JP2004073941A - Steam heating equipment - Google Patents

Steam heating equipment Download PDF

Info

Publication number
JP2004073941A
JP2004073941A JP2002235302A JP2002235302A JP2004073941A JP 2004073941 A JP2004073941 A JP 2004073941A JP 2002235302 A JP2002235302 A JP 2002235302A JP 2002235302 A JP2002235302 A JP 2002235302A JP 2004073941 A JP2004073941 A JP 2004073941A
Authority
JP
Japan
Prior art keywords
positive pressure
negative pressure
pressure
valve
fluid outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235302A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
渡邉 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002235302A priority Critical patent/JP2004073941A/en
Publication of JP2004073941A publication Critical patent/JP2004073941A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steam heating equipment made simple in its structure by dispersing with a plurality of valves being changeover means. <P>SOLUTION: The jacket part 25 of a reaction vessel 20, a heat exchange means 36 and an ejector type vacuum pump 24 are connected through a negative pressure/positive pressure changeover valve 22. The negative pressure/positive pressure changeover valve 22 has a fluid inlet 2, a negative pressure fluid outlet 4 and a positive pressure fluid outlet 5. When a negative pressure fluid flows in from the fluid inlet 2, it is discharged to the ejector type vacuum pump 24 from the negative pressure fluid outlet 4. When a positive pressure fluid flows in from the fluid inlet 2, it is discharged to the heat exchange means 36 from the positive pressure fluid outlet 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧又は大気圧以上の正圧蒸気で被加熱物を加熱したり、あるいは、大気圧以下の負圧蒸気で加熱する蒸気加熱装置に関し、特に、加熱装置の出口側で、正圧蒸気の場合には熱交換器へと切り換え、一方、負圧蒸気の場合にはエゼクタ式真空ポンプへと切り換えるものに関する。
【0002】
【従来の技術】
従来の蒸気加熱装置としては、例えば特許第2589602号公報に示されているものが用いられてきた。これは、熱交換器の二次側すなわち出口側に切替手段を介在して、エゼクタ式真空ポンプとスチームトラップを設けたもので、複数のバルブで構成する切替手段によって、真空ポンプとスチームトラップとを切り換えて使用するものである。
【0003】
【発明が解決しようとする課題】
上記従来の蒸気加熱装置では、切替手段として複数のバルブを用いて切り換える必要があり、加熱装置が複雑化してしまう問題があった。
【0004】
従って本発明の課題は、切替手段としての複数のバルブを不要にして、構造がシンプルな蒸気加熱装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するための手段は、熱交換器の入口側へ圧力調整弁を介して加熱用の蒸気供給管を接続し、熱交換器の出口側に切換手段を介してエゼクタ式真空ポンプと大気圧又は大気圧以上の正圧排出管とを接続したものにおいて、切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁とすると共に、上記正圧排出管に熱交換手段を接続したものである。
【0006】
【発明の実施の形態】
切換手段を負圧正圧切換弁としたことによって、流体入口から負圧流体が流入してくると負圧流体出口からエゼクタ式真空ポンプへ自動的に排出され、一方、流体入口から正圧流体が流入してくると正圧流体出口から熱交換手段へ自動的に排出される。
【0007】
【実施例】
本実施例においては、熱交換器として反応釜20を用いた例を示す。図1において、反応釜20と、加熱用蒸気供給管21と、負圧正圧切換弁22と、熱交換手段36、及び、エゼクタ式真空ポンプ24とで蒸気加熱装置を構成する。
【0008】
反応釜20のほぼ全周にジャケット部25を取り付けて、このジャケット部25へ蒸気供給管21を接続する。蒸気供給管21には供給する蒸気の圧力すなわち温度を任意に制御するための圧力調整弁26を介在する。反応釜20の内部に収容した図示しない被加熱物をジャケット部25へ供給する蒸気によって加熱するものである。
【0009】
ジャケット部25下端に連通管27を接続して負圧正圧切換弁22の流体入口2と連通すると共に、負圧正圧切換弁22の負圧流体出口4とエゼクタ式真空ポンプ24を連通管28で連通し、正圧流体出口5に正圧排出管23を介して熱交換手段36と接続する。
【0010】
負圧正圧切換弁22は図2に示すように、弁ケーシング1に流体入口2と弁室3と負圧流体出口4と正圧流体出口5を設けて、弁室3内に一体に形成した正圧弁体6と負圧弁体7とで構成する。
【0011】
流体入口2は連通路8によって弁室3と連通する。横長円筒状の弁室3内に断面略ロ字状の弁座部材9を変位しないように取り付ける。弁座部材9の左端部に円環状の負圧弁座10を、反対の右端部には同じく円環状の正圧弁座11を取り付ける。弁座部材9の中心部に、正圧弁体6と負圧弁体7を一体に連結する連結棒12を、左右方向摺動自在に配置する。弁座部材9の左右壁面に複数の貫通孔13,14を設ける。
【0012】
負圧弁座10に対向して円板状の負圧弁体7を、同じく、正圧弁座11に対向して円板状の正圧弁体6を、連結棒12を介して一体に形成する。弁室3内の負圧流体出口4側端部にはリブ状の負圧弁体7用着座部15,16を設ける。着座部15,16はリブ状であるために、その周囲に流体の通過できる図示しないスペースを有する。
【0013】
正圧弁体6の正圧流体出口5側に、弾性部材としての引っ張り状態のコイルバネ17を取り付ける。図2に示す状態は、正圧流体出口5側の流体圧力によって引っ張りコイルバネ17が更に伸長して正圧弁体6が弁座11上に着座している状態を示す。
【0014】
流体入口2から大気圧以下の負圧流体が弁室3内へ流入してくると、図2に示すように、正圧弁体6が正圧流体出口5側の正圧と弁室3内の負圧との圧力差に基づいて閉弁することによって、一体に連結した負圧弁体7が弁座10から離座して開弁し、流入した負圧流体は貫通孔13とリブ状着座部15,16の外周を通って負圧流体出口4から図1に示すエゼクタ式真空ポンプ24へと排出される。
【0015】
一方、流体入口2から大気圧以上の正圧流体が流入してくると、コイルバネ17の引っ張り弾性力によって正圧弁体6が弁座11から離座して開弁すると共に一体に連結された負圧弁体7が弁座10へ着座して閉弁することにより、流入した正圧流体は貫通孔14を通って正圧流体出口5と正圧排出管23から図1に示す熱交換手段36へと排出される。
【0016】
