical body or the target with the drive mechanism, the surface of the curved substrate and A thin film is formed on the surface of the curved substrate while keeping a constant distance from the target.
[0010]
Further, in the present invention, the target and the curved substrate are arranged in a vacuum vessel so as to face each other, and the target or the curved substrate is moved while overlapping over 10 to 50% of a film forming pitch, so that the curved surface is formed. A thin film is formed on the surface of the substrate.
Further, in the present invention, it is preferable that, after the second layer of the thin film, a thin film is laminated on the surface of the curved substrate, centering on the center of the overlapping portion of the previous layer.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on illustrated embodiments. Here, FIG. 1 is a conceptual perspective view of a curved substrate on which a thin film is formed on a convex surface by the sputtering device according to the first embodiment of the present invention, and FIG. 2 is a conceptual diagram of a curved substrate sputtering device according to the present embodiment. is there.
[0012]
As shown in FIG. 1, the curved substrate 1 according to the first embodiment of the present invention is formed in a circular arc-shaped convex shape having a radius R of 300 mm, a length L of 300 mm, and an angle θ of 120 °. On the convex surface 1a, a thin film of a transparent conductive film (ITO, indium-tin composite oxide) is formed by the sputtering apparatus 2 of FIG.
[0013]
The sputtering apparatus 2 according to the present embodiment is configured so as to perform sputtering downward, and includes a box-shaped vacuum vessel 3, a flat target 4 provided above the vacuum vessel 3, and a vacuum vessel 3. A substrate fixing drum (cylindrical body) 5 provided below the target 4 and driving mechanisms 6 and 7 for rotating and horizontally moving the fixed drum 5 are provided. A curved substrate 1 arranged to face a target 4 is fixedly held. Therefore, the sputter apparatus 2 rotates the fixed drum 5 by the driving mechanisms 6 and 7 so that the distance between the target 4 and the convex surface 1a of the curved substrate 1 is always constant, thereby keeping the distance between the target 4 and the convex surface 1a constant. A thin film is formed on the first convex surface 1a. The vacuum vessel 3 contains Ar / O (not shown). 2 A gas supply source, a vacuum pump, and the like are connected, and a DC power cable or a high-frequency power cable (not shown) is connected to the target 4.
[0014]
The rotation drive mechanism 6 is mounted on the upper part of the horizontal movement drive mechanism 7 so as to be movable in the longitudinal direction. The shaft 8 supports the fixed drum 5 rotatably, and the motor 9 drives the shaft 8 to rotate. , A pair of right and left columns 10 for supporting the shaft 8 and the motor 9. One end of the shaft 8 is connected to a motor 9, and the other end is mounted on an upper portion of a column 10 via a bearing (not shown). The lower end of the column 10 is guided and supported by a long roller receiver 13 via a guide member 11 and a pair of rollers 12, and the roller receiver 13 extends over substantially the entire length of the vacuum container 3.
On the other hand, the horizontal movement drive mechanism 7 has a rack and a pinion structure, and is configured to be able to move the fixed drum 5 in the longitudinal direction by operating the guide member 11 by a drive device (not shown). ing.
[0015]
(Specific examples)
Next, in order to form a thin film on the convex surface 1a of the curved substrate 1 by using the sputtering apparatus 2 according to the first embodiment of the present invention, first, an acrylic material formed in a dimension shape as shown in FIG. The curved substrate 1 is set and fixed on the outer peripheral surface of the substrate fixing drum 5. Next, the curved substrate 1 is horizontally moved in the longitudinal direction while rotating the fixed substrate 5 via the fixed drum 5 by the rotation driving mechanism 6 and the horizontal movement driving mechanism 7, and is arranged so as to face the target 4. A transparent conductive film was formed on the convex surface 1a of the curved substrate 1 by a DC sputtering method while keeping the distance between the transparent surface and the convex surface 1a constant. Here, as the operating conditions of the sputtering apparatus 2, the number of revolutions of the curved substrate 1 was 0.3 rpm, the moving speed of the curved substrate 1 in the longitudinal direction was 20 mm / min, and the substrate was reciprocated 5 times in the longitudinal direction. The size of the target 4 is φ101.6 mm (4 inches), and the distance between the target 4 and the substrate 1 (hereinafter referred to as T / S) is 80 mm. The gas used for film formation is Ar / O. 2 The flow rates are 100 sccm (sccm is a gas flow unit and means standard cubic centimeters per minute) and 1 sccm. The pressure during film formation is 0.5 Pa, and the discharge power is 300 W.
