JP2001227879A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2001227879A
JP2001227879A JP2000036258A JP2000036258A JP2001227879A JP 2001227879 A JP2001227879 A JP 2001227879A JP 2000036258 A JP2000036258 A JP 2000036258A JP 2000036258 A JP2000036258 A JP 2000036258A JP 2001227879 A JP2001227879 A JP 2001227879A
Authority
JP
Japan
Prior art keywords
cooling fluid
heat exchange
ejector
heat
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000036258A
Other languages
Japanese (ja)
Inventor
Tetsuya Mita
哲也 見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2000036258A priority Critical patent/JP2001227879A/en
Publication of JP2001227879A publication Critical patent/JP2001227879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchanger having an enhanced heat recovery rate in which noncondensed gas stored during heat exchange can also be discharged to the outside. SOLUTION: A first ejector 5 is coupled with the bottom section of a heat exchanger vessel 1 and a second ejector 22 is coupled with the top section of the heat exchanging vessel 1. The ejectors 5, 22 are coupled, on the inlet side thereof, with a cooling fluid supply pipe 4 and, on the outlet side thereof, with a coiled cooling fluid supply pipe 11. Drain condensed in the heat exchanging vessel 1 is sucked by the first ejector 5 and mixed with cooling fluid before being fed to the coiled cooling fluid supply pipe 11 for further heat exchange. Noncondensed gas stored in the heat exchanging vessel 1 during heat exchange is sucked by the second ejector 22 and discharged to the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種蒸気使用装置
で使用されて残った蒸気や、高温ドレンから発生した再
蒸発蒸気などを、水などの冷却流体で熱交換して凝縮さ
せることによって、モヤモヤと立ち込める蒸気を無くし
たり、あるいは、冷却流体を熱交換して温度上昇した温
水を別途使用して蒸気の保有熱を有効利用するものに関
する。
BACKGROUND OF THE INVENTION The present invention relates to a technique for condensing steam remaining in a steam-using apparatus or re-evaporated steam generated from a high-temperature drain by exchanging heat with a cooling fluid such as water. The present invention relates to a device that eliminates steam that can accumulate with a moyamoya gas or uses hot water whose temperature has been increased by exchanging heat with a cooling fluid to separately use the retained heat of the steam.

【0002】[0002]

【従来の技術】従来のこの種の熱交換器としては、例え
ば特開昭60−120186号公報に示されたものがあ
る。これは、蒸気供給口を有する熱回収室に冷却管を内
設し、この熱回収室に大気開放部を連通して、大気開放
部と熱回収室の下部に凝縮液を貯溜させることにより、
熱回収室内へ不凝縮気体、例えば空気等、が流入するこ
とを防止して効率良く熱交換することができるものであ
る。
2. Description of the Related Art A conventional heat exchanger of this type is disclosed, for example, in Japanese Patent Application Laid-Open No. 60-120186. This is achieved by installing a cooling pipe inside a heat recovery chamber having a steam supply port, connecting the air release section to this heat recovery chamber, and storing condensate in the air release section and the lower part of the heat recovery chamber.
It is possible to prevent non-condensable gas, for example, air, from flowing into the heat recovery chamber and efficiently exchange heat.

【0003】[0003]

【発明が解決しようとする課題】上記従来の熱交換器で
は、冷却管を通って蒸気と熱交換した冷却流体と、蒸気
の凝縮したドレンを、それぞれ別個に回収しているため
に、熱回収率が90パーセント程度と比較的低い値に止
まってしまう問題があった。これは、熱交換した冷却流
体とドレンの双方が50度Cから60度C程度の低温で
あり、別個に回収すると放熱損失等が大きく熱回収効率
が向上しないためである。
In the above-mentioned conventional heat exchanger, the cooling fluid that has exchanged heat with the steam through the cooling pipe and the drain in which the steam has condensed are separately collected. There was a problem that the rate was kept at a relatively low value of about 90%. This is because both the cooling fluid and the drain that have undergone heat exchange have a low temperature of about 50 ° C. to 60 ° C., and if they are collected separately, heat loss is large and the heat recovery efficiency is not improved.