熱交換手段36は、タンク状本体37の内部に熱交換コイル38を配置して、この熱交換コイル38の下端を冷却水供給管39に接続すると共に、熱交換コイル38の上端に熱交換された温水取出し管40を接続したもので、正圧排出管23と連通した正圧流体入口43から本体37内に高温の復水や再蒸発した蒸気が流入して、熱交換コイル38で熱交換され冷却される。
【0017】
本体37内の中央部に円筒パイプ状の大気連通管41を配置する。大気連通管41の上端は大気中に開口し、下端は本体37の底部に開口する。大気連通管41の下部中央に復水排出管42を取り付ける。熱交換コイル38で冷却された復水が、大気連通管41の下端部及び復水排出管42の上端部を通って所定箇所へ排出されるものである。
【0018】
エゼクタ式真空ポンプ24は、エゼクタ31とタンク32と循環ポンプ33で構成し、タンク32には冷却流体補給管34を接続し、循環ポンプ33とエゼクタ31の間に余剰流体排除管35を接続する。
【0019】
蒸気供給管21と圧力調整弁26から大気圧以上の正圧蒸気をジャケット部25へ供給して反応釜20を加熱する場合、加熱によって生じた復水と蒸気の混合流体は、連通管27から負圧正圧切換弁22へ至り、この負圧正圧切換弁22の自動切り換えによって正圧排出管23側へ流下して、熱交換手段36へ流入する。
【0020】
一方、圧力調整弁26から大気圧以下の負圧蒸気をジャケット部25へ供給して加熱する場合は、負圧正圧切換弁22が自動的に切り換わることによって、ジャケット部25で発生した負圧復水と一部の負圧蒸気の混合流体はエゼクタ式真空ポンプ24のエゼクタ31に吸引される。
【0021】
【発明の効果】
本発明によれば、正圧蒸気と負圧蒸気の切替手段としての複数のバルブを不要にして、構造が簡単な蒸気加熱装置とすることができる。
【図面の簡単な説明】
【図1】本発明の蒸気加熱装置の実施例を示す構成図。
【図2】本発明の蒸気加熱装置に用いる負圧正圧切換弁の断面図。
【符号の説明】
1 弁ケーシング
2 流体入口
4 負圧流体出口
5 正圧流体出口
20 反応釜
21  蒸気供給管
22  負圧正圧切換弁
23  正圧排出管
24  エゼクタ式真空ポンプ
25  ジャケット部
26  圧力調整弁
36  熱交換手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam heating apparatus for heating an object to be heated with atmospheric pressure or positive pressure steam at or above atmospheric pressure, or heating with a negative pressure steam at or below atmospheric pressure. It relates to switching to a heat exchanger in the case of pressurized steam, while switching to an ejector vacuum pump for negative pressure steam.
[0002]
[Prior art]
As a conventional steam heating device, for example, a device disclosed in Japanese Patent No. 2589602 has been used. This is provided with an ejector type vacuum pump and a steam trap with switching means interposed on the secondary side, that is, the outlet side of the heat exchanger, and the switching means comprising a plurality of valves allows the vacuum pump and the steam trap to be connected to each other. Is used by switching.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional steam heating device, it is necessary to switch using a plurality of valves as the switching means, and there has been a problem that the heating device is complicated.
[0004]
Accordingly, an object of the present invention is to provide a steam heating device having a simple structure by eliminating the need for a plurality of valves as switching means.
[0005]
[Means for Solving the Problems]
Means for solving the above problems are as follows: a heating steam supply pipe is connected to the inlet side of the heat exchanger via a pressure regulating valve, and an ejector type vacuum pump is connected to the outlet side of the heat exchanger via switching means. And a positive pressure discharge pipe having a pressure equal to or higher than the atmospheric pressure, the switching means having a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in the valve casing, and a negative pressure from the fluid inlet. A negative-pressure / positive-pressure switching valve that discharges from a negative-pressure fluid outlet when a fluid flows in, and discharges from a positive-pressure fluid outlet when a positive-pressure fluid flows in from the fluid inlet. This is a tube in which heat exchange means is connected.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the switching means is a negative pressure / positive pressure switching valve, when negative pressure fluid flows in from the fluid inlet, it is automatically discharged from the negative pressure fluid outlet to the ejector type vacuum pump, while positive pressure fluid flows from the fluid inlet. Is automatically discharged from the positive pressure fluid outlet to the heat exchange means.
[0007]
【Example】
In the present embodiment, an example in which the reactor 20 is used as a heat exchanger will be described. In FIG. 1, a steam heating device is constituted by a reaction vessel 20, a heating steam supply pipe 21, a negative pressure / positive pressure switching valve 22, a heat exchange means 36, and an ejector type vacuum pump 24.
