JP3790001B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3790001B2
JP3790001B2 JP04740797A JP4740797A JP3790001B2 JP 3790001 B2 JP3790001 B2 JP 3790001B2 JP 04740797 A JP04740797 A JP 04740797A JP 4740797 A JP4740797 A JP 4740797A JP 3790001 B2 JP3790001 B2 JP 3790001B2
Authority
JP
Japan
Prior art keywords
cooling fluid
heat exchange
steam
compressed air
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04740797A
Other languages
Japanese (ja)
Other versions
JPH10227580A (en
Inventor
湯本  秀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP04740797A priority Critical patent/JP3790001B2/en
Publication of JPH10227580A publication Critical patent/JPH10227580A/en
Application granted granted Critical
Publication of JP3790001B2 publication Critical patent/JP3790001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種蒸気使用装置で熱源等として使用されて残った蒸気や、高温ドレンから発生した再蒸発蒸気などを、水などの冷却流体で熱交換して凝縮させることによりモヤモヤと立ち込める蒸気を無くすことのできる熱交換器に関する。
【0002】
【従来の技術】
従来のこの種の熱交換器としては、例えば特開昭60−120186号公報に示されたものがある。これは、蒸気供給口を有する熱回収室に冷却管を内設し、この熱回収室に大気開放部を連通して、大気開放部と熱回収室の下部に凝縮液を貯溜させることにより、熱回収室内へ不凝縮気体が流入することを防止して効率良く熱交換することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来の熱交換器では、蒸気を完全に凝縮させるには大量の冷却水を必要とする問題があった。すなわち、供給された蒸気は熱回収室で冷却管と熱交換するだけであるために、蒸気のモヤモヤと立ち込める状態を無くしたい場合のように多量の蒸気を完全に凝縮しなければならない場合には大量の冷却水を要してしまうのである。
【0004】
従って本発明の技術的課題は、大量の冷却流体を要することなく、蒸気を確実に凝縮することのできる熱交換器を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するために講じた手段は、熱交換容器に冷却流体を供給して、容器内の蒸気を冷却流体で熱交換することにより当該蒸気を凝縮させるものにおいて、熱交換容器にエゼクタを取り付け、当該エゼクタのノズル部に圧縮空気源を接続して、エゼクタの吸引部に冷却流体供給管を接続すると共に、エゼクタのディフューザ部を熱交換容器内に配置することにより、ノズル部を通過した圧縮空気が断熱膨張して低温化し冷却流体と混合されるものである。
【0006】
【発明の実施の形態】
エゼクタのノズル部に圧縮空気源を接続し、吸引部に冷却流供給管を接続したことにより、ノズル部を通過する圧縮空気により吸引部で吸引力を生じて冷却流体を吸引し、圧縮空気と冷却流体は混合されてディフュ―ザ部から熱交換容器内へ供給される。
【0007】
ノズル部を通過して熱交換容器内へ至る圧縮空気は供給前の高圧状態から熱交換容器内の低圧状態まで圧力が低くなって断熱膨脹をする。この断熱膨脹により混合された冷却流体は熱を奪われて更に低温状態となり、ディフュ―ザ部から熱交換容器内へ供給されて、熱交換容器内の蒸気を急速に冷却し凝縮させる。従って、冷却管で熱交換されるだけの従来の熱交換器と比較して、圧縮空気が断熱膨脹して冷却流体を冷却する割合だけ蒸気の凝縮が進むこととなり、より少ない冷却流体でもって蒸気を確実に凝縮させることができる。
【0008】
【実施例】
図1において、熱交換容器1と、凝縮させる蒸気を供給する蒸気供給管2と、熱交換容器1に取り付けたエゼクタ3と、エゼクタ3に接続した圧縮空気供給管4と冷却流体供給管5で熱交換器を構成する。
【0009】
圧縮空気供給管4は図示しない圧縮空気の供給源と接続すると共に、バルブ6を介してエゼクタ3のノズル部7と接続する。ノズル部7の内部には絞り部を内蔵すると共に、その外周部に吸引部の吸引口8を設ける。吸引口8にはバルブ9を介して冷却流体供給管5を接続する。
【0010】
ノズル部7の下方にディフュ―ザ部10を設けて、熱交換容器1の上部開口部11に取り付ける。ディフュ―ザ部10の下部で熱交換容器1内の上方に、圧縮空気と冷却流体の混合流体を熱交換容器1内のほぼ全体にわたって分散する分散板12を取り付ける。分散板12は略円錐形状で複数の連通孔13を設けたものである。
