JP2001227878A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2001227878A
JP2001227878A JP2000036257A JP2000036257A JP2001227878A JP 2001227878 A JP2001227878 A JP 2001227878A JP 2000036257 A JP2000036257 A JP 2000036257A JP 2000036257 A JP2000036257 A JP 2000036257A JP 2001227878 A JP2001227878 A JP 2001227878A
Authority
JP
Japan
Prior art keywords
ejector
cooling fluid
heat exchange
heat
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000036257A
Other languages
Japanese (ja)
Inventor
Tetsuya Mita
哲也 見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2000036257A priority Critical patent/JP2001227878A/en
Publication of JP2001227878A publication Critical patent/JP2001227878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchanger having an enhanced heat recovery rate in which noncondensed gas stored during heat exchange can also be discharged to the outside. SOLUTION: An ejector 5 communicates with the bottom section of a heat exchanging vessel 1 coupled with a vapor supply pipe 2 and communicates with a noncondensed gas discharging pipe 22 through a temperature response valve 23. The ejector 5 is coupled, on the inlet side thereof, with a cooling fluid supply pipe 4 and, on the outlet side thereof, with a coiled cooling fluid supply pipe 11. Drain condensed in the heat exchanging vessel 1 is sucked by the ejector 5 and mixed with cooling fluid before being fed to the coiled cooling fluid supply pipe 11 for further heat exchange. Noncondensed gas stored in the heat exchanging vessel 1 during heat exchange is sucked by the ejector 5 through the temperature response valve 23 and discharged to the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種蒸気使用装置
で使用されて残った蒸気や、高温ドレンから発生した再
蒸発蒸気などを、水等の冷却流体で熱交換して凝縮させ
ることによって、モヤモヤと立ち込める蒸気を無くした
り、あるいは、冷却流体を熱交換して温度上昇した温水
を別途使用して蒸気の保有熱を有効利用するものに関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a method of condensing steam remaining in a steam-using device or reevaporated steam generated from a high-temperature drain by exchanging heat with a cooling fluid such as water. The present invention relates to a device that eliminates steam that can accumulate with a moyamoya gas or uses hot water whose temperature has been increased by exchanging heat with a cooling fluid to separately use the retained heat of the steam.

【0002】[0002]

【従来の技術】従来のこの種の熱交換器としては、例え
ば特開昭60−120186号公報に示されたものがあ
る。これは、蒸気供給口を有する熱回収室に冷却管を内
設し、この熱回収室に大気開放部を連通して、大気開放
部と熱回収室の下部に凝縮液を貯溜させることにより、
熱回収室内へ不凝縮気体、例えば空気等、が流入するこ
とを防止して効率良く熱交換することができるものであ
る。
2. Description of the Related Art A conventional heat exchanger of this type is disclosed, for example, in Japanese Patent Application Laid-Open No. 60-120186. This is achieved by installing a cooling pipe inside a heat recovery chamber having a steam supply port, connecting the air release section to this heat recovery chamber, and storing condensate in the air release section and the lower part of the heat recovery chamber.
It is possible to prevent non-condensable gas, for example, air, from flowing into the heat recovery chamber and efficiently exchange heat.

【0003】[0003]

【発明が解決しようとする課題】上記従来の熱交換器で
は、冷却管を通って蒸気と熱交換した冷却流体と、蒸気
の凝縮したドレンを、それぞれ別個に回収しているため
に、熱回収率が90パーセント程度と比較的低い値に止
まってしまう問題があった。これは、熱交換した冷却流
体とドレンの双方が50度Cから60度C程度の低温で
あり、別個に回収すると放熱損失等が大きく熱回収効率
が向上しないためである。
In the above-mentioned conventional heat exchanger, the cooling fluid that has exchanged heat with the steam through the cooling pipe and the drain in which the steam has condensed are separately collected. There was a problem that the rate was kept at a relatively low value of about 90%. This is because both the cooling fluid and the drain that have undergone heat exchange have a low temperature of about 50 ° C. to 60 ° C., and if they are collected separately, heat loss is large and the heat recovery efficiency is not improved.