[0008]
A jacket 25 is attached to almost the entire circumference of the reaction vessel 20, and the steam supply pipe 21 is connected to the jacket 25. The steam supply pipe 21 is provided with a pressure regulating valve 26 for arbitrarily controlling the pressure, that is, the temperature of the supplied steam. The object to be heated (not shown) accommodated in the reactor 20 is heated by steam supplied to the jacket 25.
[0009]
A communication pipe 27 is connected to the lower end of the jacket portion 25 to communicate with the fluid inlet 2 of the negative pressure / positive pressure switching valve 22, and also connects the negative pressure fluid outlet 4 of the negative pressure / positive pressure switching valve 22 with the ejector type vacuum pump 24. The positive pressure fluid outlet 5 is connected to the heat exchange means 36 via the positive pressure discharge pipe 23.
[0010]
As shown in FIG. 2, the negative pressure / positive pressure switching valve 22 is formed integrally with the valve casing 1 by providing a fluid inlet 2, a valve chamber 3, a negative pressure fluid outlet 4, and a positive pressure fluid outlet 5 in the valve chamber 3. The positive pressure valve element 6 and the negative pressure valve element 7 are provided.
[0011]
The fluid inlet 2 communicates with the valve chamber 3 through the communication passage 8. A valve seat member 9 having a substantially rectangular cross section is mounted in the horizontally long cylindrical valve chamber 3 so as not to be displaced. An annular negative pressure valve seat 10 is attached to the left end of the valve seat member 9, and an annular positive pressure valve seat 11 is attached to the opposite right end. A connecting rod 12 for integrally connecting the positive pressure valve body 6 and the negative pressure valve body 7 is disposed at the center of the valve seat member 9 so as to be slidable in the left-right direction. A plurality of through holes 13 and 14 are provided on the left and right wall surfaces of the valve seat member 9.
[0012]
A disk-shaped negative pressure valve element 7 is formed integrally with the negative pressure valve seat 10, and a disk-shaped positive pressure valve element 6 is formed integrally with the positive pressure valve seat 11 via a connecting rod 12. At the end of the valve chamber 3 on the side of the negative pressure fluid outlet 4, there are provided seating portions 15 and 16 for the rib-shaped negative pressure valve 7. Since the seating portions 15 and 16 are rib-shaped, they have a space (not shown) around which the fluid can pass.
[0013]
A tensioned coil spring 17 as an elastic member is attached to the positive pressure fluid outlet 5 side of the positive pressure valve body 6. The state shown in FIG. 2 shows a state in which the tension coil spring 17 is further extended by the fluid pressure on the positive pressure fluid outlet 5 side, and the positive pressure valve body 6 is seated on the valve seat 11.
[0014]
When a negative pressure fluid having a pressure equal to or lower than the atmospheric pressure flows into the valve chamber 3 from the fluid inlet 2, the positive pressure valve body 6 causes the positive pressure on the positive pressure fluid outlet 5 side and the pressure in the valve chamber 3 as shown in FIG. By closing the valve based on the pressure difference from the negative pressure, the integrally connected negative pressure valve element 7 is separated from the valve seat 10 to open the valve, and the inflowing negative pressure fluid flows through the through hole 13 and the rib-shaped seating portion. The fluid is discharged from the negative pressure fluid outlet 4 to the ejector type vacuum pump 24 shown in FIG.
[0015]