【0011】
蒸気供給管2は図示しない蒸気使用装置の出口側や再蒸発タンク等と接続して凝縮すべく蒸気を熱交換容器1内へ供給する。熱交換容器1の下端には凝縮した蒸気と冷却流体を所定箇所へ排除するための排除管15を接続する。
【0012】
圧縮空気供給管4から供給される圧縮空気は、エゼクタ3のノズル部7で絞られて流速を増し吸引力を発生して吸引口8から冷却流体を吸引し混合されて熱交換容器1内へ供給される。この場合、圧縮空気の断熱膨脹によって冷却流体が更に冷却されながら圧縮空気と混合される。圧縮空気と冷却流体の混合流体は分散板12により熱交換容器1内全体に行き渡るように供給される。供給された混合流体は、熱交換容器1内に充満している蒸気と熱交換し、蒸気を凝縮させて下端の排除管15から所定箇所へ排除される。
【0013】
本実施例においては、熱交換容器1内に凝縮させる蒸気を直接供給して冷却流体との混合流体と熱交換する直接式の熱交換器の例を示したが、凝縮させる蒸気を銅管等のパイプの内部に流下させて銅管外表面を混合流体で熱交換する間接式の熱交換器に用いることもできるものである。
【0014】
また本実施例においては、熱交換容器1内に1台のエゼクタ3を配置した例を示したが、熱交換容器1の大きさや凝縮させる蒸気の供給量に応じてエゼクタの数は1台に限られることはなく、2台以上の複数台を配置することもできる。
【0015】
【発明の効果】
本発明によれば、圧縮空気の断熱膨脹によって冷却流体を更に低温状態として熱交換容器内へ供給することができ、より少ない冷却流体でもって蒸気を確実に凝縮させることができる。
【0016】
また、エゼクタのディフュ―ザ部からは冷却流体のみならず、断熱膨脹して低温化した圧縮空気も混合して供給されることとなり、更に確実に熱交換容器内の蒸気を凝縮させることができる。
【図面の簡単な説明】
【図1】本発明の熱交換器の実施例を示す一部断面構成図である。
【符号の説明】
1 熱交換容器
2 蒸気供給管
3 エゼクタ
4 圧縮空気供給管
5 冷却流体供給管
7 ノズル部
8 吸引口
10 ディフュ―ザ
12 分散板
[0001]
BACKGROUND OF THE INVENTION
The present invention eliminates steam that can be trapped with moyamo by condensing the steam remaining as a heat source in various steam-using devices and re-evaporated steam generated from high-temperature drain by heat exchange with a cooling fluid such as water. It is related with the heat exchanger which can.
[0002]
[Prior art]
A conventional heat exchanger of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-120186. This is because a cooling pipe is installed in a heat recovery chamber having a steam supply port, an atmosphere opening portion is communicated with the heat recovery chamber, and condensate is stored in the atmosphere opening portion and the lower portion of the heat recovery chamber, It is possible to prevent heat from flowing into the heat recovery chamber and efficiently exchange heat.
[0003]
[Problems to be solved by the invention]
The conventional heat exchanger has a problem that a large amount of cooling water is required to completely condense the steam. In other words, since the supplied steam only exchanges heat with the cooling pipe in the heat recovery chamber, when it is necessary to completely condense a large amount of steam, such as when it is desired to eliminate the state of confusion with the steam. A large amount of cooling water is required.