【0004】また、上記従来の熱交換器では、熱回収室
の外部から空気等の不凝縮気体が流入してくることは防
止できるが、例えば蒸気供給管から供給される蒸気中に
不凝縮気体が混入していると、その不凝縮気体を外部に
排出することができない問題があった。
In the above-mentioned conventional heat exchanger, it is possible to prevent the inflow of non-condensable gas such as air from the outside of the heat recovery chamber. , There is a problem that the non-condensable gas cannot be discharged to the outside.

【0005】従って本発明の課題は、熱交換中に生じた
不凝縮気体も外部に排出することができると共に、低温
の回収流体の温度を極力上昇させることによって、熱回
収率の向上した熱交換器を得ることである。
Accordingly, an object of the present invention is to improve the heat exchange rate by improving the heat recovery rate by increasing the temperature of the low-temperature recovered fluid as much as possible while allowing the non-condensable gas generated during the heat exchange to be discharged to the outside. Is to get a bowl.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに講じた手段は、熱交換容器に蒸気と冷却流体を供給
して、蒸気を冷却流体で熱交換することにより凝縮させ
るものにおいて、熱交換容器の底部とエゼクタの吸引室
を連通すると共に熱交換容器内の不凝縮気体溜り部とエ
ゼクタの吸引室を弁手段を介して連通し、当該エゼクタ
の入口側を冷却流体供給源と接続し、エゼクタの出口側
を上記熱交換容器と接続したものである。
Means taken to solve the above problem is to supply steam and a cooling fluid to a heat exchange container and condense the steam by exchanging heat with the cooling fluid. The bottom of the heat exchange container communicates with the suction chamber of the ejector, and the noncondensable gas reservoir in the heat exchange container communicates with the suction chamber of the ejector via valve means. The inlet side of the ejector is connected to the cooling fluid supply source. The outlet of the ejector is connected to the heat exchange container.

【0007】[0007]

【発明の実施の形態】冷却流体源と接続したエゼクタの
吸引室を熱交換容器の底部と連通したことにより、熱交
換容器内で凝縮したドレンはエゼクタに吸引され冷却流
体と混合されて出口側から再度熱交換容器内に供給され
る。供給された冷却流体とドレンの混合流体は、熱交換
容器内の蒸気と熱交換して蒸気をドレンと成すと共に温
度上昇し、所定の回収箇所へ回収される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS By connecting the suction chamber of the ejector connected to the cooling fluid source to the bottom of the heat exchange container, the drain condensed in the heat exchange container is sucked by the ejector, mixed with the cooling fluid and exited. Is supplied again into the heat exchange container. The supplied mixed fluid of the cooling fluid and the drain exchanges heat with the steam in the heat exchange vessel to form steam and drain, and the temperature of the mixed fluid increases.

【0008】凝縮したドレンと熱交換された冷却流体を
別個に回収するのではなく、エゼクタにより凝縮ドレン
を吸引して冷却流体と混合した後、更に蒸気と熱交換す
ることによって、回収流体の温度を上昇させて熱回収率
を向上させることができる。
[0008] Instead of separately collecting the condensed drain and the cooling fluid that has undergone heat exchange, the condensed drain is sucked by an ejector, mixed with the cooling fluid, and then heat-exchanged with steam to thereby increase the temperature of the recovered fluid. And the heat recovery rate can be improved.

【0009】熱交換容器内の不凝縮気体溜り部とエゼク
タの吸引室を弁手段を介して連通したことにより、熱交
換中に容器内に溜まった空気等の不凝縮気体を、弁手段
を開弁しエゼクタに吸引させて外部に排出することがで
きる。
By communicating the non-condensable gas reservoir in the heat exchange container with the suction chamber of the ejector through the valve means, the non-condensable gas such as air accumulated in the container during heat exchange is opened. The valve ejector can be sucked and discharged to the outside.