On the other hand, when a positive pressure fluid having a pressure equal to or higher than the atmospheric pressure flows from the fluid inlet 2, the positive pressure valve body 6 is separated from the valve seat 11 by the tensile elastic force of the coil spring 17 and is opened, and the negative pressure is integrally connected. When the pressure valve body 7 is seated on the valve seat 10 and closed, the inflowing positive pressure fluid passes through the through hole 14 and flows from the positive pressure fluid outlet 5 and the positive pressure discharge pipe 23 to the heat exchange means 36 shown in FIG. Is discharged.
[0016]
The heat exchange means 36 has a heat exchange coil 38 disposed inside the tank-shaped main body 37, connects the lower end of the heat exchange coil 38 to the cooling water supply pipe 39, and exchanges heat with the upper end of the heat exchange coil 38. High-temperature condensate or re-evaporated steam flows into the main body 37 from the positive pressure fluid inlet 43 communicating with the positive pressure discharge pipe 23, and heat exchange is performed by the heat exchange coil 38. Is cooled.
[0017]
An air communication pipe 41 in the form of a cylindrical pipe is arranged at a central portion in the main body 37. The upper end of the atmosphere communication pipe 41 opens to the atmosphere, and the lower end opens to the bottom of the main body 37. A condensate discharge pipe 42 is attached to the lower center of the atmosphere communication pipe 41. The condensed water cooled by the heat exchange coil 38 is discharged to a predetermined location through the lower end of the air communication pipe 41 and the upper end of the condensate discharge pipe 42.
[0018]
The ejector type vacuum pump 24 includes an ejector 31, a tank 32, and a circulation pump 33. A cooling fluid supply pipe 34 is connected to the tank 32, and a surplus fluid removal pipe 35 is connected between the circulation pump 33 and the ejector 31. .
[0019]
When the reactor 20 is heated by supplying a positive pressure steam at a pressure higher than the atmospheric pressure to the jacket portion 25 from the steam supply pipe 21 and the pressure regulating valve 26, a mixed fluid of the condensate and the steam generated by the heating flows from the communication pipe 27. The flow reaches the negative pressure / positive pressure switching valve 22, and flows down to the positive pressure discharge pipe 23 side by the automatic switching of the negative pressure / positive pressure switching valve 22, and flows into the heat exchange means 36.
[0020]
On the other hand, when the negative pressure steam of less than the atmospheric pressure is supplied from the pressure regulating valve 26 to the jacket portion 25 for heating, the negative pressure / positive pressure switching valve 22 is automatically switched so that the negative pressure generated in the jacket portion 25 is changed. The mixed fluid of the condensed water and a part of the negative pressure steam is sucked into the ejector 31 of the ejector type vacuum pump 24.
[0021]
【The invention's effect】
According to the present invention, a plurality of valves as switching means for switching between positive-pressure steam and negative-pressure steam are not required, and a steam heating device having a simple structure can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam heating device of the present invention.
FIG. 2 is a sectional view of a negative pressure / positive pressure switching valve used in the steam heating device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve casing 2 Fluid inlet 4 Negative pressure fluid outlet 5 Positive pressure fluid outlet 20 Reactor 21 Steam supply pipe 22 Negative pressure / positive pressure switching valve 23 Positive pressure discharge pipe 24 Ejector type vacuum pump 25 Jacket part 26 Pressure regulating valve 36 Heat exchange means

