JP2004073942A - Steam heating equipment - Google Patents

Steam heating equipment Download PDF

Info

Publication number
JP2004073942A
JP2004073942A JP2002235303A JP2002235303A JP2004073942A JP 2004073942 A JP2004073942 A JP 2004073942A JP 2002235303 A JP2002235303 A JP 2002235303A JP 2002235303 A JP2002235303 A JP 2002235303A JP 2004073942 A JP2004073942 A JP 2004073942A
Authority
JP
Japan
Prior art keywords
pressure
negative pressure
valve
positive pressure
fluid outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235303A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
渡邉 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002235303A priority Critical patent/JP2004073942A/en
Publication of JP2004073942A publication Critical patent/JP2004073942A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steam heating equipment capable of reducing the operation frequency of a condensed water recovery device. <P>SOLUTION: The jacket part 25 of a reaction vessel 20, the condensed water recovery device 24 and a condensed water recovery pipe 29 are connected through a negative pressure/positive pressure changeover valve 22. The negative pressure/positive pressure changeover valve 22 has a fluid inlet 2, a negative pressure fluid outlet 4 and a positive pressure fluid outlet 5. Only when negative pressure condensed water flows in from the fluid inlet 2, condensed water is discharged to the condensed water recovery device 24 from the negative pressure fluid outlet 4. When a positive pressure fluid flows in from the fluid inlet 2, it is discharged to the condensed water recovery pipe 29 from the positive pressure fluid outlet 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧前後の蒸気圧力、すなわち、温度にすると100℃前後の蒸気で被加熱物を加熱する蒸気加熱装置に関し、特に、蒸気加熱装置で発生した復水を回収する復水回収装置の作動頻度を低減することができるものに関する。
【0002】
【従来の技術】
従来の蒸気加熱装置としては、例えば特開平7−328422号公報に示されているものが用いられてきた。これは、反応釜15のジャケット部16へ蒸気を供給する蒸気供給管17を接続し、この蒸気供給管17を分岐して復水回収装置20の高圧操作流体導入口38と接続し、ジャケット部16の下部に置換流体供給管18と復水回収装置20を接続したもので、ジャケット部16内の残存空気を、置換流体供給管18から流体を供給して置換することによって、速やかに排除することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来の蒸気加熱装置では、ジャケット部で蒸気の凝縮した復水の全てが復水回収装置へ流入するために、復水回収装置の作動頻度が多くなり、比較的短時間で復水回収装置が故障してしまう問題があった。
【0004】
復水回収装置は、内部に所定量の復水が溜まると作動することによって、復水を所定箇所へ回収するものであり、流入してくる復水量が多ければ多いほど頻繁に作動を繰り返す。
【0005】
従って本発明の課題は、復水回収装置の作動頻度を低減できる蒸気加熱装置を得ることである。
【0006】
【課題を解決するための手段】
上記の課題を解決するための手段は、熱交換器の入口側へ圧力調整弁を介して加熱用の蒸気供給管を接続し、熱交換器の出口側へ復水回収装置を接続したものにおいて、熱交換器と復水回収装置の間に切換手段を配置し、当該切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁として、上記負圧流体出口と復水回収装置を接続すると共に、上記正圧流体出口と復水回収管とを接続したものである。
【0007】
【発明の実施の形態】
熱交換器と復水回収装置の間に切換手段を配置して、この切換手段を負圧正圧切換弁としたことによって、流体入口から負圧流体が流入してきた場合のみ負圧流体出口から復水回収装置へ負圧流体としての復水が自動的に排出され、一方、流体入口から正圧流体が流入してくると正圧流体出口から復水回収管側へ正圧復水が自動的に排出され復水回収装置へ流入することはないために、復水回収装置へ流入する復水は負圧のものだけに限られて、その復水量は大幅に減少され、従って、復水回収装置の作動頻度も低減される。
【0008】
【実施例】
本実施例においては、熱交換器として反応釜20を用いた例を示す。図1において、反応釜20と、加熱用蒸気供給管21と、負圧正圧切換弁22と、復水回収装置24、及び、復水回収管29とで蒸気加熱装置を構成する。
【0009】
反応釜20のほぼ全周にジャケット部25を取り付けて、このジャケット部25へ蒸気供給管21を接続する。蒸気供給管21には供給する蒸気の圧力すなわち温度を任意に制御するための圧力調整弁26を取り付ける。反応釜20の内部に収容した図示しない被加熱物をジャケット部25へ供給する蒸気によって加熱するものである。
【0010】
ジャケット部25下端に連通管27を接続して負圧正圧切換弁22の流体入口2と連通し、負圧正圧切換弁22の負圧流体出口4と復水回収装置24の流入口30とを連通管28で連通し、更に正圧流体出口5に連通管31を介して復水回収管29と接続する。
【0011】
ジャケット部25の下方に置換流体供給管38を接続し、上方にジャケット部25から外部への流体の通過のみを許容する逆止弁39を取り付ける。置換流体供給管38を図示しない水などの液体源と接続して、ジャケット部25内の残留空気と置換することによって、残留空気をジャケット部25の外部へ排除することができるものである。
【0012】
負圧正圧切換弁22は図2に示すように、弁ケーシング1に流体入口2と弁室3と負圧流体出口4と正圧流体出口5を設けて、弁室3内に一体に形成した正圧弁体6と負圧弁体7とで構成する。
【0013】
流体入口2は連通路8によって弁室3と連通する。横長円筒状の弁室3内に断面略ロ字状の弁座部材9を変位しないように取り付ける。弁座部材9の左端部に円環状の負圧弁座10を、反対の右端部には同じく円環状の正圧弁座11を取り付ける。弁座部材9の中心部に、正圧弁体6と負圧弁体7を一体に連結する連結棒12を、左右方向摺動自在に配置する。弁座部材9の左右壁面に複数の貫通孔13,14を設ける。
【0014】
負圧弁座10に対向して円板状の負圧弁体7を、同じく、正圧弁座11に対向して円板状の正圧弁体6を、連結棒12を介して一体に形成する。弁室3内の負圧流体出口4側端部にはリブ状の負圧弁体7用着座部15,16を設ける。着座部15,16はリブ状であるために、その周囲に流体の通過できる図示しないスペースを有する。
【0015】
正圧弁体6の正圧流体出口5側に、弾性部材としての引っ張り状態のコイルバネ17を取り付ける。図2に示す状態は、正圧流体出口5側の流体圧力によって引っ張りコイルバネ17が更に伸長して正圧弁体6が弁座11上に着座している状態を示す。
【0016】
流体入口2から大気圧以下の負圧流体が弁室3内へ流入してくると、図2に示すように、正圧弁体6が正圧流体出口5側の正圧と弁室3内の負圧との圧力差に基づいて閉弁することによって、一体に連結した負圧弁体7が弁座10から離座して開弁し、流入した負圧流体は貫通孔13とリブ状着座部15,16の外周を通って負圧流体出口4から図1に示す復水回収装置24内へ流下する。
【0017】
一方、流体入口2から大気圧以上の正圧流体が流入してくると、コイルバネ17の引っ張り弾性力によって正圧弁体6が弁座11から離座して開弁すると共に一体に連結された負圧弁体7が弁座10へ着座して閉弁することにより、流入した正圧流体は貫通孔14を通って正圧流体出口5から図1に示す復水回収管29へと排出される。
【0018】
復水回収装置24は、復水流入口30と流出口32、及び、高圧操作流体導入口33と排出口34を有し、復水流入口30に逆止弁35を介して連通管28と接続し、流出口32に同じく逆止弁36を介して復水回収管29を接続すると共に、高圧操作流体導入口33に蒸気供給管21を分岐した高圧蒸気管37を接続する。一方、排出口34は別途の図示しない真空源又はジャケット部25内と圧力状態がほぼ同じ箇所と連通させる。
【0019】