[0016]
Further, for comparison, a film was formed under the same conditions by the conventional method in which the same curved substrate was only moved in parallel as in the conventional case. After film formation, as shown in FIG. 1, the film thickness was measured at five points (A, B, C, D, E) in the longitudinal direction and four points (F, G, H, I) in the circumferential direction of the curved substrate, respectively. . The results are shown in Table 1 below.
[0017]
[Table 1]
Figure 2004084022
[0018]
In the sputtering apparatus 2 according to the first embodiment of the present invention, the curved substrate 1 is fixedly held on the outer peripheral surface of the substrate fixing drum 5, and the rotation substrate 6 is rotated by the rotation driving mechanism 6 and the horizontal movement driving mechanism 7. Is rotated horizontally in the longitudinal direction while rotating, and is disposed so as to face the target 4. The distance between the target 4 and the convex surface 1 a of the curved substrate 1 is always constant, and the convex surface 1 a of the curved substrate 1 is transparent. Since the conductive film is formed as a thin film, the standard deviation is about 1/3 smaller than that of the conventional method, as shown in the specific example (1) of Table 1, and the variation in the film thickness can be suppressed. It can be seen that a substantially uniform film can be formed even on the convex surface 1a of the curved substrate 1.
[0019]
FIG. 3 is a conceptual diagram of a sputtering apparatus for a curved substrate according to a second embodiment of the present invention. The difference between the sputtering apparatus 22 of the present embodiment and the sputtering apparatus 2 of the first embodiment is that the curved substrate 1 is fixed and held on the inner peripheral surface of the substrate fixing drum 5 as shown in FIG. That is, the target 4 is attached to the upper end of the stay 23 projecting inward from the vertical middle position of the container side wall surface. The column 10 for supporting the shaft 8 and the motor 9 of the rotary drive mechanism 26 is formed to be short so as to have a low height. A collar 24 for rotatably supporting the fixed drum 5 is provided on the outer periphery of the shaft 8. That is, the collar 24 is rotated while being pressed against the outer peripheral surface of the fixed drum 5. Therefore, the sputter device 22 positions the target 4 in the fixed drum 5 by rotating and horizontally moving the fixed drum 5 by the driving mechanisms 26 and 7 so that the concave surface 1 b of the curved substrate 1 faces the target 4. The thin film is formed on the concave surface 1b of the curved substrate 1 with the distance between the target 4 and the concave surface 1b of the curved substrate 1 kept constant. Other configurations are the same as those of the first embodiment.
[0020]
(Specific examples)
Next, in order to form a thin film on the concave surface 1b of the curved substrate 1 by using the sputtering apparatus 22 according to the second embodiment of the present invention, first, the curved substrate 1 having the same dimensions and material as in FIG. It is set and fixed on the inner peripheral surface of the drum 5. Next, the rotating substrate 26 is horizontally moved in the longitudinal direction while rotating the curved substrate 1 via the fixed drum 5 by the rotation driving mechanism 26 and the horizontal movement driving mechanism 7 so that the target 4 is positioned in the fixed drum 5 and faces the target 4. After that, a transparent conductive film was formed on the concave surface 1b of the curved substrate 1 by DC sputtering with the distance between the target 4 and the concave surface 1b of the curved substrate 1 kept constant.
The operating conditions of the sputtering apparatus 22 of the present embodiment and the conventional method are the same as those of Example (1) of the first embodiment, and the results are shown in Table 2 below.
[0021]
[Table 2]
Figure 2004084022
[0022]
In the sputtering apparatus 22 according to the second embodiment of the present invention, the curved substrate 1 is fixedly held on the inner peripheral surface of the substrate fixing drum 5, and is rotated by the rotation drive mechanism 26 and the horizontal movement drive mechanism 7 via the fixed drum 5. 1 is horizontally moved in the longitudinal direction while rotating, and is disposed so as to face the target 4. The distance between the target 4 and the concave surface 1 b of the curved substrate 1 is always constant, and the concave surface 1 b of the curved substrate 1 is Since the transparent conductive film is formed as a thin film, the standard deviation is about 1/3 smaller than that of the conventional method, as shown in the specific example (2) in Table 2, and the variation in film thickness can be suppressed. It can be seen that a substantially uniform film can be formed even on the concave surface 1b of the curved substrate 1.
[0023]
FIG. 4 is a conceptual perspective view of a curved substrate on which a thin film is formed on a concave surface by the sputtering device according to the third embodiment of the present invention, and FIG. 5 is a conceptual diagram of a curved substrate sputtering device according to the present embodiment.
The curved substrate 31 according to the third embodiment of the present invention has a semi-elliptical cross-sectional convex shape having a width W of 600 mm, a length L of 300 mm, and a height H of 200 mm. Is such that a thin film of a transparent conductive film is formed by the sputtering apparatus 32 of FIG.
[0024]
The point that the sputtering apparatus 32 of this embodiment is different from the sputtering apparatus 22 of the second embodiment is that, in addition to the rotation driving mechanism 26 and the horizontal movement driving mechanism 7, a vertical driving mechanism that moves the fixed drum 5 in the height direction. 33 is provided. The vertical drive mechanism 33 has a rack and pinion structure, is attached to the rotation drive mechanism 26 and the horizontal movement drive mechanism 7 via the lower end frame 34 of the column 10 and the guide member 13, and has a drive device (not shown). , So that the fixed drum 5 can be moved up and down.
Therefore, the sputter device 32 performs simultaneous control by a program, rotates and horizontally moves the fixed drum 5 by the driving mechanisms 26 and 7, and moves the fixed drum 5 up and down by the vertical driving mechanism 33, so that the inside of the fixed drum 5 is moved. The target 4 is positioned, the concave surface 31b of the curved substrate 31 and the target 4 are arranged to face each other, and the distance between the target 4 and the concave surface 31b of the curved substrate 31 is always constant with respect to the curved surface where the curvature changes. Thus, a thin film is formed on the concave surface 31b of the curved substrate 31. Other configurations are the same as those of the second embodiment.
[0025]
(Specific examples)
Next, in order to form a thin film on the concave surface 31b of the curved substrate 31 using the sputtering device 32 according to the third embodiment of the present invention, first, an acrylic acrylic film formed in a dimension shape as shown in FIG. The curved substrate 31 is set and fixed on the inner peripheral surface of the substrate fixing drum 5. Next, the rotating substrate 26 is horizontally moved in the longitudinal direction while rotating the curved substrate 1 via the fixed drum 5 by the rotation driving mechanism 26, the horizontal movement driving mechanism 7, and the vertical driving mechanism 33, and is moved in the vertical direction. The target 4 is positioned and disposed so as to face the target 4, and then, while the distance between the target 4 and the concave surface 31 b of the curved substrate 31 is always constant, a transparent conductive film is applied to the concave surface 31 b of the curved substrate 31. The film was formed by a DC sputtering method.
The operating conditions of the sputtering apparatus 32 of this embodiment and the conventional method are the same as those of Example (1) of the first embodiment, and the results are shown in Table 3 below.
[0026]
[Table 3]
Figure 2004084022
[0027]
In the sputtering apparatus 32 according to the third embodiment of the present invention, the curved substrate 31 is fixedly held on the inner peripheral surface of the substrate fixing drum 5, and is rotated by the rotation driving mechanism 26 and the horizontal movement driving mechanism 7 via the fixed drum 5. 31 is rotated in the horizontal direction in the longitudinal direction, and is moved up and down by the vertical drive mechanism 33 so as to face the target 4 so that the distance between the target 4 and the concave surface 31b of the curved substrate 31 is always constant. In this state, a thin film of a transparent conductive film is formed on the concave surface 31b of the curved substrate 31. Therefore, as shown in a specific example (3) of Table 3, the standard deviation is about 1/3 as compared with the conventional method. It can be seen that the thickness is small, the variation in the film thickness can be suppressed small, and a substantially uniform film can be formed even on the concave surface 31b of the curved substrate 31.
[0028]
FIG. 6 is a conceptual diagram of a curved substrate sputtering apparatus according to a fourth embodiment of the present invention. The difference between the sputtering apparatus 42 of the present embodiment and the sputtering apparatuses 2, 22, 32 of the first to third embodiments is that, as shown in FIGS. The rotation mechanism (not shown) is configured to reciprocate the substrate fixing drum 5 to near both ends in the circumferential direction of the substrate 1. Therefore, the sputtering apparatus 42 arranges the concave surface 1b of the curved substrate 1 and the target 4 so as to face each other, and does not rotate the target 360 by 360 °, but the range shown in FIG. 6A and FIG. The target 4 is positioned in the fixed drum 5 by repeatedly rotating the fixed drum 5 by the rotation mechanism in the range shown in FIG. 6B and FIG. 6C, and the target 4 and the concave surface 1b of the curved substrate 1 are moved. A thin film is formed on the concave surface 1b of the curved substrate 1 with the distance between them being always constant. Other configurations are the same as those of the second embodiment.
[0029]
(Specific examples)
Next, in order to form a thin film on the concave surface 1b of the curved substrate 1 using the sputtering apparatus 42 according to the fourth embodiment of the present invention, first, the curved substrate 1 having the same dimensions and material as in FIG. It is set and fixed on the inner peripheral surface of the drum 5. Next, the curved substrate 1 is horizontally moved in the longitudinal direction while rotating the curved substrate 1 via the fixed drum 5 by the rotating mechanism (not shown) and the horizontal movement driving mechanism 7, and the target 4 is positioned in the fixed drum 5. 4 and then, with the distance between the target 4 and the concave surface 1b of the curved substrate 1 kept constant, a transparent conductive film is formed on the concave surface 1b of the curved substrate 1 by DC sputtering. did.
The operating conditions of the sputtering apparatus 42 of the present embodiment and the conventional method are the same as those of the example (2) of the second embodiment, except that the speed in the rotation direction is equal to 0.3 rpm (about 565 mm / min). And the results are shown in Table 2 below.
[0030]
In the sputtering apparatus 42 according to the fourth embodiment of the present invention, the curved substrate 1 is fixed and held on the inner peripheral surface of the substrate fixing drum 5 and is arranged so as to face the target 4, and a rotating mechanism (not shown) and The horizontal movement drive mechanism 7 repeatedly moves the curved substrate 1 via the fixed drum 5 to the vicinity of both ends in the circumferential direction while horizontally moving the curved substrate 1 in the longitudinal direction to reduce the distance between the target 4 and the concave surface 1b of the curved substrate 1. Since the thin film of the transparent conductive film is formed on the concave surface 1b of the curved substrate 1 in a state where it is always kept constant, the standard deviation is about 1 compared to the conventional method as shown in the specific example (4) of Table 2. It can be seen that the variation in film thickness can be suppressed to be small, and a substantially uniform film can be formed even on the concave surface 1b of the curved substrate 1. Moreover, in the sputtering apparatus 42 of this embodiment, unlike the case where the fixed drum 5 rotates 360 °, when the substrate 1 is not located at the position facing the target 4, the evaporated particles do not scatter, so that waste can be reduced. Thus, cost can be reduced.
[0031]
7 and 8 show an apparatus for sputtering a curved substrate according to a fifth embodiment of the present invention. FIG. 7 is a partial conceptual plan view, and FIG. 8 is a partial conceptual front view.
The difference between the sputtering apparatus 52 of the present embodiment and the sputtering apparatuses 2, 22, 32 of the first to third embodiments is that, as shown in FIGS. A plurality of (three in this embodiment) small targets 54 to be arranged are arranged in combination, and the curved substrate 1 is configured to be able to move only in a parallel direction in the arrow X direction by a horizontal movement driving mechanism (not shown). That is. Accordingly, the sputtering device 52 arranges the concave surface 1b of the curved substrate 1 and the three small targets 54 so as to face each other by horizontally moving the curved substrate 1 in the arrow X direction by the horizontal movement driving mechanism. The thin film is formed on the concave surface 1b of the curved substrate 1 with the distance between the concave surface 54 and the concave surface 1b of the curved substrate 1 kept constant. Other configurations are the same as those of the second embodiment.
[0032]
In the sputtering apparatus 52 according to the fifth embodiment of the present invention, the curved substrate 1 is horizontally moved only in the direction of arrow X by a horizontal movement driving mechanism (not shown), and is arranged so as to face the small target 54. Since the thin film of the transparent conductive film is formed on the concave surface 1b of the curved substrate 1 while the distance between the concave surface 54 and the concave surface 1b of the curved substrate 1 is always kept constant, the specific example (5) in Table 2 is used. As shown in the figure, it can be seen that the standard deviation is about 1/3 or more smaller than that of the conventional method, the variation in the film thickness can be suppressed, and a substantially uniform film can be formed even on the concave surface 1b of the curved substrate 1. . Moreover, in the sputtering apparatus 52 of the present embodiment, since the curved substrate 1 is only horizontally moved in the direction of the arrow X, the driving mechanism is simple and the cost can be reduced.
[0033]
FIG. 9 is a schematic diagram of a curved substrate sputtering apparatus according to a sixth embodiment of the present invention. The difference between the sputtering apparatus 62 of the present embodiment and the sputtering apparatuses 2, 22, 32 of the first to third embodiments is that, as shown in FIG. A curved target 64 to be disposed is provided, and the curved substrate 1 is configured to be able to move only in a parallel direction in the arrow X direction by a horizontal movement driving mechanism (not shown). Therefore, the sputtering device 62 arranges the concave surface 1b of the curved substrate 1 and the curved target 64 so as to face each other by horizontally moving the curved substrate 1 in the direction of the arrow X by the horizontal movement driving mechanism. The thin film is formed on the concave surface 1b of the curved substrate 1 with the distance between the concave surface 1b of the substrate 1 and the concave surface 1b kept constant. Other configurations are the same as those of the second embodiment.
[0034]
In the sputtering apparatus 62 according to the sixth embodiment of the present invention, the curved substrate 1 is horizontally moved only in the direction of the arrow X by a horizontal movement driving mechanism (not shown), and is arranged so as to face the curved target 64. Since the thin film of the transparent conductive film is formed on the concave surface 1b of the curved substrate 1 with the distance between the concave surface 1b of the substrate 1 always constant, as shown in the specific example (6) of Table 2. It can be seen that the standard deviation is smaller than the conventional method by about 1/4 or more, the variation in the film thickness can be suppressed, and a substantially uniform film can be formed even on the concave surface 1b of the curved substrate 1. Moreover, in the sputtering apparatus 62 of the present embodiment, since the curved substrate 1 is only horizontally moved in the direction of the arrow X, the driving mechanism is simple and the cost can be reduced.
[0035]
FIG. 10 and FIG. 11 are explanatory views of a method for sputtering a curved substrate according to two embodiments of the present invention.
Any of the sputtering apparatuses according to the above-described embodiments may be used for the sputtering method according to the present embodiment. For example, a method using the sputtering apparatus 22 according to the second embodiment of the present invention will be described.
In one embodiment, the sputtering method is a method in which only one layer of the thin film 100 is formed on the surface of the curved substrate 1. The target 4 and the curved substrate 1 are arranged in the vacuum vessel 3 so as to face each other, and as shown in FIG. As described above, the thin film 100 is formed on the surface (concave surface) of the curved substrate 1 by moving the curved substrate 1 while overlapping the film formation pitch P by 10 to 50% (R portion). If the R portion is less than 10% of the film formation pitch P, the formed thin film 100 will not have sufficient smoothness, and if it is more than 50% of the film formation pitch P, the amount of the film material used will increase and the cost will increase. In addition, the workability is lowered.
According to the sputtering method of the present embodiment, the thin film 100 is formed on the surface of the curved substrate 1 by moving the curved substrate 1 while overlapping the film forming pitch P by 10 to 50% (R portion). Therefore, the smoothness of the thin film 100 can be improved.
[0036]
Further, in the sputtering method of another embodiment, the thin film 100 is formed in two or more layers on the surface of the curved substrate 1, and the target 4 and the curved substrate 1 are arranged in the vacuum vessel 3 so as to face each other. As shown in FIG. 11, the first layer is formed by moving the curved substrate 1 while overlapping it over 10 to 50% (R portion) of the film forming pitch P, as in the first embodiment, so that the surface of the curved substrate 1 ( The thin film 100 is formed on the concave surface (concave surface), and the second and subsequent layers are formed on the surface of the curved substrate 1 with the center C of the overlap portion of the previous layer as the center.
According to the sputtering method of the present embodiment, the second and subsequent layers are moved while being overlapped over 10 to 50% (R portion) of the film formation pitch P with the center C of the overlap portion of the previous layer as the center. Accordingly, since the thin film 100 is formed on the surface of the curved substrate 1, the smoothness of the thin film 100 can be further improved.
[0037]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the spirit of the present invention. is there.
For example, in the sputtering apparatus 2 and the like of the above-described embodiment, the curved substrate side is rotated, horizontally moved, and moved up and down by the drive mechanism, but the target side is rotated and horizontally moved by the drive mechanism according to the applicable model. And may be moved up and down.
[0038]
【The invention's effect】
As described above, the apparatus for sputtering a curved substrate according to the present invention includes a vacuum vessel, a flat target provided in the vacuum vessel, and a convex face provided in the vacuum vessel and having a convex surface facing the target. And a drive mechanism for rotating and horizontally moving the target or the tubular body, and rotating and horizontally rotating the target or the tubular body with the drive mechanism. By moving, the thin film is formed on the convex surface of the curved substrate while keeping the distance between the target and the convex surface of the curved substrate constant. Further, the apparatus for sputtering a curved substrate according to the present invention is provided with a vacuum vessel, a flat target provided in the vacuum vessel, and a concave face provided in the vacuum vessel, and a concave surface facing the target. A cylindrical body for holding the curved substrate on the inner peripheral surface; and a drive mechanism for rotating and horizontally moving the target or the cylindrical body, and rotating and horizontally moving the target or the cylindrical body with the drive mechanism. By doing so, the target is disposed in the cylindrical body, and a thin film is formed on the concave surface of the curved substrate while the distance between the target and the concave surface of the curved substrate is always constant. .
Therefore, if the sputtering apparatus of the present invention is used, a uniform thin film can be formed at low cost even on a substrate having a curved surface, and the versatility of a film-formed substrate and the reliability of a product can be improved. .
[0039]
The apparatus for sputtering a curved substrate according to the present invention includes a vacuum vessel, a tubular body provided in the vacuum vessel, and holding the curved substrate, and a tubular body provided in the vacuum vessel, facing each other while adjusting the curvature of the curved substrate. A plurality of small targets arranged as a, and a driving mechanism for horizontally moving the cylindrical body or the small target, and by horizontally moving the cylindrical body or the small target by the driving mechanism, The thin film is formed on the surface of the curved substrate while keeping the distance between the surface of the curved substrate and the small target constant. In addition, the apparatus for sputtering a curved substrate according to the present invention includes a vacuum container, a tubular body provided in the vacuum container and holding the curved substrate, and a cylindrical member provided in the vacuum container and adapted to the curvature of the curved substrate. A target formed in a curved surface shape and disposed to face each other, and a drive mechanism for horizontally moving the cylindrical body or the target, and the drive mechanism horizontally moves the cylindrical body or the target, A thin film is formed on the surface of the curved substrate while keeping a constant distance between the surface of the curved substrate and the target.
Therefore, by using the sputtering apparatus of the present invention, the same effects as those of the above-described invention can be obtained. In addition, since only the curved substrate is moved horizontally, the driving mechanism is simplified and the cost can be reduced. .
[0040]
In the method of sputtering a curved substrate according to the present invention, a target and a curved substrate are arranged in a vacuum vessel so as to face each other, and the target or the curved substrate is moved while overlapping over 10 to 50% of a film forming pitch. As a result, a thin film is formed on the surface of the curved substrate, and further, the second and subsequent layers of the thin film are laminated on the surface of the curved substrate around the center of the overlap portion of the previous layer. Thus, the formed thin film can be finished smoothly, and a product of excellent quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view showing a curved substrate on which a thin film is formed on a convex surface by a sputtering apparatus according to a first embodiment of the present invention.
FIG. 2 is a conceptual diagram showing an apparatus for sputtering a curved substrate according to the first embodiment of the present invention.
FIG. 3 is a conceptual diagram showing a sputtering apparatus for a curved substrate according to a second embodiment of the present invention.
FIG. 4 is a conceptual perspective view showing a curved substrate on which a thin film is formed on a concave surface by a sputtering apparatus according to a third embodiment of the present invention.
FIG. 5 is a conceptual diagram showing a curved substrate sputtering apparatus according to a third embodiment of the present invention.
FIGS. 6A to 6C are conceptual diagrams showing a curved substrate on which a thin film is formed on a concave surface by reciprocating the curved substrate by a sputtering apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a conceptual plan view showing a part of a curved substrate sputtering apparatus according to a fifth embodiment of the present invention.
FIG. 8 is a conceptual front view showing a part of a curved substrate sputtering apparatus according to a fifth embodiment of the present invention.
FIG. 9 is a conceptual view showing a part of a curved substrate sputtering apparatus according to a sixth embodiment of the present invention.
FIG. 10 is a partial conceptual diagram illustrating a sputtering method for a curved substrate according to an embodiment of the present invention.
FIG. 11 is a partial conceptual diagram illustrating a sputtering method for a curved substrate according to another embodiment of the present invention.
FIG. 12 is a conceptual diagram showing a conventional substrate sputtering apparatus.
[Explanation of symbols]
1,31 curved substrate
1a convex surface
1b, 31b concave surface
2,22,32,42,52,62 Sputtering equipment
3 Vacuum container
4,54,64 target
5 Substrate fixed drum
6,26 rotation drive mechanism
7 Horizontal movement drive mechanism
8 shaft
9 Motor
10 props
11 Guide member
12 rollers
13 Roller tray
23 Stay
24 colors
33 Vertical drive mechanism
34 Lower frame
100 thin film
P Deposition pitch
R wrap part

Claims (8)

真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凸面が前記ターゲットに対向して配置される曲面基板を外周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記ターゲットと前記曲面基板の凸面との間の距離を常に一定にした状態で、前記曲面基板の凸面に薄膜を形成するようにしたことを特徴とする曲面基板のスパッタ装置。A vacuum vessel, a flat target provided in the vacuum vessel, and a tubular body provided in the vacuum vessel, and having a curved substrate disposed on the outer peripheral surface and having a convex surface opposed to the target, A drive mechanism for rotating and moving the target or the tubular body horizontally, and by rotating and moving the target or the tubular body horizontally with the drive mechanism, the target and the convex surface of the curved substrate are A sputtering apparatus for a curved substrate, wherein a thin film is formed on a convex surface of the curved substrate while keeping a constant distance therebetween. 真空容器と、該真空容器内に設けられる平板状のターゲットと、前記真空容器内に設けられ、かつ凹面が前記ターゲットに対向して配置される曲面基板を内周面に保持する筒状体と、前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構とを備え、該駆動機構にて前記ターゲット又は前記筒状体を回転及び水平移動させることにより、前記筒状体内に前記ターゲットを配置し、前記ターゲットと前記曲面基板の凹面との間の距離を常に一定にした状態で、前記曲面基板の凹面に薄膜を形成するようにしたことを特徴とする曲面基板のスパッタ装置。A vacuum vessel, a flat target provided in the vacuum vessel, and a cylindrical body provided in the vacuum vessel, and having a curved substrate whose concave surface is arranged to face the target and which is held on an inner peripheral surface. A drive mechanism for rotating and moving the target or the tubular body horizontally, and disposing the target in the tubular body by rotating and moving the target or the tubular body horizontally with the drive mechanism. And a thin film is formed on the concave surface of the curved substrate while keeping a constant distance between the target and the concave surface of the curved substrate. 前記ターゲット又は前記筒状体を回転及び水平移動させる駆動機構に加えて、前記ターゲット又は前記筒状体を高さ方向へ移動させる駆動機構が設けられていることを特徴とする請求項1または2に記載の曲面基板のスパッタ装置。3. A driving mechanism for moving the target or the cylindrical body in a height direction, in addition to a driving mechanism for rotating and horizontally moving the target or the cylindrical body. 2. The sputtering apparatus for a curved substrate according to claim 1. 前記ターゲット又は前記筒状体の回転駆動機構は、前記曲面基板の周方向の両端部付近まで前記ターゲット又は前記筒状体を往復運動させる回動機構に構成されていることを特徴とする請求項1〜3のいずれかに記載の曲面基板のスパッタ装置。The rotating mechanism for rotating the target or the cylindrical body is configured as a rotating mechanism that reciprocates the target or the cylindrical body to near both ends in the circumferential direction of the curved substrate. 4. The apparatus for sputtering a curved substrate according to any one of 1 to 3 above. 真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせながら対向して配置される複数の小型ターゲットと、前記筒状体又は前記小型ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記小型ターゲットを水平移動させることにより、前記曲面基板の表面と前記小型ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしたことを特徴とする曲面基板のスパッタ装置。A vacuum container, a tubular body provided in the vacuum container and holding a curved substrate, and a plurality of small targets provided in the vacuum container and arranged to face each other while matching the curvature of the curved substrate, A drive mechanism for horizontally moving the cylindrical body or the small target, and horizontally moving the cylindrical body or the small target with the drive mechanism, so that a gap between the surface of the curved substrate and the small target is provided. Characterized in that a thin film is formed on the surface of the curved substrate while keeping a constant distance. 真空容器と、該真空容器内に設けられ、曲面基板を保持する筒状体と、前記真空容器内に設けられ、前記曲面基板の曲率に合わせた曲面形状に形成されて対向配置されるターゲットと、前記筒状体又は前記ターゲットを水平移動させる駆動機構とを備え、該駆動機構にて前記筒状体又は前記ターゲットを水平移動させることにより、前記曲面基板の表面と前記ターゲットとの間の距離を常に一定にした状態で、前記曲面基板の表面に薄膜を形成するようにしたことを特徴とする曲面基板のスパッタ装置。A vacuum vessel, a tubular body provided in the vacuum vessel and holding a curved substrate, and a target provided in the vacuum vessel and formed in a curved shape corresponding to the curvature of the curved substrate and opposed to each other; A drive mechanism for horizontally moving the tubular body or the target, and horizontally moving the tubular body or the target by the drive mechanism, thereby providing a distance between the surface of the curved substrate and the target. Characterized in that a thin film is formed on the surface of the curved substrate while maintaining a constant value. 真空容器内にターゲットと曲面基板とを対向して配置し、前記ターゲット又は前記曲面基板を成膜ピッチの10〜50%にわたりオーバラップさせながら移動させることにより、前記曲面基板の表面に薄膜を形成することを特徴とする曲面基板のスパッタ法。A thin film is formed on the surface of the curved substrate by disposing the target and the curved substrate in a vacuum vessel so as to face each other, and moving the target or the curved substrate while overlapping them over 10 to 50% of the film forming pitch. A sputtering method for a curved substrate. 前記薄膜の2層目以後は、前層のオーバラップ部分の中心を中心にして、前記曲面基板の表面に薄膜を積層することを特徴とする請求項7に記載の曲面基板のスパッタ法。8. The method according to claim 7, wherein a thin film is laminated on the surface of the curved substrate around the center of the overlap portion of the previous layer after the second layer of the thin film.
JP2002247891A 2002-08-28 2002-08-28 Sputtering system and sputtering method for curved surface substrate Withdrawn JP2004084022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247891A JP2004084022A (en) 2002-08-28 2002-08-28 Sputtering system and sputtering method for curved surface substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247891A JP2004084022A (en) 2002-08-28 2002-08-28 Sputtering system and sputtering method for curved surface substrate

Publications (1)

Publication Number Publication Date
JP2004084022A true JP2004084022A (en) 2004-03-18

Family

ID=32055403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247891A Withdrawn JP2004084022A (en) 2002-08-28 2002-08-28 Sputtering system and sputtering method for curved surface substrate

Country Status (1)

Country Link
JP (1) JP2004084022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359944A (en) * 2018-02-05 2018-08-03 信利光电股份有限公司 A kind of coating apparatus, film plating process and the readable storage medium storing program for executing of curved surface cover board
CN114026262A (en) * 2019-07-14 2022-02-08 梭莱先进镀膜工业公司 Motion system for sputter coating of non-flat substrates
US20220127715A1 (en) * 2020-10-23 2022-04-28 Interface Technology (Chengdu) Co., Ltd. Sputtering system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359944A (en) * 2018-02-05 2018-08-03 信利光电股份有限公司 A kind of coating apparatus, film plating process and the readable storage medium storing program for executing of curved surface cover board
CN114026262A (en) * 2019-07-14 2022-02-08 梭莱先进镀膜工业公司 Motion system for sputter coating of non-flat substrates
US20220127715A1 (en) * 2020-10-23 2022-04-28 Interface Technology (Chengdu) Co., Ltd. Sputtering system
US11827974B2 (en) * 2020-10-23 2023-11-28 Interface Technology (Chengdu) Co., Ltd. Sputtering system

Similar Documents

Publication Publication Date Title
CN100513633C (en) Coating device with rotatable magnetrons covering large area
CN106488996B (en) Sputtering unit with moving-target
JP2005213616A (en) Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel
JPWO2009093598A1 (en) Sputter deposition method and sputter deposition apparatus
JP2004169172A (en) Magnetron sputtering system, and magnetron sputtering method
JP4321785B2 (en) Film forming apparatus and film forming method
TWI390063B (en) Sputtering device
CN103887130B (en) Magnetron and apply the magnetron sputtering apparatus of this magnetron
JP2012102384A (en) Magnetron sputtering apparatus
JP4213777B2 (en) Sputtering apparatus and method
JP2004084022A (en) Sputtering system and sputtering method for curved surface substrate
JP7066841B2 (en) Sputtering method, sputtering equipment
KR101950857B1 (en) Sputter deposition source, sputtering apparatus and method of operating thereof
TWI652365B (en) Method of coating a substrate and coating apparatus for coating a substrate
WO2015072046A1 (en) Sputtering apparatus
JPH1143766A (en) Formation of thin film and device therefor
TWI481734B (en) A sputtering film forming method for a workpiece having a three-dimensional shape, and a device for use therefor
JP4246546B2 (en) Sputtering source, sputtering apparatus, and sputtering method
JP5002532B2 (en) Sputtering method and sputtering apparatus
JPH1046334A (en) Sputter coating forming device
JP2008088509A (en) Film deposition apparatus and film deposition method using the same
JP2008013817A (en) Method for producing thin film through sputtering technique, and production apparatus therefor
JP2009074181A (en) Method of producing thin film, and thin film production system
CN102994966B (en) Scanning mechanism, magnetic control source and magnetron sputtering device
JPH09230350A (en) Alignment layer treatment of alignment layer and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101