[0004]
Therefore, the technical problem of the present invention is to obtain a heat exchanger capable of reliably condensing steam without requiring a large amount of cooling fluid.
[0005]
[Means for Solving the Problems]
Means taken in order to solve the above-mentioned problem is to supply a cooling fluid to the heat exchange container and condense the steam by exchanging the steam in the container with the cooling fluid. , Connect the compressed air source to the nozzle part of the ejector, connect the cooling fluid supply pipe to the suction part of the ejector, and place the diffuser part of the ejector in the heat exchange container to pass through the nozzle part The compressed air is adiabatically expanded to lower the temperature and mixed with the cooling fluid .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
By connecting a compressed air source to the nozzle part of the ejector and connecting a cooling flow supply pipe to the suction part, a suction force is generated in the suction part by the compressed air passing through the nozzle part, and the cooling fluid is sucked. The cooling fluid is mixed and supplied from the diffuser to the heat exchange vessel.
[0007]
The compressed air that passes through the nozzle portion and reaches the heat exchange vessel is adiabatically expanded by reducing the pressure from the high pressure state before supply to the low pressure state in the heat exchange vessel. The cooling fluid mixed by the adiabatic expansion is deprived of heat and becomes a lower temperature state, and is supplied from the diffuser portion into the heat exchange vessel, thereby rapidly cooling and condensing the vapor in the heat exchange vessel. Therefore, compared with a conventional heat exchanger in which heat is only exchanged in the cooling pipe, the condensation of the vapor proceeds at a rate at which the compressed air adiabatically expands and cools the cooling fluid, and the vapor is reduced with less cooling fluid. Can be reliably condensed.
[0008]
【Example】
In FIG. 1, a heat exchange container 1, a steam supply pipe 2 that supplies steam to be condensed, an ejector 3 attached to the heat exchange container 1, a compressed air supply pipe 4 connected to the ejector 3, and a cooling fluid supply pipe 5. Construct a heat exchanger.
[0009]
The compressed air supply pipe 4 is connected to a compressed air supply source (not shown) and is connected to the nozzle portion 7 of the ejector 3 through a valve 6. The nozzle portion 7 has a throttle portion built in, and a suction port 8 of the suction portion is provided on the outer periphery thereof. A cooling fluid supply pipe 5 is connected to the suction port 8 via a valve 9.
[0010]
A diffuser unit 10 is provided below the nozzle unit 7 and attached to the upper opening 11 of the heat exchange vessel 1. A dispersion plate 12 that disperses the mixed fluid of compressed air and cooling fluid over almost the entire interior of the heat exchange container 1 is attached to the lower part of the diffuser unit 10 and above the heat exchange container 1. The dispersion plate 12 has a substantially conical shape and is provided with a plurality of communication holes 13.
[0011]
The steam supply pipe 2 is connected to an outlet side of a steam using apparatus (not shown), a re-evaporation tank or the like, and supplies steam into the heat exchange container 1 for condensation. An exclusion pipe 15 is connected to the lower end of the heat exchange vessel 1 to remove the condensed vapor and cooling fluid to a predetermined location.
[0012]
The compressed air supplied from the compressed air supply pipe 4 is squeezed by the nozzle portion 7 of the ejector 3 to increase the flow velocity, generate a suction force, suck the cooling fluid from the suction port 8, and mix into the heat exchange container 1. Supplied. In this case, the cooling fluid is further cooled and mixed with the compressed air by adiabatic expansion of the compressed air. The mixed fluid of the compressed air and the cooling fluid is supplied by the dispersion plate 12 so as to spread throughout the heat exchange vessel 1. The supplied mixed fluid exchanges heat with the steam filled in the heat exchange container 1, condenses the steam, and is discharged from the lower end exclusion pipe 15 to a predetermined location.
[0013]
In the present embodiment, an example of a direct heat exchanger that directly supplies steam to be condensed in the heat exchange vessel 1 and exchanges heat with a fluid mixture with a cooling fluid has been shown. It can also be used for an indirect heat exchanger in which the outer surface of the copper tube is exchanged with a mixed fluid by flowing down into the pipe.