復水回収装置24は、内部に配置した図示しないフロートが下方部に位置する場合に、高圧操作流体の導入口33を閉口し、一方、排出口34を開口して、連通管28の負圧流体を逆止弁35と流入口30を通して復水回収装置24内に流下させる。そして、復水回収装置24内に負圧流体としての復水が溜まってフロートが所定上方部に位置すると、排出口34を閉口し、一方、高圧操作流体の導入口33を開口して、高圧蒸気管37から高圧圧送用蒸気を内部に流入させることにより、内部に溜まった復水を流出口32と逆止弁36と復水回収管29を通して所定箇所へ圧送する。
【0020】
復水が圧送されて復水回収装置24内の液位が低下すると、再度、高圧操作流体の導入口33を閉口し、排出口34を開口することにより、流入口30から復水を内部へ流下させる。このような作動サイクルを繰り返すことにより、復水回収装置24は連通管28からの負圧復水を所定箇所へ圧送する。
【0021】
ジャケット部25内の蒸気圧力は、反応釜20内の被加熱物の量や温度や熱容量の変化、あるいは、圧力調整弁26の弁開度の変化によって、大気圧以上の正圧になる場合と、大気圧以下の負圧になる場合とがある。そして、ジャケット部25内の蒸気圧力が大気圧以上の正圧となった場合には、加熱によって生じた復水と蒸気の混合流体は、連通管27から負圧正圧切換弁22へ至り、この負圧正圧切換弁22の自動切り換えによって正圧流体出口5から復水回収管29側へ流下することにより、復水回収装置24側へ流下することはない。
【0022】
【発明の効果】
本発明によれば、負圧正圧切換弁により負圧復水だけを復水回収装置へ流下させることができ、復水回収装置の作動頻度を低減できる蒸気加熱装置とすることができる。
【図面の簡単な説明】
【図1】本発明の蒸気加熱装置の実施例を示す構成図。
【図2】本発明の蒸気加熱装置に用いる負圧正圧切換弁の断面図。
【符号の説明】
1 弁ケーシング
2 流体入口
4 負圧流体出口
5 正圧流体出口
20 反応釜
21  蒸気供給管
22  負圧正圧切換弁
24  復水回収装置
25  ジャケット部
26  圧力調整弁
29  復水回収管
30  復水流入口
32  流出口
33  高圧操作流体導入口
34  排出口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam heating device that heats an object to be heated with steam at around atmospheric pressure, that is, at a temperature of around 100 ° C., and more particularly to a condensate recovery device that collects condensate generated by the steam heating device. The present invention relates to a device capable of reducing the operation frequency of the device.
[0002]
[Prior art]
As a conventional steam heating device, for example, a device disclosed in JP-A-7-328422 has been used. This is accomplished by connecting a steam supply pipe 17 for supplying steam to the jacket 16 of the reaction vessel 15, branching off the steam supply pipe 17 and connecting to the high-pressure operating fluid inlet 38 of the condensate recovery device 20, The replacement fluid supply pipe 18 and the condensate recovery device 20 are connected to the lower part of the pipe 16, and the residual air in the jacket 16 is quickly eliminated by supplying fluid from the replacement fluid supply pipe 18 and replacing the remaining air. Is what you can do.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional steam heating device, since all of the condensate condensed in the jacket portion flows into the condensate recovery device, the operation frequency of the condensate recovery device increases, and the condensate recovery device in a relatively short time. There was a problem that would break down.
[0004]
The condensate recovery device operates when a predetermined amount of condensate accumulates therein, thereby recovering condensate water to a predetermined location. The condensate recovery device repeats its operation more frequently as the amount of condensate flowing in increases.
[0005]
Accordingly, an object of the present invention is to provide a steam heating device that can reduce the operation frequency of the condensate recovery device.
[0006]
[Means for Solving the Problems]
Means for solving the above-mentioned problem is that in which a steam supply pipe for heating is connected to the inlet side of the heat exchanger via a pressure regulating valve and a condensate recovery device is connected to the outlet side of the heat exchanger. A switching means is disposed between the heat exchanger and the condensate recovery device, and the switching means has a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in a valve casing. When the fluid flows in, it is discharged from the negative-pressure fluid outlet, while on the other hand, when the positive-pressure fluid flows in from the fluid inlet, it is discharged from the positive-pressure fluid outlet as a negative-pressure / positive-pressure switching valve. A condensate recovery device is connected, and the positive pressure fluid outlet is connected to a condensate recovery pipe.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
By arranging switching means between the heat exchanger and the condensate recovery device, and by using this switching means as a negative pressure / positive pressure switching valve, only when negative pressure fluid flows in from the fluid inlet, the negative pressure fluid outlet Condensed water as a negative pressure fluid is automatically discharged to the condensate recovery device.On the other hand, when positive pressure fluid flows in from the fluid inlet, positive pressure condensate automatically flows from the positive pressure fluid outlet to the condensate recovery pipe side. The condensate flowing into the condensate recovery unit is limited to only negative pressure since it is not discharged and flows into the condensate recovery unit, and the amount of condensate is greatly reduced. The frequency of operation of the recovery device is also reduced.
[0008]
【Example】
In the present embodiment, an example in which the reactor 20 is used as a heat exchanger will be described. In FIG. 1, a steam heating device is constituted by a reactor 20, a heating steam supply pipe 21, a negative pressure / positive pressure switching valve 22, a condensate recovery device 24, and a condensate recovery tube 29.
[0009]
A jacket 25 is attached to almost the entire circumference of the reaction vessel 20, and the steam supply pipe 21 is connected to the jacket 25. A pressure regulating valve 26 for arbitrarily controlling the pressure, that is, the temperature of the supplied steam is attached to the steam supply pipe 21. The object to be heated (not shown) accommodated in the reactor 20 is heated by steam supplied to the jacket 25.
[0010]
A communication pipe 27 is connected to the lower end of the jacket portion 25 to communicate with the fluid inlet 2 of the negative pressure / positive pressure switching valve 22, and the negative pressure fluid outlet 4 of the negative pressure / positive pressure switching valve 22 and the inlet 30 of the condensate recovery device 24. And a condensate recovery pipe 29 via a communication pipe 31 to the positive pressure fluid outlet 5.
[0011]
A replacement fluid supply pipe 38 is connected below the jacket portion 25, and a check valve 39 that allows only fluid from the jacket portion 25 to the outside is attached above. By connecting the replacement fluid supply pipe 38 to a liquid source such as water (not shown) and replacing the remaining air in the jacket portion 25, the remaining air can be removed to the outside of the jacket portion 25.
[0012]
As shown in FIG. 2, the negative pressure / positive pressure switching valve 22 is formed integrally with the valve casing 1 by providing a fluid inlet 2, a valve chamber 3, a negative pressure fluid outlet 4, and a positive pressure fluid outlet 5 in the valve chamber 3. The positive pressure valve element 6 and the negative pressure valve element 7 are provided.
[0013]
The fluid inlet 2 communicates with the valve chamber 3 through the communication passage 8. A valve seat member 9 having a substantially rectangular cross section is mounted in the horizontally long cylindrical valve chamber 3 so as not to be displaced. An annular negative pressure valve seat 10 is attached to the left end of the valve seat member 9, and an annular positive pressure valve seat 11 is attached to the opposite right end. A connecting rod 12 for integrally connecting the positive pressure valve body 6 and the negative pressure valve body 7 is disposed at the center of the valve seat member 9 so as to be slidable in the left-right direction. A plurality of through holes 13 and 14 are provided on the left and right wall surfaces of the valve seat member 9.
[0014]
A disk-shaped negative pressure valve element 7 is formed integrally with the negative pressure valve seat 10, and a disk-shaped positive pressure valve element 6 is formed integrally with the positive pressure valve seat 11 via a connecting rod 12. At the end of the valve chamber 3 on the side of the negative pressure fluid outlet 4, there are provided seating portions 15 and 16 for the rib-shaped negative pressure valve 7. Since the seating portions 15 and 16 are rib-shaped, they have a space (not shown) around which the fluid can pass.
[0015]
A tensioned coil spring 17 as an elastic member is attached to the positive pressure fluid outlet 5 side of the positive pressure valve body 6. The state shown in FIG. 2 shows a state in which the tension coil spring 17 is further extended by the fluid pressure on the positive pressure fluid outlet 5 side, and the positive pressure valve body 6 is seated on the valve seat 11.
[0016]
When a negative pressure fluid having a pressure equal to or lower than the atmospheric pressure flows into the valve chamber 3 from the fluid inlet 2, the positive pressure valve body 6 causes the positive pressure on the positive pressure fluid outlet 5 side and the pressure in the valve chamber 3 as shown in FIG. By closing the valve based on the pressure difference from the negative pressure, the integrally connected negative pressure valve element 7 is separated from the valve seat 10 to open the valve, and the inflowing negative pressure fluid flows through the through hole 13 and the rib-shaped seating portion. It flows down from the negative pressure fluid outlet 4 into the condensate recovery device 24 shown in FIG.
[0017]
On the other hand, when a positive pressure fluid having a pressure higher than the atmospheric pressure flows in from the fluid inlet 2, the positive pressure valve body 6 is separated from the valve seat 11 by the tensile elastic force of the coil spring 17 and opens, and is connected integrally. When the pressure valve body 7 sits on the valve seat 10 and closes, the inflowing positive pressure fluid is discharged from the positive pressure fluid outlet 5 through the through hole 14 to the condensate recovery pipe 29 shown in FIG.
[0018]
The condensate recovery device 24 has a condensate inflow port 30 and an outflow port 32, and a high-pressure operation fluid inlet 33 and a discharge port 34, and is connected to the condensate inflow port 30 with a communication pipe 28 via a check valve 35. Similarly, the condensate recovery pipe 29 is connected to the outlet 32 via the check valve 36, and the high pressure steam pipe 37 branched from the steam supply pipe 21 is connected to the high pressure operation fluid inlet 33. On the other hand, the discharge port 34 is communicated with a vacuum source (not shown) or a portion having substantially the same pressure state as the inside of the jacket portion 25.
[0019]
The condensate recovery device 24 closes the inlet 33 for the high-pressure operating fluid and opens the outlet 34 when the float (not shown) disposed inside is located at the lower part, thereby opening the negative pressure of the communication pipe 28. The fluid flows down into the condensate recovery device 24 through the check valve 35 and the inlet 30. Then, when condensed water as a negative pressure fluid is accumulated in the condensate recovery device 24 and the float is located at a predetermined upper portion, the discharge port 34 is closed, while the high pressure operation fluid introduction port 33 is opened, and the high pressure operation fluid is opened. The condensed water collected inside is sent to the predetermined location through the outlet 32, the check valve 36, and the condensate recovery pipe 29 by flowing the high-pressure pressurized steam into the inside from the steam pipe 37.
[0020]
When the condensate is sent under pressure to lower the liquid level in the condensate recovery device 24, the inlet 33 of the high-pressure operating fluid is closed again, and the outlet 34 is opened, so that the condensate flows from the inflow port 30 to the inside. Let it flow down. By repeating such an operation cycle, the condensate recovery device 24 pumps negative pressure condensate from the communication pipe 28 to a predetermined location.
[0021]
The steam pressure in the jacket portion 25 becomes a positive pressure higher than the atmospheric pressure due to a change in the amount, temperature, or heat capacity of the heated object in the reactor 20 or a change in the valve opening of the pressure regulating valve 26. In some cases, the negative pressure may be lower than the atmospheric pressure. When the steam pressure in the jacket portion 25 becomes a positive pressure equal to or higher than the atmospheric pressure, the mixed fluid of the condensate and the steam generated by the heating reaches the negative pressure / positive pressure switching valve 22 from the communication pipe 27, By flowing automatically from the positive pressure fluid outlet 5 to the condensate recovery pipe 29 by the automatic switching of the negative pressure / positive pressure switching valve 22, it does not flow down to the condensate recovery device 24.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, only a negative pressure condensate water can be made to flow down to a condensate water recovery apparatus by a negative pressure positive pressure switching valve, and it can be set as the steam heating apparatus which can reduce the operation frequency of a condensate water recovery apparatus.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam heating device of the present invention.
FIG. 2 is a sectional view of a negative pressure / positive pressure switching valve used in the steam heating device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve casing 2 Fluid inlet 4 Negative pressure fluid outlet 5 Positive pressure fluid outlet 20 Reactor 21 Steam supply pipe 22 Negative pressure positive pressure switching valve 24 Condensate recovery device 25 Jacket section 26 Pressure control valve 29 Condensate recovery pipe 30 Condensate flow Inlet 32 Outlet 33 High-pressure operating fluid inlet 34 Outlet

Claims (1)

熱交換器の入口側へ圧力調整弁を介して加熱用の蒸気供給管を接続し、熱交換器の出口側へ復水回収装置を接続したものにおいて、熱交換器と復水回収装置の間に切換手段を配置し、当該切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁として、上記負圧流体出口と復水回収装置を接続すると共に、上記正圧流体出口と復水回収管とを接続したことを特徴とする蒸気加熱装置。A steam supply pipe for heating connected to the inlet side of the heat exchanger via a pressure regulating valve, and a condensate recovery unit connected to the outlet side of the heat exchanger, between the heat exchanger and the condensate recovery unit Switching means, the switching means having a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in a valve casing, and a negative pressure fluid outlet when a negative pressure fluid flows in from the fluid inlet. The negative-pressure fluid outlet and the condensate recovery device are connected as a negative-pressure / positive-pressure switching valve that discharges from the positive-pressure fluid outlet when positive-pressure fluid flows in from the fluid inlet. A steam heating device wherein a pressure fluid outlet and a condensate recovery pipe are connected.
JP2002235303A 2002-08-13 2002-08-13 Steam heating equipment Pending JP2004073942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235303A JP2004073942A (en) 2002-08-13 2002-08-13 Steam heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235303A JP2004073942A (en) 2002-08-13 2002-08-13 Steam heating equipment

Publications (1)

Publication Number Publication Date
JP2004073942A true JP2004073942A (en) 2004-03-11

Family

ID=32019817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235303A Pending JP2004073942A (en) 2002-08-13 2002-08-13 Steam heating equipment

Country Status (1)

Country Link
JP (1) JP2004073942A (en)

Similar Documents

Publication Publication Date Title
JP2004076987A (en) Steam-heating device
JP2004073942A (en) Steam heating equipment
JP2004076986A (en) Steam-heating device
JP3281998B2 (en) Steam heating device
JPH09250887A (en) Steam heating device
JP3281999B2 (en) Steam heating device
JP2004073940A (en) Steam heating equipment
JP2004073941A (en) Steam heating equipment
JP3917408B2 (en) Steam desuperheater
JP2007285575A (en) Heat exchanger
JP2005325774A (en) Liquid force feed device
JP2004163050A (en) Air heating device
JP5940338B2 (en) Condensate recovery device
JP2007218475A (en) Decompressed steam heating device
JP4387536B2 (en) Steam heating device
JP5715811B2 (en) Liquid pumping device
JP2001113183A (en) Steam heater
JP5138334B2 (en) Liquid pumping device with foreign matter separation tank
JP2004163049A (en) Air heating apparatus
JP3341209B2 (en) Steam heating device
JP4472102B2 (en) Steam heating device
JP2004278874A (en) Condensate re-evaporation device
JP4409715B2 (en) Steam heating device
JP2005325775A (en) Liquid force feed device
JP2001116470A (en) Steam heating device