【0004】また、上記従来の熱交換器では、熱回収室
の外部から空気等の不凝縮気体が流入してくることは防
止できるが、例えば蒸気供給管から供給される蒸気中に
不凝縮気体が混入していると、その不凝縮気体を外部に
排出することができない問題があった。
In the above-mentioned conventional heat exchanger, it is possible to prevent the inflow of non-condensable gas such as air from the outside of the heat recovery chamber. , There is a problem that the non-condensable gas cannot be discharged to the outside.

【0005】従って本発明の課題は、熱交換中に滞留し
た不凝縮気体も外部に排出することができると共に、低
温の回収流体の温度を極力上昇させることによって、熱
回収率の向上した熱交換器を得ることである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the heat exchange rate by improving the heat recovery rate by increasing the temperature of the low-temperature recovered fluid as much as possible while allowing the non-condensable gas staying during the heat exchange to be discharged to the outside. Is to get a bowl.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに講じた手段は、熱交換容器に蒸気と冷却流体を供給
して、蒸気を冷却流体で熱交換することにより凝縮させ
るものにおいて、熱交換容器の底部と第1のエゼクタの
吸引室を連通し、熱交換容器内の頂部と第2のエゼクタ
の吸引室を連通して、当該第1と第2のエゼクタの入口
側を冷却流体供給源と接続し、両エゼクタの出口側を上
記熱交換容器と接続したものである。
Means taken to solve the above problem is to supply steam and a cooling fluid to a heat exchange container, and to condense the steam by exchanging heat with the cooling fluid. The bottom of the heat exchange container communicates with the suction chamber of the first ejector, the top of the heat exchange container communicates with the suction chamber of the second ejector, and the inlet side of the first and second ejectors communicates with the cooling fluid. It is connected to a supply source, and the outlet sides of both ejectors are connected to the heat exchange container.

【0007】[0007]

【発明の実施の形態】冷却流体源と接続した第1のエゼ
クタの吸引室を熱交換容器の底部と連通したことによ
り、熱交換容器内で凝縮したドレンは第1のエゼクタに
吸引され冷却流体と混合されて出口側から再度熱交換容
器内に供給される。供給された冷却流体とドレンの混合
流体は、熱交換容器内の蒸気と熱交換して蒸気をドレン
と成すと共に温度上昇し、所定の回収箇所へ回収され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The suction chamber of a first ejector connected to a source of cooling fluid communicates with the bottom of the heat exchange container, so that the drain condensed in the heat exchange container is sucked into the first ejector and is cooled. And supplied again from the outlet side into the heat exchange container. The supplied mixed fluid of the cooling fluid and the drain exchanges heat with the steam in the heat exchange vessel to form steam and drain, and the temperature of the mixed fluid increases.

【0008】凝縮したドレンと熱交換された冷却流体を
別個に回収するのではなく、第1のエゼクタにより凝縮
ドレンを吸引して冷却流体と混合した後、更に蒸気と熱
交換することによって、回収流体の温度を上昇させて熱
回収率を向上させることができる。
[0008] Instead of separately collecting the condensed drain and the cooling fluid exchanged with heat, the condensed drain is sucked by the first ejector, mixed with the cooling fluid, and further exchanged with steam to recover. The heat recovery rate can be improved by increasing the temperature of the fluid.

【0009】熱交換容器の頂部と第2のエゼクタの吸引
室を連通したことにより、熱交換中に容器内に溜まった
空気等の不凝縮気体を、第2のエゼクタによって熱交換
容器の頂部から吸引して外部に排出することができる。
By communicating the top of the heat exchange container with the suction chamber of the second ejector, non-condensable gas such as air accumulated in the container during heat exchange can be removed from the top of the heat exchange container by the second ejector. It can be sucked and discharged to the outside.

【0010】一方、不凝縮気体が熱交換容器の底部に滞
留する場合は、第1のエゼクタによって、凝縮したドレ
ンと共にこの不凝縮気体は吸引排出される。
On the other hand, when the non-condensable gas stays at the bottom of the heat exchange vessel, the first ejector sucks and discharges the non-condensable gas together with the condensed drain.

【0011】[0011]

【実施例】図1において、熱交換容器1と、凝縮させる
べく蒸気を供給する蒸気供給管2と、蒸気の凝縮したド
レンを排出するドレン排出管3と、ドレン排出管3と接
続した第1のエゼクタ5と、熱交換容器1の頂部と連通
した第2のエゼクタ22、及び、図示しない冷却流体供
給源と接続した冷却流体供給管4とで熱交換器を構成す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a heat exchange vessel 1, a steam supply pipe 2 for supplying steam to be condensed, a drain discharge pipe 3 for discharging a drain condensed with steam, and a first pipe connected to the drain discharge pipe 3 are shown. , The second ejector 22 communicating with the top of the heat exchange vessel 1, and the cooling fluid supply pipe 4 connected to a cooling fluid supply source (not shown) constitute a heat exchanger.

【0012】熱交換容器1は密閉状のタンクで、下方に
バルブ6を介して冷却流体供給管4をコイル状11に連
通し、上部からバルブ7を介して温水回収管8へと接続
する。熱交換容器1の上部側方にバルブ21を介して蒸
気供給管2を接続する。蒸気供給管2から供給される蒸
気によって、コイル状冷却流体供給管11内の冷却流体
が熱せられて温度上昇すると共に、熱を奪われた蒸気が
凝縮してドレンとなってタンク1下部に流下するもので
ある。
The heat exchange vessel 1 is a closed tank. The cooling fluid supply pipe 4 communicates with the coil 11 through a valve 6 downward through a valve 6, and is connected to a hot water recovery pipe 8 via a valve 7 from above. The steam supply pipe 2 is connected to the upper side of the heat exchange vessel 1 via a valve 21. By the steam supplied from the steam supply pipe 2, the cooling fluid in the coiled cooling fluid supply pipe 11 is heated and the temperature rises, and the steam deprived of heat is condensed to drain and flow down to the lower part of the tank 1. Is what you do.

【0013】熱交換容器1の底部と第1のエゼクタ5の
吸引室12をドレン排出管3で連通する。ドレン排出管
3には、ドレンだけを流下して蒸気は通過させないスチ
ームトラップ13と、バルブ14を並列に取り付ける。
熱交換容器1内で発生したドレンがスチームトラップ1
3又はバルブ14の双方あるいはいずれか一方から第1
のエゼクタ5の吸引室12に吸引されるものである。
The bottom of the heat exchange vessel 1 and the suction chamber 12 of the first ejector 5 are connected by a drain discharge pipe 3. A steam trap 13 and a valve 14 are attached to the drain discharge pipe 3 in parallel, and a steam trap 13 that allows only the drain to flow down and does not allow steam to pass therethrough.
Drain generated in the heat exchange vessel 1 is a steam trap 1
3 and / or the valve 14
Is sucked into the suction chamber 12 of the ejector 5.

【0014】熱交換容器1の頂部と第2のエゼクタ22
の吸引室23を管路24で連通する。この第2のエゼク
タ22は、熱交換容器1の上方に溜まった空気等の不凝
縮気体を吸引するものである。
The top of the heat exchange vessel 1 and the second ejector 22
The suction chamber 23 is communicated by a pipe 24. The second ejector 22 sucks non-condensable gas such as air collected above the heat exchange container 1.

【0015】第1と第2のエゼクタ5,22の入口側即
ち吸引室12、23側は、ポンプ15を介して冷却流体
供給管4と接続する。また、出口側は管路16,25に
よってコイル状冷却流体供給管11と接続する。管路1
6にはバルブ17を設けた排出管18を、一方、管路2
5にはバルブ26を設けた排出管27を連設する。コイ
ル状冷却流体供給管11の入口側には、自動空気抜き弁
19を設けた空気抜き管路20を連設する。冷却流体供
給管4から供給される冷却流体が、第1と第2のエゼク
タ5、22を通過してそれぞれの吸引室12、23で吸
引力を発生し、熱交換容器1内のドレンと不凝縮気体を
吸引して冷却流体と混合してコイル状冷却流体供給管1
1に送られるものである。
The inlet sides of the first and second ejectors 5 and 22, that is, the suction chambers 12 and 23 are connected to the cooling fluid supply pipe 4 via a pump 15. Further, the outlet side is connected to the coil-shaped cooling fluid supply pipe 11 by the pipe lines 16 and 25. Pipe line 1
6 is provided with a discharge pipe 18 provided with a valve 17,
5 is connected to a discharge pipe 27 provided with a valve 26. An air vent line 20 provided with an automatic air vent valve 19 is connected to the inlet side of the coiled cooling fluid supply pipe 11. The cooling fluid supplied from the cooling fluid supply pipe 4 passes through the first and second ejectors 5 and 22 to generate suction force in the respective suction chambers 12 and 23, and the suction fluid does not communicate with the drain in the heat exchange vessel 1. The condensed gas is sucked, mixed with the cooling fluid, and the coiled cooling fluid supply pipe 1
1 is sent.

【0016】熱交換容器1の上部側方に設けた蒸気供給
管2は、図示しないブロワやシュリンクトンネル等の蒸
気使用装置の出口側あるいは再蒸発タンク等と接続して
凝縮すべく蒸気を熱交換容器1へ供給する。
A steam supply pipe 2 provided on the upper side of the heat exchange vessel 1 is connected to an outlet side of a steam-using device such as a blower or a shrink tunnel (not shown) or a re-evaporation tank or the like to exchange heat for condensing steam. Supply to container 1.

【0017】熱交換を開始する場合、タンク1内には不
凝縮気体としての空気が滞留しており、熱交換を効率良
く行なうためにはこの空気を速やかに排除する必要があ
る。従って、蒸気供給管2からタンク1内に蒸気を供給
すると共に、エゼクタ5、22に冷却流体を供給して吸
引力を発生させ、ドレン排出管3のバルブ14と、排出
管18、27のバルブ17、26を全開して、両方のエ
ゼクタ5,22からタンク1内の滞留空気を系外に速や
かに排出する。
When heat exchange is started, air as non-condensable gas stays in the tank 1, and it is necessary to quickly remove this air in order to perform heat exchange efficiently. Accordingly, the steam is supplied from the steam supply pipe 2 into the tank 1 and the cooling fluid is supplied to the ejectors 5 and 22 to generate a suction force, and the valve 14 of the drain discharge pipe 3 and the valves of the discharge pipes 18 and 27 are generated. 17 and 26 are fully opened, and the staying air in the tank 1 is quickly discharged out of the system from both the ejectors 5 and 22.

【0018】このように、エゼクタ5、22で滞留空気
を吸引排出することにより、ただ単に蒸気をタンク1内
に供給して滞留空気と置換して系外に排出する場合より
も、滞留空気を短時間で確実に系外に排出することがで
きる。
By sucking and discharging the staying air by the ejectors 5 and 22 as described above, the staying air can be removed more than when steam is simply supplied into the tank 1 and replaced with the staying air and discharged outside the system. It can be reliably discharged out of the system in a short time.

【0019】初期の滞留空気が排出された熱交換容器1
内は、蒸気供給管2から供給される蒸気が熱交換により
凝縮してドレンとなることにより、その容積が急減少す
るために減圧状態となる。凝縮したドレンはドレン排出
管3のスチームトラップ13から第1のエゼクタ5に吸
引される。一方、第2のエゼクタ22には、供給される
蒸気中に混入している不凝縮気体としての空気が熱交換
容器の上部に滞留することによって吸引される。第1の
エゼクタ5のドレンと冷却流体及び第2のエゼクタ22
の空気と冷却流体は、それぞれ混合してコイル状冷却流
体供給管11に至り、蒸気と熱交換して温度上昇し、温
水回収管8から所定の回収箇所へ回収される。
The heat exchange vessel 1 from which the initial accumulated air has been discharged.
The inside is decompressed because the steam supplied from the steam supply pipe 2 is condensed by heat exchange to form a drain, and the volume thereof is rapidly reduced. The condensed drain is sucked into the first ejector 5 from the steam trap 13 of the drain discharge pipe 3. On the other hand, air as non-condensable gas mixed in the supplied steam is sucked into the second ejector 22 by staying in the upper part of the heat exchange container. The drain and cooling fluid of the first ejector 5 and the second ejector 22
The air and the cooling fluid are mixed with each other to reach the coil-shaped cooling fluid supply pipe 11, exchange heat with steam, raise the temperature, and are recovered from the hot water recovery pipe 8 to a predetermined recovery location.

【0020】このように、凝縮したドレンと冷却流体を
第1のエゼクタ5で混合して熱交換することにより、回
収温水の温度を高めることができて、熱回収率を上昇さ
せることができる。
As described above, by mixing the condensed drain and the cooling fluid in the first ejector 5 and exchanging heat, the temperature of the recovered hot water can be increased, and the heat recovery rate can be increased.

【0021】また、熱交換中に容器1内に滞留する不凝
縮気体も、本実施例においては第2のエゼクタ22で吸
引することができる。この場合、エゼクタ22に吸引さ
れた不凝縮気体は、空気抜き管路20に設けた自動空気
抜き弁19から系外に排出することができる。但し、熱
交換した温水中に不凝縮気体が混入していても差し障り
がない場合は、自動空気抜き弁19で系外に排出する必
要はない。
In this embodiment, the non-condensable gas remaining in the vessel 1 during the heat exchange can also be sucked by the second ejector 22. In this case, the non-condensable gas sucked by the ejector 22 can be discharged out of the system from the automatic air vent valve 19 provided in the air vent line 20. However, when there is no problem even if non-condensable gas is mixed in the heat-exchanged hot water, it is not necessary to discharge the non-condensable gas out of the system by the automatic air release valve 19.

【0022】[0022]

【発明の効果】本発明によれば、冷却流体源と接続した
第1のエゼクタの吸引室を熱交換容器の底部と連通し、
この第1のエゼクタの出口側を再度熱交換容器と接続し
たことにより、凝縮したドレンと熱交換された冷却流体
を別個に回収するのではなく、第1のエゼクタにより凝
縮ドレンを吸引して冷却流体と混合した後、更に蒸気と
熱交換することによって、回収流体の温度を上昇させて
熱回収率を向上させることができる。
According to the present invention, the suction chamber of the first ejector connected to the cooling fluid source communicates with the bottom of the heat exchange container,
By connecting the outlet side of the first ejector to the heat exchange container again, the condensed drain and the cooling fluid exchanged with heat are not collected separately, but the condensed drain is sucked by the first ejector and cooled. After mixing with the fluid, heat exchange with the steam further increases the temperature of the recovered fluid, thereby improving the heat recovery rate.

【0023】また、本発明によれば、熱交換容器の頂部
と第2のエゼクタの吸引室を連通したことにより、熱交
換中に容器内に溜まった空気等の不凝縮気体を、熱交換
容器の頂部から第2のエゼクタに吸引させて外部に排出
することができる。
Further, according to the present invention, by communicating the top of the heat exchange container with the suction chamber of the second ejector, non-condensable gas such as air accumulated in the container during heat exchange can be removed. Can be sucked into the second ejector from the top and discharged to the outside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1 熱交換容器 2 蒸気供給管 3 ドレン排出管 4 冷却流体供給管 5 第1のエゼクタ 8 温水回収管 12 吸引室 19 自動空気抜き弁 22 第2のエゼクタ 23 吸引室 DESCRIPTION OF SYMBOLS 1 Heat exchange container 2 Steam supply pipe 3 Drain discharge pipe 4 Cooling fluid supply pipe 5 First ejector 8 Hot water recovery pipe 12 Suction chamber 19 Automatic air release valve 22 Second ejector 23 Suction chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換容器に蒸気と冷却流体を供給し
て、蒸気を冷却流体で熱交換することにより凝縮させる
ものにおいて、熱交換容器の底部と第1のエゼクタの吸
引室を連通し、熱交換容器内の頂部と第2のエゼクタの
吸引室を連通して、当該第1と第2のエゼクタの入口側
を冷却流体供給源と接続し、両エゼクタの出口側を上記
熱交換容器と接続したことを特徴とする熱交換器。
1. A method for supplying steam and a cooling fluid to a heat exchange vessel and condensing the steam by exchanging heat with the cooling fluid, wherein a bottom of the heat exchange vessel communicates with a suction chamber of a first ejector, The top of the heat exchange vessel is communicated with the suction chamber of the second ejector, the inlet sides of the first and second ejectors are connected to a cooling fluid supply source, and the outlet sides of both ejectors are connected to the heat exchange vessel. A heat exchanger characterized by being connected.
JP2000036258A 2000-02-15 2000-02-15 Heat exchanger Pending JP2001227879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036258A JP2001227879A (en) 2000-02-15 2000-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036258A JP2001227879A (en) 2000-02-15 2000-02-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2001227879A true JP2001227879A (en) 2001-08-24

Family

ID=18560327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036258A Pending JP2001227879A (en) 2000-02-15 2000-02-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2001227879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051801A (en) * 2005-08-16 2007-03-01 Tlv Co Ltd Heat exchanger
JP2010117106A (en) * 2008-11-14 2010-05-27 Tlv Co Ltd Heat exchanger
CN106989429A (en) * 2017-05-10 2017-07-28 程琛 Exhaust steam of electric power plant waste heat recovery heating system
CN113237354A (en) * 2021-05-13 2021-08-10 唐秋梅 High-efficient environmental protection's epoxy processing's waste heat recovery system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051801A (en) * 2005-08-16 2007-03-01 Tlv Co Ltd Heat exchanger
JP2010117106A (en) * 2008-11-14 2010-05-27 Tlv Co Ltd Heat exchanger
CN106989429A (en) * 2017-05-10 2017-07-28 程琛 Exhaust steam of electric power plant waste heat recovery heating system
CN106989429B (en) * 2017-05-10 2022-08-09 程琛 Power plant exhaust steam waste heat recovery heating system
CN113237354A (en) * 2021-05-13 2021-08-10 唐秋梅 High-efficient environmental protection's epoxy processing's waste heat recovery system
CN113237354B (en) * 2021-05-13 2022-12-23 厦门纬达树脂有限公司 Epoxy processing's of high-efficient environmental protection waste heat recovery system

Similar Documents

Publication Publication Date Title
CN102149985B (en) Apparatus for recovering vent steam and drain
JPH09196305A (en) Condensation recovery device
JP7218267B2 (en) Drain recovery device
JP5384150B2 (en) Heat exchanger
JP2001227879A (en) Heat exchanger
JP2001227877A (en) Heat exchanger
JP2002054883A (en) Heat exchanger
JP2000304465A (en) Heat exchanger
JP4594270B2 (en) Heat exchanger
JP5335316B2 (en) Condensate recovery device
JP2004053029A (en) Heat exchanger
JP2001227880A (en) Heat exchanger
JP4387536B2 (en) Steam heating device
JP2000354541A (en) Steam heating device
JP2001227878A (en) Heat exchanger
JP2002054886A (en) Heat exchanger
JP4187867B2 (en) Heat exchanger
JP3790005B2 (en) Heat exchanger
JP3282000B2 (en) Steam heating evaporative cooling system
JP4409715B2 (en) Steam heating device
JP4509301B2 (en) Condensate discharge device
JP5047426B2 (en) Steam heating device
JP3789993B2 (en) Heat exchanger
JP4330730B2 (en) Steam heating device
JP2001324294A (en) Condensate discharger