【0010】[0010]

【実施例】図1において、熱交換容器1と、凝縮させる
べく蒸気を供給する蒸気供給管2と、蒸気の凝縮したド
レンを排出するドレン排出管3と、不凝縮気体排出管2
2と、図示しない冷却流体供給源と接続した冷却流体供
給管4、及び、冷却流体供給管4に接続したエゼクタ5
とで熱交換器を構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a heat exchange vessel 1, a steam supply pipe 2 for supplying steam to be condensed, a drain discharge pipe 3 for discharging a drain condensed with steam, and a non-condensable gas discharge pipe 2
2, a cooling fluid supply pipe 4 connected to a cooling fluid supply source (not shown), and an ejector 5 connected to the cooling fluid supply pipe 4.
And constitute a heat exchanger.

【0011】熱交換容器1は密閉状のタンクで、下方に
バルブ6を介して冷却流体供給管4をコイル状11に連
通し、上部からバルブ7を介して温水回収管8へと接続
する。熱交換容器1の上部に蒸気供給管2を接続すると
共に、大気連通管10と開閉バルブ9を取り付ける。蒸
気供給管2から供給される蒸気によって、コイル状冷却
流体供給管11内の冷却流体が熱せられて温度上昇する
と共に、熱を奪われた蒸気が凝縮してドレンとなってタ
ンク1下部に流下するものである。
The heat exchange vessel 1 is a closed tank. The cooling fluid supply pipe 4 communicates with the coil 11 downward through a valve 6 via a valve 6, and is connected to a hot water recovery pipe 8 via a valve 7 from above. The steam supply pipe 2 is connected to the upper part of the heat exchange vessel 1, and the atmosphere communication pipe 10 and the opening / closing valve 9 are attached. By the steam supplied from the steam supply pipe 2, the cooling fluid in the coiled cooling fluid supply pipe 11 is heated and the temperature rises, and the steam deprived of heat is condensed to drain and flow down to the lower part of the tank 1. Is what you do.

【0012】熱交換容器1の底部とエゼクタ5の吸引室
12をドレン排出管3で連通する。ドレン排出管3に
は、ドレンだけを流下して蒸気は通過させないスチーム
トラップ13と、バルブ14を並列に取り付ける。熱交
換容器1内で発生したドレンがスチームトラップ13又
はバルブ14の双方あるいはいずれか一方からエゼクタ
5の吸引室12に吸引されるものである。
The bottom of the heat exchange vessel 1 and the suction chamber 12 of the ejector 5 are connected by a drain discharge pipe 3. A steam trap 13 and a valve 14 are attached to the drain discharge pipe 3 in parallel, and a steam trap 13 that allows only the drain to flow down and does not allow steam to pass therethrough. The drain generated in the heat exchange container 1 is sucked into the suction chamber 12 of the ejector 5 from one or both of the steam trap 13 and the valve 14.

【0013】ドレン排出管3と並列に不凝縮気体排出管
22を配置して、弁手段としての温度応動弁23を介し
てエゼクタ5の吸引室12と連通する。不凝縮気体排出
管22は、熱交換容器1内のパイプ24と接続してお
り、パイプ24の上端部25が不凝縮気体の溜り易い溜
り部に開口している。本実施例においては、パイプ24
の開口25を、熱交換容器1の上部にだけ配置した例を
示したが、開口25は、上部だけに限らず容器1の中央
部や下部等にも複数箇所配置することもできる。
An uncondensable gas discharge pipe 22 is arranged in parallel with the drain discharge pipe 3 and communicates with the suction chamber 12 of the ejector 5 via a temperature responsive valve 23 as a valve means. The non-condensable gas discharge pipe 22 is connected to a pipe 24 in the heat exchange vessel 1, and an upper end 25 of the pipe 24 is open to a reservoir where the non-condensable gas easily accumulates. In this embodiment, the pipe 24
Although the example in which the opening 25 is disposed only in the upper part of the heat exchange container 1 is shown, the opening 25 may be disposed not only in the upper part but also in a plurality of places in the central part, the lower part, etc. of the container 1.

【0014】温度応動弁23は、熱交換容器1の上端に
取り付けた感温筒26とキャピラリーチューブ27によ
り接続することにより、感温筒26部の温度が所定温度
よりも低下すると自動的に開弁して開口25とエゼクタ
5を連通して不凝縮気体としての空気等を吸引排出す
る。感温筒26部の温度が高くなると温度応動弁23は
自動的に閉弁する。
The temperature responsive valve 23 is automatically opened when the temperature of the temperature sensing tube 26 falls below a predetermined temperature by connecting the temperature sensing valve 26 to the temperature sensing tube 26 attached to the upper end of the heat exchange vessel 1 by a capillary tube 27. The valve is communicated with the opening 25 and the ejector 5 to suck and discharge air or the like as non-condensable gas. When the temperature of the temperature sensing tube 26 increases, the temperature responsive valve 23 automatically closes.

【0015】エゼクタ5の入口側即ち吸引室12側は、
ポンプ15を介して冷却流体供給管4と接続すると共
に、出口側はコイル状冷却流体供給管11と管路16に
より接続する。管路16には、バルブ17を設けた排出
管18と、自動空気抜き弁19を設けた空気抜き管路2
0を連設する。冷却流体供給管4から供給される冷却流
体がエゼクタ5を通過して吸引室12で吸引力を発生
し、熱交換容器1内のドレンを吸引して冷却流体と混合
してコイル状冷却流体供給管11に送られるものであ
る。
The inlet side of the ejector 5, that is, the suction chamber 12 side,
The cooling fluid supply pipe 4 is connected via a pump 15, and the outlet side is connected to the coiled cooling fluid supply pipe 11 via a pipe 16. The pipe 16 has a discharge pipe 18 provided with a valve 17 and an air bleed pipe 2 provided with an automatic air bleed valve 19.
0 is connected in series. The cooling fluid supplied from the cooling fluid supply pipe 4 passes through the ejector 5 to generate a suction force in the suction chamber 12, sucks the drain in the heat exchange container 1, mixes with the cooling fluid, and supplies the coiled cooling fluid. It is sent to the tube 11.

【0016】熱交換容器1の上部に設けた蒸気供給管2
は、バルブ21を介して図示しないブロワやシュリンク
トンネル等の蒸気使用装置の出口側や再蒸発タンク等と
接続して凝縮すべく蒸気を熱交換容器1へ供給する。
A steam supply pipe 2 provided at the upper part of the heat exchange vessel 1
Is connected to the outlet side of a steam-using device such as a blower or a shrink tunnel (not shown) or a re-evaporation tank via a valve 21 to supply steam to the heat exchange vessel 1 for condensation.

【0017】熱交換を開始する場合、タンク1内には不
凝縮気体としての空気が滞留しており、熱交換を効率良
く行なうためにはこの空気を速やかに排除する必要があ
る。従って、蒸気供給管2からタンク1内に蒸気を供給
すると共に、エゼクタ5に冷却流体を供給して吸引力を
発生させ、タンク1内が低温のため開弁している温度応
動弁23を介すると共に、ドレン排出管3のバルブ14
と、排出管18のバルブ17を全開して、タンク1内の
滞留空気を系外に排出する。
When heat exchange is started, air as non-condensable gas stays in the tank 1, and it is necessary to quickly remove this air in order to perform heat exchange efficiently. Accordingly, the steam is supplied from the steam supply pipe 2 into the tank 1 and the cooling fluid is supplied to the ejector 5 to generate a suction force, via the temperature responsive valve 23 which is opened because the temperature in the tank 1 is low. At the same time, the valve 14 of the drain discharge pipe 3
Then, the valve 17 of the discharge pipe 18 is fully opened, and the air remaining in the tank 1 is discharged out of the system.

【0018】このように、エゼクタ5で滞留空気を吸引
排出することにより、ただ単に蒸気をタンク1内に供給
して滞留空気と置換して系外に排出する場合よりも、滞
留空気を短時間で確実に系外に排出することができる。
As described above, by sucking and discharging the staying air by the ejector 5, the staying air can be shortened for a shorter time than when the steam is simply supplied into the tank 1 and replaced with the staying air and discharged out of the system. , And can be reliably discharged out of the system.

【0019】滞留空気が排出された熱交換容器1内は、
蒸気供給管2から供給される蒸気が熱交換により凝縮し
てドレンとなることにより、その容積が急減少するため
に減圧状態となる。凝縮したドレンはドレン排出管3の
スチームトラップ13からエゼクタ5に吸引されて冷却
流体と混合してコイル状冷却流体供給管11に至り、蒸
気と熱交換して温度上昇し、温水回収管8から所定の回
収箇所へ回収される。
The inside of the heat exchange vessel 1 from which the staying air has been discharged is:
When the steam supplied from the steam supply pipe 2 is condensed by heat exchange to form a drain, the volume of the steam suddenly decreases, so that the pressure is reduced. The condensed drain is sucked into the ejector 5 from the steam trap 13 of the drain discharge pipe 3 and mixed with the cooling fluid to reach the coil-shaped cooling fluid supply pipe 11, which exchanges heat with steam to increase the temperature, and from the hot water recovery pipe 8. Collected at a predetermined collection point.

【0020】このように、凝縮したドレンと冷却流体を
エゼクタ5で混合して熱交換することにより、回収温水
の温度を高めることができて、熱回収率を上昇させるこ
とができる。
As described above, by mixing the condensed drain and the cooling fluid with the ejector 5 and exchanging heat, the temperature of the recovered hot water can be increased, and the heat recovery rate can be increased.

【0021】蒸気供給管2から供給される蒸気中に空気
等の不凝縮気体が混入していると、熱交換容器1内に空
気が滞留して、熱交換効率が低下してしまう。このよう
に、容器1内に滞留した空気は放熱により温度が低下し
て感温筒26で検知されて、温度応動弁23が自動的に
開弁することによって、エゼクタ5に吸引排出される。
If non-condensable gas such as air is mixed in the steam supplied from the steam supply pipe 2, the air stays in the heat exchange container 1 and the heat exchange efficiency is reduced. As described above, the temperature of the air staying in the container 1 is reduced by the heat radiation, and the temperature is detected by the temperature-sensitive cylinder 26. The temperature-responsive valve 23 is automatically opened to be sucked and discharged to the ejector 5.

【0022】エゼクタ5に吸引された不凝縮気体は、空
気抜き管路20に設けた自動空気抜き弁19から系外に
排出することができる。一方、熱交換した温水中に不凝
縮気体が混入していても差し障りがない場合は、自動空
気抜き弁19で系外に排出する必要はない。
The non-condensable gas sucked into the ejector 5 can be discharged out of the system from an automatic air vent valve 19 provided in the air vent line 20. On the other hand, if there is no problem even if non-condensable gas is mixed in the heat-exchanged hot water, it is not necessary to discharge the non-condensable gas out of the system by the automatic air vent valve 19.

【0023】[0023]

【発明の効果】本発明によれば、冷却流体源と接続した
エゼクタの吸引室を熱交換容器の底部と連通し、エゼク
タの出口側を再度熱交換容器と接続したことにより、凝
縮したドレンと熱交換された冷却流体を別個に回収する
のではなく、エゼクタにより凝縮ドレンを吸引して冷却
流体と混合した後、更に蒸気と熱交換することによっ
て、回収流体の温度を上昇させて熱回収率を向上させる
ことができる。
According to the present invention, the suction chamber of the ejector connected to the cooling fluid source is communicated with the bottom of the heat exchange container, and the outlet side of the ejector is connected to the heat exchange container again, so that the condensed drain is removed. Rather than recovering the heat exchanged cooling fluid separately, the condensate drain is sucked by the ejector and mixed with the cooling fluid, and then heat exchanged with steam to raise the temperature of the recovered fluid to increase the heat recovery rate. Can be improved.

【0024】また、本発明によれば、熱交換容器内の不
凝縮気体溜り部とエゼクタの吸引室を弁手段を介して連
通したことにより、熱交換中に容器内に溜まった空気等
の不凝縮気体を、弁手段を開弁しエゼクタに吸引させて
外部に排出することができる。
Further, according to the present invention, the non-condensable gas reservoir in the heat exchange container and the suction chamber of the ejector are communicated via the valve means, so that the air or the like accumulated in the container during heat exchange can be prevented. The condensed gas can be discharged to the outside by opening the valve means and causing the ejector to suck the condensed gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1 熱交換容器 2 蒸気供給管 3 ドレン排出管 4 冷却流体供給管 5 エゼクタ 8 温水回収管 12 吸引室 13 スチームトラップ 19 自動空気抜き弁 22 不凝縮気体排出管 23 温度応動弁 26 感温筒 DESCRIPTION OF SYMBOLS 1 Heat exchange container 2 Steam supply pipe 3 Drain discharge pipe 4 Cooling fluid supply pipe 5 Ejector 8 Hot water recovery pipe 12 Suction chamber 13 Steam trap 19 Automatic air release valve 22 Non-condensable gas discharge pipe 23 Temperature-responsive valve 26 Temperature-sensitive cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換容器に蒸気と冷却流体を供給し
て、蒸気を冷却流体で熱交換することにより凝縮させる
ものにおいて、熱交換容器の底部とエゼクタの吸引室を
連通すると共に熱交換容器内の不凝縮気体溜り部とエゼ
クタの吸引室を弁手段を介して連通し、当該エゼクタの
入口側を冷却流体供給源と接続し、エゼクタの出口側を
上記熱交換容器と接続したことを特徴とする熱交換器。
1. A method for supplying steam and a cooling fluid to a heat exchange container and condensing the steam by exchanging heat with the cooling fluid, wherein a bottom portion of the heat exchange container communicates with a suction chamber of an ejector. The non-condensable gas reservoir in the inside and the suction chamber of the ejector are communicated via valve means, the inlet side of the ejector is connected to a cooling fluid supply source, and the outlet side of the ejector is connected to the heat exchange container. And heat exchanger.
JP2000036257A 2000-02-15 2000-02-15 Heat exchanger Pending JP2001227878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036257A JP2001227878A (en) 2000-02-15 2000-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036257A JP2001227878A (en) 2000-02-15 2000-02-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2001227878A true JP2001227878A (en) 2001-08-24

Family

ID=18560326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036257A Pending JP2001227878A (en) 2000-02-15 2000-02-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2001227878A (en)

Similar Documents

Publication Publication Date Title
CN102149985B (en) Apparatus for recovering vent steam and drain
KR101601825B1 (en) Device of Recovering/Supplying Condensate Water and Steam of No Trap-typed Steam Generating System
JP5384150B2 (en) Heat exchanger
JP2001227877A (en) Heat exchanger
JP2001227878A (en) Heat exchanger
JP2002054883A (en) Heat exchanger
JP2001227879A (en) Heat exchanger
JP5335316B2 (en) Condensate recovery device
JP4387536B2 (en) Steam heating device
JP3895423B2 (en) Liquid pumping device
JP4583610B2 (en) Steam heating device
JP2001227880A (en) Heat exchanger
JP4361203B2 (en) Steam heating device
JP2002054886A (en) Heat exchanger
JP4187867B2 (en) Heat exchanger
JP2000354541A (en) Steam heating device
CN218764665U (en) Steam recovery device
JP2001227881A (en) Heat exchanger
JPH10148480A (en) Heat exchanger
JP4364414B2 (en) Heat exchanger
JP5047426B2 (en) Steam heating device
JP3789993B2 (en) Heat exchanger
JP3790005B2 (en) Heat exchanger
CN213965178U (en) Automatic retrieve ethanol evaporative concentration system of lime set
JP5047425B2 (en) Steam heating device