Claims (1)

熱交換器の入口側へ圧力調整弁を介して加熱用の蒸気供給管を接続し、熱交換器の出口側に切換手段を介してエゼクタ式真空ポンプと大気圧又は大気圧以上の正圧排出管とを接続したものにおいて、切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁とすると共に、上記正圧排出管に熱交換手段を接続したことを特徴とする蒸気加熱装置。A steam supply pipe for heating is connected to the inlet side of the heat exchanger via a pressure regulating valve, and an ejector type vacuum pump is connected to the outlet side of the heat exchanger via a switching means and a positive pressure equal to or higher than the atmospheric pressure is discharged. A switching means, having a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in a valve casing, and a negative pressure fluid outlet when a negative pressure fluid flows in from the fluid inlet; And a negative pressure / positive pressure switching valve that discharges from a positive pressure fluid outlet when a positive pressure fluid flows in from a fluid inlet, and heat exchange means is connected to the positive pressure discharge pipe. And a steam heating device.
JP2002235302A 2002-08-13 2002-08-13 Steam heating equipment Pending JP2004073941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235302A JP2004073941A (en) 2002-08-13 2002-08-13 Steam heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235302A JP2004073941A (en) 2002-08-13 2002-08-13 Steam heating equipment

Publications (1)

Publication Number Publication Date
JP2004073941A true JP2004073941A (en) 2004-03-11

Family

ID=32019816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235302A Pending JP2004073941A (en) 2002-08-13 2002-08-13 Steam heating equipment

Country Status (1)

Country Link
JP (1) JP2004073941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249025A (en) * 2009-04-15 2010-11-04 Tlv Co Ltd Ejector vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249025A (en) * 2009-04-15 2010-11-04 Tlv Co Ltd Ejector vacuum pump

Similar Documents

Publication Publication Date Title
US7870751B2 (en) Temperature control system and substrate processing apparatus
WO2011106978A1 (en) Auxiliary water tank for engine cooling system
JP2004076987A (en) Steam-heating device
JP2004073941A (en) Steam heating equipment
JP2004076986A (en) Steam-heating device
KR100433033B1 (en) Minifold for supplying water
JP2004073940A (en) Steam heating equipment
JP2010216695A (en) Heat exchanger
JP3281999B2 (en) Steam heating device
JP3751679B2 (en) Vacuum steam generator
JP2004073942A (en) Steam heating equipment
JP2000304465A (en) Heat exchanger
JPH04349933A (en) Apparatus for heating and cooling
JP3917408B2 (en) Steam desuperheater
JP3790005B2 (en) Heat exchanger
JP3282000B2 (en) Steam heating evaporative cooling system
JPH04316903A (en) Steam heating device
CN219087644U (en) Central vacuum air supply system of printing equipment
JP2004163049A (en) Air heating apparatus
JPH1089860A (en) Heat exchanger
JP4472103B2 (en) Steam heating device
JP4330730B2 (en) Steam heating device
JP2709531B2 (en) Steam trap device
JP2004163050A (en) Air heating device
JP3790001B2 (en) Heat exchanger