[0014]
In the present embodiment, an example in which one ejector 3 is arranged in the heat exchange container 1 is shown. However, the number of ejectors is one according to the size of the heat exchange container 1 and the supply amount of steam to be condensed. There is no limitation, and a plurality of two or more units can be arranged.
[0015]
【The invention's effect】
According to the present invention, the cooling fluid can be supplied into the heat exchange vessel at a lower temperature by adiabatic expansion of the compressed air, and the steam can be reliably condensed with less cooling fluid.
[0016]
In addition, not only the cooling fluid but also the compressed air that has been adiabatically expanded and lowered in temperature is mixed and supplied from the diffuser portion of the ejector, and the steam in the heat exchange vessel can be more reliably condensed. .
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional configuration diagram showing an embodiment of a heat exchanger of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchange container 2 Steam supply pipe 3 Ejector 4 Compressed air supply pipe 5 Cooling fluid supply pipe 7 Nozzle part 8 Suction port 10 Diffuser 12 Dispersion plate

Claims (1)

熱交換容器に冷却流体を供給して、容器内の蒸気を冷却流体で熱交換することにより当該蒸気を凝縮させるものにおいて、熱交換容器にエゼクタを取り付け、当該エゼクタのノズル部に圧縮空気源を接続して、エゼクタの吸引部に冷却流体供給管を接続すると共に、エゼクタのディフューザ部を熱交換容器内に配置することにより、ノズル部を通過した圧縮空気が断熱膨張して低温化し冷却流体と混合されることを特徴とする熱交換器。A cooling fluid is supplied to a heat exchange container, and the steam in the container is condensed with the cooling fluid to condense the steam. An ejector is attached to the heat exchange container, and a compressed air source is connected to the nozzle portion of the ejector. The cooling fluid supply pipe is connected to the suction part of the ejector, and the diffuser part of the ejector is disposed in the heat exchange container, so that the compressed air that has passed through the nozzle part is adiabatically expanded to lower the temperature and the cooling fluid. A heat exchanger that is mixed .
JP04740797A 1997-02-14 1997-02-14 Heat exchanger Expired - Fee Related JP3790001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04740797A JP3790001B2 (en) 1997-02-14 1997-02-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04740797A JP3790001B2 (en) 1997-02-14 1997-02-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH10227580A JPH10227580A (en) 1998-08-25
JP3790001B2 true JP3790001B2 (en) 2006-06-28

Family

ID=12774280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04740797A Expired - Fee Related JP3790001B2 (en) 1997-02-14 1997-02-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3790001B2 (en)

Also Published As

Publication number Publication date
JPH10227580A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP4746812B2 (en) Cooling equipment
JP2002005582A (en) Heat exchange waste steam recoverer
JP3790001B2 (en) Heat exchanger
JP5384150B2 (en) Heat exchanger
JP3790005B2 (en) Heat exchanger
JP2002054883A (en) Heat exchanger
JP3895423B2 (en) Liquid pumping device
JPH1089860A (en) Heat exchanger
JP2004076987A (en) Steam-heating device
JP2011163735A (en) Exhaust steam recovery device
JP2011127788A (en) Waste steam recovering device
JP4187867B2 (en) Heat exchanger
JPH10232001A (en) Integral type deaeration device for heat pipe steam condenser
SU1688079A1 (en) Oil separator
JP4361203B2 (en) Steam heating device
JP3282000B2 (en) Steam heating evaporative cooling system
JP3834624B2 (en) Heat exchanger
US1046304A (en) Means for evacuating vacuum apparatus.
JPH10227406A (en) Liquid forced feeding device
JP2001227877A (en) Heat exchanger
JP2000304468A (en) Heat exchanger
JPH10227407A (en) Liquid forced feeding device
JP2001227879A (en) Heat exchanger
JP4509301B2 (en) Condensate discharge device
US1130319A (en) Apparatus relating to the withdrawal of air and water from steam-condensers.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees