JP2004077981A - Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device - Google Patents

Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device Download PDF

Info

Publication number
JP2004077981A
JP2004077981A JP2002240563A JP2002240563A JP2004077981A JP 2004077981 A JP2004077981 A JP 2004077981A JP 2002240563 A JP2002240563 A JP 2002240563A JP 2002240563 A JP2002240563 A JP 2002240563A JP 2004077981 A JP2004077981 A JP 2004077981A
Authority
JP
Japan
Prior art keywords
optical element
micro
height
small optical
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002240563A
Other languages
Japanese (ja)
Inventor
Masaki Omori
大森 正樹
Senichi Hayashi
林 専一
Kazunori Aoki
青木 一乘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002240563A priority Critical patent/JP2004077981A/en
Publication of JP2004077981A publication Critical patent/JP2004077981A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a small optical element which can suppress a defective shape caused by partial stripping from a molding die and can attain higher accuracy and to provide a small optical element, a display element having the small optical element, a display device, an image pickup element and an image pickup device. <P>SOLUTION: In the manufacturing method of small optical element by using the molding die, uniting an optical energy curable resin onto a glass substrate and forming a small optical element or the small optical element, when the height of a small convex part formed by the resin is defined as H1 and the height of a flat part formed by the resin is defined as H2, the small optical element is formed so as to satisfy the relation of H2 > H1/5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は微小光学素子の製造方法、微小光学素子、及び該微小光学素子を有する表示素子、表示装置、撮像素子、撮像装置に関し、特に表面に微細な形状(凹凸)を有する複合光学素子、例えばマイクロレンズやマイクロプリズム等に関するものである。
【0002】
【従来の技術】
光学素子の製造方法にはガラスの研削、研摩や型を用いた精密成形、熱可塑性樹脂の射出成形やプレス成形等があり、機能やコスト、要求精度等により使い分けられている。例えば、カメラ等に使用される結像系のレンズには球面レンズとしては温度、湿度の環境変動に関して性能劣化が少なく、経済的にも有利なガラスの研削、研摩により製造され、非球面レンズに関しては、型を用いたガラスの精密成形により製造される。カメラでもファインダーに使用されるレンズは優れた結像性能を要求されない為、コスト面から樹脂の射出成形により製造される。
【0003】
また、径が30mm以上の非球面レンズや表面に微細な凹凸形状を有する光学素子では、ガラス基材の上に光エネルギー硬化型樹脂の薄層を成形し、硬化させることにより所要の表面形状を形成する方法が用いられる。大きな非球面レンズはガラスの精密成形では形状精度が悪くなり、精度を確保しようとすると成形時間が長くなりコスト高になる。微細な凹凸形状を有する光学素子もガラスでは離型時に凹凸部が破壊し製造できず、樹脂による製造が必須となるが素子全体が樹脂では、環境変動に対する性能劣化が大きく樹脂部を薄層にする上記の方法によりその影響を小さくする。
【0004】
この光エネルギー硬化型樹脂の成形においては、樹脂の硬化に伴う体積収縮が大きいものでは7〜9%に及ぶ為、この硬化収縮が原因で形状精度悪化や離型性悪化等様々な悪影響を及ぼす。このため、特開平2000−2803号公報にはマイクロレンズの成形に際して、球体部の最も厚い部分の厚みと、残余部(平坦部)との関係を、所定範囲に設定することでガラス基板の反りを小さくする方法が提示されている。
【0005】
【発明が解決しようとする課題】
ところで、従来このような光エネルギー硬化型樹脂による微小光学素子の成形は、一般的には上記した特開平2000−2803号公報にも記載されているように、図8に示すような凹部の形成されたスタンパー(成形型)を用い、該成形型に光エネルギー硬化型樹脂材料をセットし、該樹脂材料の上からベースガラスを押し付け、光エネルギーを照射して該樹脂材料を硬化させた後、該成形型を剥離する。
【0006】
しかしながら、このような成形型で図1に示すようなマイクロレンズを光エネルギー硬化型樹脂で成形する場合、球体部の高さH1に対して、平坦部の高さH2が小さいと硬化収縮時、球体部の一部が成形型から剥離してしまい、図2に示すようなクレーター状の形状欠陥が発生し、これにより光学性能が著しく低下する。特に結像系のレンズに用いる場合は致命的な欠陥となる。
【0007】
上記特開平2000−2803号公報には、図9に示すように樹脂層の厚みにおいて、球体部の最も厚い部分の厚みをt1、残余部(平坦部)をt2とした場合、5≦t1≦30μm、t2≦6μmとすることにより、ガラス基板の反りを小さくすることについては言及されているが、上記したクレーター状の形状欠陥の発生を防ぐため、球体部の高さH1に対して平坦部の高さH2を具体的にどのように定めればよいか等については、解明されていない。
【0008】
そこで、本発明は、上記課題を解決し、成形型からの部分的な剥離による形状不良を抑制することができ、高精度化を図ることが可能となる微小光学素子の製造方法、微小光学素子、及び該微小光学素子を有する表示素子、表示装置、撮像素子、撮像装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、つぎの(1)〜(10)のように構成した微小光学素子の製造方法、微小光学素子、及び該微小光学素子を有する表示素子、表示装置、撮像素子、撮像装置を提供するものである。
(1)成形型を用いて光エネルギー硬化型樹脂をガラス基板上に一体化して微小光学素子を形成する微小光学素子の製造方法において、
前記樹脂により形成される微小凸部の高さをH1、該樹脂により形成される平坦部の高さをH2とした時、該微小凸部の高さH1と該平坦部の高さH2が、つぎの式を満足するように微小光学素子を形成することを特徴とする微小光学素子の製造方法。
H2>H1/5
(2)前記微小凸部の高さH1が、つぎの式を満足するように微小光学素子を形成することを特徴とする上記(1)に記載の微小光学素子の製造方法。
50μm≦H1≦300μm
(3)前記微小光学素子が、複合光学素子であることを特徴とする上記(1)または上記(2)に記載の微小光学素子の製造方法。
(4)光エネルギー硬化型樹脂を用い成形型により形成された微小光学素子において、
前記樹脂により形成される微小凸部の高さをH1、前記樹脂により形成される平坦部の高さをH2とした時、該微小凸部の高さH1と該平坦部の高さH2が、つぎの式を満たしていることを特徴とする微小光学素子。
H2>H1/5
(5)前記微小凸部の高さH1が、つぎの式を満たしていることを特徴とする上記(4)に記載の微小光学素子。
50μm≦H1≦300μm
(6)前記微小光学素子が、複合光学素子であることを特徴とする上記(4)または上記(5)に記載の微小光学素子。
(7)上記(1)〜(3)のいずれかに記載の微小光学素子の製造方法によって製造された微小光学素子、または上記(4)〜(6)のいずれかに記載の微小光学素子を有することを特徴とする表示素子。
(8)上記(7)に記載の表示素子を有することを特徴とする表示装置。
(9)上記(1)〜(3)のいずれかに記載の微小光学素子の製造方法によって製造された微小光学素子、または上記(4)〜(6)のいずれかに記載の微小光学素子を有することを特徴とする撮像素子。
(10)上記(9)に記載の撮像素子を有することを特徴とする撮像装置。
【0010】
【発明の実施の形態】
上記構成を適用して、例えば微小凸部の高さ(マイクロレンズでは球体部の高さ)に対して、平坦部の高さを微少凸部の高さの1/5倍より大きくにすることにより、微小凸部の硬化収縮に伴う応力を平坦部に逃がすことが可能となり、図2に示すような型からの部分的な剥離による形状不良を防ぐことができる。特に微小凸部の高さが50μmより大きくなるとこの効果は大きくなる。しかしながら、この微小凸部の高さが所定の大きさ以上になると平坦部の厚さも大きくなるため、その効果は小さくなる。効果が大きいのは微小凸部の高さが50μmから300μmの範囲であることが、本発明者らが種々の検討をした結果、明らかになった。
このようなことから、光エネルギー硬化型樹脂をガラス基板上に型を用いて成形、硬化し、一体化した微小光学素子においては、樹脂微小凸部の高さをH1、平坦部の高さH2とした時、H2>H1/5にすることにより樹脂硬化収縮時の形状不良を防止することが可能となる。
また、その際、微小凸部の高さが50μmから300μmの範囲にすることにより形状不良防止の効果をより大きくすることが可能となる。
【0011】
【実施例】
以下に、本発明の実施例について説明する。
[実施例1]
図1は、本発明の実施例1におけるマイクロレンズの構成示す概略図である。図1において、1は成形された光エネルギー硬化型樹脂、1aは光学機能部となる球体部、1bは平坦部、2は平板状のガラス基板である。
本実施例では、前述した一般的な光エネルギー硬化型樹脂による微小光学素子の成形方法を用い、光学機能部である1aの球体部の高さH1が170μm、平坦部の高さH2が50μmのマイクロレンズを形成した。これによると光学機能部には欠陥もなく、形状精度も良好であった。
【0012】
(比較例1)
比較例1においては、実施例1と同様の微小光学素子の成形方法を用い、実施例1に対して平坦部の高さを30μmにして、マイクロレンズを成形した。これによると、図2に示すように球体部の一部3cがクレーター状に変形し、所要の光学性能が得られなかった。
【0013】
[実施例2]
図3は、本発明の実施例2におけるマイクロプリスムの構成を示す概略図である。
図3において、5は成形された光エネルギー硬化型樹脂、5aは光学機能部となるプリズム部、5bは平坦部、6は平板状のガラス基板である。
本実施例では、前述した一般的な光エネルギー硬化型樹脂による微小光学素子の成形方法を用い、光学機能部である5aのプリズム部の高さH1が250μm、平坦部の高さH2が60μmのマイクロプリスムを形成した。これによると光学機能部には欠陥もなく、形状精度も良好であった。
【0014】
(比較例2)
比較例2においては、実施例2と同様の微小光学素子の成形方法を用い、実施例2に対して平坦部の高さを50μmにして、マイクロプリスムを成形した。これによると、図4に示すようにプリズム部の一部7cがクレーター状に変形し、所要の光学性能が得られなかった。
【0015】
[実施例3]
図5は、本発明の実施例3における微小光学素子の構成を示す概略図である。図5において、9は成形された光エネルギー硬化型樹脂、9aは光学機能部となる格子部、9bは平坦部、10は平板状のガラス基板である。
本実施例では、前述した一般的な光エネルギー硬化型樹脂による微小光学素子の成形方法を用い、光学機能部である9aの格子部の高さH1が20μm、平坦部の高さH2が7μmの微小光学素子を形成した。これによると光学機能部には欠陥もなく、形状精度も良好であった。
【0016】
(比較例3)
比較例3においては、実施例3と同様の微小光学素子の成形方法を用い、実施例3に対して平坦部の高さを4μmにして微小光学素子を成形した。これによると図6に示すように格子部側面の一部11cがクレーター状に変形し、所要の光学性能が得られなかった。
【0017】
[実施例4]
図7は、本発明の実施例4における微小光学素子の構成を示す概略図である。図7において、13は成形された光エネルギー硬化型樹脂、13aは光学機能部となる球体部、13bは平坦部、14は球状のガラス基板である。
本実施例では、前述した一般的な光エネルギー硬化型樹脂による微小光学素子の成形方法を用い、光学機能部である13aの球体部の高さH1が200μm、平坦部の高さH2が50μmの微小光学素子を形成した。これによると光学機能部には欠陥もなく、形状精度も良好であった。
【0018】
(比較例4)
比較例4においては、実施例4と同様の微小光学素子の成形方法を用い、実施例4に対して平坦部の高さを40μmにして微小光学素子成形した。これによると球体部の一部がクレーター状に変形しており、所要の光学性能が得られなかった。
【0019】
以上の各実施例及び各比較例の結果から明らかなように、平坦部の高さを球体部の高さの1/5倍より大きくすることにより、硬化収縮時の離型不良による欠陥を防ぐことができる。また、このような微小光学素子を用いることにより光学性能の良好な表示素子、表示装置、撮像素子、撮像装置を構成することができる。
【0020】
【発明の効果】
本発明によれば、成形型からの部分的な剥離による形状不良を抑制することができ、高精度化を図ることが可能となる微小光学素子の製造方法、微小光学素子、及び該微小光学素子を有する表示素子、表示装置、撮像素子、撮像装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるマイクロレンズの構成を示す概略図。
【図2】比較例1における球体部の不良状態を説明するための概略図。
【図3】本発明の実施例2におけるマイクロプリズムの構成を示す概略図。
【図4】比較例2における球体部の不良状態を説明するための概略図。
【図5】本発明の実施例3における微小光学素子の構成を示す概略図。
【図6】比較例3における球体部の不良状態を説明するための概略図。
【図7】本発明の実施例4における微小光学素子の構成を示す概略図。
【図8】従来の光エネルギー硬化型樹脂による微小光学素子の成形方法を説明するための概略図。
【図9】マイクロレンズの成形に際して、球体部の最も厚い部分の厚みと、残余部(平坦部)との関係を説明するための概略図。
【符号の説明】
1、3、5、7、9、
11、13:光エネルギー硬化型樹脂
1a、13a:球体部
1b、5b、9b、13b:平坦部
2、4、6、8、
10、12、14:ガラス基板
5a:プリズム部
9a:格子部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a micro-optical element, a micro-optical element, and a display element, a display device, an imaging device, and an imaging device having the micro-optical element, and particularly to a composite optical element having a fine shape (unevenness) on its surface, for example, It relates to a micro lens, a micro prism, and the like.
[0002]
[Prior art]
Methods of manufacturing an optical element include glass grinding, polishing, precision molding using a mold, injection molding and press molding of a thermoplastic resin, and the like, which is used depending on the function, cost, required accuracy, and the like. For example, as a spherical lens, an imaging lens used for a camera or the like is manufactured by grinding and polishing glass, which has little performance degradation with respect to environmental fluctuations of temperature and humidity, and is economically advantageous. Is manufactured by precision molding of glass using a mold. Since a lens used for a finder is not required to have excellent imaging performance even in a camera, it is manufactured by injection molding of a resin from the viewpoint of cost.
[0003]
In addition, in the case of an aspherical lens having a diameter of 30 mm or more or an optical element having a fine irregular shape on the surface, a thin layer of a light energy-curable resin is formed on a glass substrate and cured to obtain a desired surface shape. A forming method is used. Large aspherical lenses have poor shape precision in precision molding of glass, and if the precision is to be ensured, the molding time is long and the cost is high. Optical elements with fine irregularities can not be manufactured because glass will break the irregularities during mold release and cannot be manufactured, and manufacturing with resin is indispensable. The above method reduces the influence.
[0004]
In the molding of the light energy curable resin, since the volume shrinkage accompanying the curing of the resin is as large as 7 to 9%, various adverse effects such as the deterioration of the shape accuracy and the releasability due to the curing shrinkage are caused. . For this reason, Japanese Unexamined Patent Publication No. 2000-2803 discloses that, when molding a microlens, the relationship between the thickness of the thickest portion of the spherical portion and the remaining portion (flat portion) is set within a predetermined range to thereby warp the glass substrate. A method has been proposed for reducing the value of.
[0005]
[Problems to be solved by the invention]
By the way, conventionally, such a molding of a micro optical element using a light energy curable resin is generally performed by forming a concave portion as shown in FIG. 8 as described in JP-A-2000-2803 described above. Using a stamper (molding tool), a light energy-curable resin material is set on the molding tool, a base glass is pressed from above the resin material, and light energy is applied to cure the resin material. The mold is released.
[0006]
However, when a microlens such as that shown in FIG. 1 is molded with a light energy-curable resin using such a mold, if the height H2 of the flat portion is smaller than the height H1 of the spherical portion, the curing shrinkage occurs A part of the spherical portion is peeled off from the mold, and a crater-like shape defect as shown in FIG. 2 is generated, thereby significantly reducing the optical performance. In particular, when used for an imaging lens, it is a fatal defect.
[0007]
In Japanese Patent Application Laid-Open No. 2000-2803, as shown in FIG. 9, when the thickness of the spherical portion is t1 and the remaining portion (flat portion) is t2 in the thickness of the resin layer, 5 ≦ t1 ≦ It is mentioned that the warpage of the glass substrate is reduced by setting the thickness to 30 μm and t2 ≦ 6 μm. However, in order to prevent the occurrence of the crater-like shape defect, a flat portion is formed with respect to the height H1 of the spherical portion. It is not clarified how to specifically determine the height H2.
[0008]
Therefore, the present invention solves the above-mentioned problems, suppresses a shape defect due to partial peeling from a mold, and enables a method of manufacturing a micro optical element capable of achieving high precision. It is another object of the present invention to provide a display device, a display device, an imaging device, and an imaging device having the micro optical element.
[0009]
[Means for Solving the Problems]
The present invention provides a method for manufacturing a micro-optical element configured as described in the following (1) to (10), a micro-optical element, and a display element, a display device, an imaging device, and an imaging device having the micro-optical element. Things.
(1) A method for manufacturing a micro optical element in which a light energy curable resin is integrated on a glass substrate using a molding die to form a micro optical element,
When the height of the minute protrusions formed of the resin is H1, and the height of the flat portion formed of the resin is H2, the height H1 of the minute protrusions and the height H2 of the flat portion are: A method for manufacturing a micro optical element, comprising forming a micro optical element so as to satisfy the following expression.
H2> H1 / 5
(2) The method for manufacturing a micro optical element according to the above (1), wherein the micro optical element is formed such that the height H1 of the micro convex portion satisfies the following expression.
50 μm ≦ H1 ≦ 300 μm
(3) The method for producing a micro optical element according to the above (1) or (2), wherein the micro optical element is a composite optical element.
(4) In a micro optical element formed by a molding die using a light energy curable resin,
Assuming that the height of the minute protrusion formed of the resin is H1 and the height of the flat portion formed of the resin is H2, the height H1 of the minute protrusion and the height H2 of the flat portion are: A micro-optical element characterized by satisfying the following expression:
H2> H1 / 5
(5) The micro optical element according to the above (4), wherein the height H1 of the micro convex portion satisfies the following expression.
50 μm ≦ H1 ≦ 300 μm
(6) The micro optical element according to the above (4) or (5), wherein the micro optical element is a composite optical element.
(7) A micro-optical element manufactured by the method for manufacturing a micro-optical element according to any one of the above (1) to (3), or the micro optical element according to any one of the above (4) to (6). A display element, comprising:
(8) A display device comprising the display element according to (7).
(9) The micro optical element manufactured by the method for manufacturing a micro optical element according to any one of the above (1) to (3) or the micro optical element according to any one of the above (4) to (6) An imaging device, comprising:
(10) An imaging device comprising the imaging device according to (9).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Applying the above configuration, for example, making the height of the flat portion larger than 1 / times the height of the minute convex portion with respect to the height of the minute convex portion (the height of the spherical portion in the case of the microlens). Thereby, it is possible to release the stress accompanying the curing shrinkage of the minute convex portion to the flat portion, and it is possible to prevent a shape defect due to partial peeling from the mold as shown in FIG. In particular, when the height of the minute projections is larger than 50 μm, this effect is increased. However, when the height of the minute projections is equal to or larger than a predetermined size, the thickness of the flat portion also increases, and the effect is reduced. As a result of various studies by the present inventors, it has been clarified that the effect is large when the height of the minute projections is in the range of 50 μm to 300 μm.
For this reason, in a micro optical element in which a light energy curable resin is molded and cured on a glass substrate using a mold, the height of the resin micro convex portion is H1, and the height of the flat portion is H2. By setting H2> H1 / 5, it is possible to prevent a shape defect at the time of resin curing shrinkage.
In this case, by setting the height of the minute projections in the range of 50 μm to 300 μm, it is possible to further enhance the effect of preventing shape defects.
[0011]
【Example】
Hereinafter, examples of the present invention will be described.
[Example 1]
FIG. 1 is a schematic diagram illustrating a configuration of a microlens according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a molded light energy curable resin, 1a denotes a spherical portion serving as an optical function portion, 1b denotes a flat portion, and 2 denotes a flat glass substrate.
In the present embodiment, using the above-described method for molding a micro optical element using a general light energy curable resin, the height H1 of the spherical portion of the optical function portion 1a is 170 μm, and the height H2 of the flat portion is 50 μm. A micro lens was formed. According to this, there was no defect in the optical function part and the shape accuracy was good.
[0012]
(Comparative Example 1)
In Comparative Example 1, a microlens was formed using the same method of forming a micro-optical element as in Example 1, except that the height of the flat portion was set to 30 μm with respect to Example 1. According to this, as shown in FIG. 2, a part 3c of the spherical portion was deformed into a crater shape, and required optical performance was not obtained.
[0013]
[Example 2]
FIG. 3 is a schematic diagram illustrating a configuration of a microprism according to the second embodiment of the present invention.
In FIG. 3, reference numeral 5 denotes a molded light energy curable resin, 5a denotes a prism portion serving as an optical function portion, 5b denotes a flat portion, and 6 denotes a flat glass substrate.
In the present embodiment, using the above-described method for molding a micro optical element using a general light energy curable resin, the height H1 of the prism portion of the optical function portion 5a is 250 μm, and the height H2 of the flat portion is 60 μm. A microprism was formed. According to this, there was no defect in the optical function part and the shape accuracy was good.
[0014]
(Comparative Example 2)
In Comparative Example 2, a microprism was formed using the same method of forming a micro optical element as in Example 2, except that the height of the flat portion was set to 50 μm with respect to Example 2. According to this, as shown in FIG. 4, a part 7c of the prism portion was deformed in a crater shape, and required optical performance was not obtained.
[0015]
[Example 3]
FIG. 5 is a schematic diagram illustrating a configuration of a micro optical element according to Embodiment 3 of the present invention. In FIG. 5, reference numeral 9 denotes a molded light energy curable resin, 9a denotes a lattice portion serving as an optical function portion, 9b denotes a flat portion, and 10 denotes a flat glass substrate.
In the present embodiment, the method of molding a micro optical element using the above-mentioned general light energy curable resin is used, and the height H1 of the grating portion 9a, which is the optical function portion, is 20 μm, and the height H2 of the flat portion is 7 μm. A micro optical element was formed. According to this, there was no defect in the optical function part and the shape accuracy was good.
[0016]
(Comparative Example 3)
In Comparative Example 3, a micro-optical element was formed using the same method for forming a micro-optical element as in Example 3, except that the height of the flat portion was 4 μm. According to this, as shown in FIG. 6, a part 11c of the side surface of the grating portion was deformed into a crater shape, and required optical performance was not obtained.
[0017]
[Example 4]
FIG. 7 is a schematic diagram illustrating a configuration of a micro optical element according to Embodiment 4 of the present invention. In FIG. 7, reference numeral 13 denotes a molded light energy curable resin, 13a denotes a spherical portion serving as an optical function portion, 13b denotes a flat portion, and 14 denotes a spherical glass substrate.
In the present embodiment, using the above-described method for molding a micro optical element using a general light energy curable resin, the height H1 of the spherical portion of the optical function portion 13a is 200 μm, and the height H2 of the flat portion is 50 μm. A micro optical element was formed. According to this, there was no defect in the optical function part and the shape accuracy was good.
[0018]
(Comparative Example 4)
In Comparative Example 4, a micro-optical element was molded using the same method for molding a micro-optical element as in Example 4, except that the height of the flat portion was set to 40 μm with respect to Example 4. According to this, a part of the spherical portion was deformed in a crater shape, and required optical performance could not be obtained.
[0019]
As is clear from the results of the above Examples and Comparative Examples, by setting the height of the flat portion to be larger than 1 / times the height of the spherical portion, defects due to mold release failure during curing shrinkage are prevented. be able to. In addition, by using such a minute optical element, a display element, a display device, an imaging device, and an imaging device having excellent optical performance can be configured.
[0020]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the micro optical element which can suppress the shape defect by partial peeling from a shaping | molding die, and can attain high precision, a micro optical element, and the said micro optical element , A display device, an image pickup device, and an image pickup device having the same.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of a microlens according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram for explaining a defective state of a sphere in Comparative Example 1.
FIG. 3 is a schematic diagram illustrating a configuration of a microprism according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram for explaining a defective state of a sphere in Comparative Example 2.
FIG. 5 is a schematic diagram illustrating a configuration of a micro optical element according to a third embodiment of the present invention.
FIG. 6 is a schematic diagram for explaining a defective state of a sphere in Comparative Example 3.
FIG. 7 is a schematic diagram illustrating a configuration of a micro optical element according to a fourth embodiment of the present invention.
FIG. 8 is a schematic diagram for explaining a conventional method for forming a micro optical element using a light energy curable resin.
FIG. 9 is a schematic diagram for explaining the relationship between the thickness of the thickest part of the spherical part and the remaining part (flat part) when forming the microlens.
[Explanation of symbols]
1, 3, 5, 7, 9,
11, 13: light energy-curable resin 1a, 13a: spherical portion 1b, 5b, 9b, 13b: flat portion 2, 4, 6, 8,
10, 12, 14: glass substrate 5a: prism portion 9a: grating portion

Claims (10)

成形型を用いて光エネルギー硬化型樹脂をガラス基板上に一体化して微小光学素子を形成する微小光学素子の製造方法において、
前記樹脂により形成される微小凸部の高さをH1、該樹脂により形成される平坦部の高さをH2とした時、該微小凸部の高さH1と該平坦部の高さH2が、つぎの式を満足するように微小光学素子を形成することを特徴とする微小光学素子の製造方法。
H2>H1/5
In a method for manufacturing a micro-optical element for forming a micro-optical element by integrating a light energy curable resin on a glass substrate using a molding die,
When the height of the minute protrusions formed of the resin is H1, and the height of the flat portion formed of the resin is H2, the height H1 of the minute protrusions and the height H2 of the flat portion are: A method for manufacturing a micro optical element, comprising forming a micro optical element so as to satisfy the following expression.
H2> H1 / 5
前記微小凸部の高さH1が、つぎの式を満足するように微小光学素子を形成することを特徴とする請求項1に記載の微小光学素子の製造方法。
50μm≦H1≦300μm
The method for manufacturing a micro optical element according to claim 1, wherein the micro optical element is formed such that the height H1 of the micro convex portion satisfies the following expression.
50 μm ≦ H1 ≦ 300 μm
前記微小光学素子が、複合光学素子であることを特徴とする請求項1または請求項2に記載の微小光学素子の製造方法。The method for manufacturing a micro optical element according to claim 1, wherein the micro optical element is a composite optical element. 光エネルギー硬化型樹脂を用い成形型により形成された微小光学素子において、
前記樹脂により形成される微小凸部の高さをH1、前記樹脂により形成される平坦部の高さをH2とした時、該微小凸部の高さH1と該平坦部の高さH2が、つぎの式を満たしていることを特徴とする微小光学素子。
H2>H1/5
In a micro optical element formed by a mold using a light energy curing resin,
Assuming that the height of the minute protrusion formed of the resin is H1 and the height of the flat portion formed of the resin is H2, the height H1 of the minute protrusion and the height H2 of the flat portion are: A micro-optical element characterized by satisfying the following expression:
H2> H1 / 5
前記微小凸部の高さH1が、つぎの式を満たしていることを特徴とする請求項4に記載の微小光学素子。
50μm≦H1≦300μm
The micro optical element according to claim 4, wherein the height H1 of the micro convex portion satisfies the following expression.
50 μm ≦ H1 ≦ 300 μm
前記微小光学素子が、複合光学素子であることを特徴とする請求項4または請求項5に記載の微小光学素子。The micro optical element according to claim 4, wherein the micro optical element is a composite optical element. 請求項1〜請求項3のいずれか1項に記載の微小光学素子の製造方法によって製造された微小光学素子、または請求項4〜請求項6のいずれか1項に記載の微小光学素子を有することを特徴とする表示素子。A micro-optical element manufactured by the method for manufacturing a micro-optical element according to any one of claims 1 to 3, or a micro-optical element according to any one of claims 4 to 6. A display element characterized by the above-mentioned. 請求項7に記載の表示素子を有することを特徴とする表示装置。A display device comprising the display element according to claim 7. 請求項1〜請求項3のいずれか1項に記載の微小光学素子の製造方法によって製造された微小光学素子、または請求項4〜請求項6のいずれか1項に記載の微小光学素子を有することを特徴とする撮像素子。A micro-optical element manufactured by the method for manufacturing a micro-optical element according to any one of claims 1 to 3, or a micro-optical element according to any one of claims 4 to 6. An imaging device characterized by the above-mentioned. 請求項9に記載の撮像素子を有することを特徴とする撮像装置。An imaging apparatus comprising the imaging device according to claim 9.
JP2002240563A 2002-08-21 2002-08-21 Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device Pending JP2004077981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240563A JP2004077981A (en) 2002-08-21 2002-08-21 Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240563A JP2004077981A (en) 2002-08-21 2002-08-21 Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device

Publications (1)

Publication Number Publication Date
JP2004077981A true JP2004077981A (en) 2004-03-11

Family

ID=32023307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240563A Pending JP2004077981A (en) 2002-08-21 2002-08-21 Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device

Country Status (1)

Country Link
JP (1) JP2004077981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698652A1 (en) * 2011-04-12 2014-02-19 Matsunami Glass Ind., Ltd. Lens array sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698652A1 (en) * 2011-04-12 2014-02-19 Matsunami Glass Ind., Ltd. Lens array sheet
JP5539545B2 (en) * 2011-04-12 2014-07-02 松浪硝子工業株式会社 Lens array sheet manufacturing method
JPWO2012140853A1 (en) * 2011-04-12 2014-07-28 松浪硝子工業株式会社 Lens array sheet manufacturing method
EP2698652A4 (en) * 2011-04-12 2014-10-08 Matsunami Glass Ind Ltd Lens array sheet
TWI514009B (en) * 2011-04-12 2015-12-21 Matsunami Glass Ind Ltd Lens array
US9784890B2 (en) 2011-04-12 2017-10-10 Matsunami Glass Ind. Ltd. Lens array sheet having glass base and nanoparticle-containing resin lens array layer without a resin planar layer therebetween

Similar Documents

Publication Publication Date Title
JP4923704B2 (en) Optical element molding apparatus and molding method
KR100638826B1 (en) Method of manufacturing a high sag lens
US20080055736A1 (en) Optical element and production device for producing same
US7227703B2 (en) Aspheric lens and method for making same
US7796337B2 (en) Optical microstructure plate and fabrication mold thereof
JP4781001B2 (en) Compound lens manufacturing method
JP4051994B2 (en) Compound lens molding method and compound lens
US7736550B2 (en) Method of manufacturing an optical device by means of a replication method
JPH08187793A (en) Plastic optical member and production thereof
JPH06254868A (en) Manufacture of composite precisely molded product
JP2004077981A (en) Method for manufacturing small optical element, small optical element, display element having small optical element, display device, image pickup element and image pickup device
EP1180428B1 (en) Method for Manufacturing a Plastic Optical Component
US20040240084A1 (en) Optical lens
JP2004177574A (en) Complex optical device by optical energy curing resin
JP2003222708A (en) Optical element and its manufacturing method
EP3640689A1 (en) Toric lens, optical element, and image forming apparatus
KR20120068178A (en) Mold for forming lens and lens forming method
US20050018315A1 (en) Method of manufacturing hybrid aspherical lens
WO2004097488A1 (en) Method of manufacturing hybrid aspherical lens
JP2003222706A (en) Optical element and its manufacturing method
CN111002608A (en) Device and method for producing a lens, fresnel lens
JP2003266450A (en) Optical element and manufacturing method therefor
JP2000241608A (en) Resin bonded optical element and manufacture therefor
JPH0552481B2 (en)
JP2005189603A (en) Polarizing photochromic lens and its manufacturing method