JP2004163050A - Air heating device - Google Patents

Air heating device Download PDF

Info

Publication number
JP2004163050A
JP2004163050A JP2002331508A JP2002331508A JP2004163050A JP 2004163050 A JP2004163050 A JP 2004163050A JP 2002331508 A JP2002331508 A JP 2002331508A JP 2002331508 A JP2002331508 A JP 2002331508A JP 2004163050 A JP2004163050 A JP 2004163050A
Authority
JP
Japan
Prior art keywords
negative pressure
condensate
positive pressure
valve
fluid outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002331508A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yoshiyama
知之 芳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002331508A priority Critical patent/JP2004163050A/en
Publication of JP2004163050A publication Critical patent/JP2004163050A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air heating device for preventing retention of condensate in a heat exchanger. <P>SOLUTION: A steam supply pipe 21 is connected to an inlet header 26 of the heat exchanger 20. A negative pressure/positive pressure selector valve 23 is connected to an outlet header 27. A positive pressure fluid outlet 5 of the negative pressure/positive pressure selector valve 23 is connected to a steam trap 24, and a negative pressure fluid outlet 4 is connected to a condensate recovering means 25. When the inside of the heat exchanger 20 becomes into a negative pressure state not higher than atmospheric pressure, the condensate flows down from the negative pressure fluid outlet 4 to the condensate recovering means 25, is discharged to the outside, and hence does not retain inside. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気を熱源として空気を加熱する空気加熱装置に関し、特に、加熱装置内部に蒸気の凝縮水としての復水を滞留することがないものに関する。
【0002】
【従来の技術】
【特許文献1】特公昭51−31998号公報
これは、フィンチューブ型熱交換器を用いた空気加熱装置において、加熱装置への蒸気の供給量を調整弁で制御すると共に、加熱装置に逆止弁と熱動弁を併用して、加熱装置内部が真空になると逆止弁が開弁して加熱装置内へ外気を吸入することによって復水が排出できなくなることを防止するものである。
【0003】
【発明が解決しようとする課題】
上記従来の空気加熱装置では、加熱装置内部の復水を完全に排出することができない問題があった。すなわち、加熱装置内部が真空になると外気を吸入して、復水を排出するためのスチームトラップの入口側と出口側の差圧が負圧になることは防止できるが、スチームトラップの入口側と出口側の圧力は共に大気圧で実質的な差圧はゼロのままであり、加熱装置内部の凹部や細管部に滞留している復水を外部へ排出することができないのである。
【0004】
加熱装置内部に復水を滞留すると、ウォータハンマ現象を生じたり、加熱装置内部を腐食させ、場合によってはフィンチューブに孔を開けて損傷させてしまう。
【0005】
従って本発明の課題は、加熱装置の内部に復水を滞留することのない空気加熱装置を得ることである。
【0006】
【課題を解決するための手段】
上記の課題を解決するための手段は、熱交換器を通過する空気を、制御弁を介して供給する加熱用の蒸気で加熱して、蒸気が熱を奪われて凝縮した復水をスチームトラップから外部へ排出するものにおいて、熱交換器とスチームトラップの間に切換手段を配置し、当該切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁として、上記正圧流体出口とスチームトラップを接続すると共に、上記負圧流体出口と復水回収手段とを接続したものである。
【0007】
【発明の実施の形態】
熱交換器とスチームトラップの間に切換手段を配置して、この切換手段を負圧正圧切換弁としたことによって、流体入口から負圧流体としての復水が流入してきた場合は、負圧流体出口から復水回収手段へ復水が自動的に流下する。一方、流体入口から正圧流体としての復水が流入してくると、正圧流体出口からスチームトラップを介して自動的に排出される。
【0008】
【実施例】
本実施例においては、通過する空気を加熱する熱交換器20と、熱交換器20へ蒸気を供給する蒸気供給管21と、蒸気供給管21に取り付けた制御弁22と、熱交換器20の出口側に接続した負圧正圧切換弁23と、スチームトラップ24、及び、復水回収手段25とで空気加熱装置を構成する。
【0009】
熱交換器20の左側に入口ヘッダ26を配置して蒸気供給管21と接続すると共に、右側に出口ヘッダ27を配置し負圧正圧切換弁23を介してスチームトラップ24及び復水回収手段25と接続する。蒸気供給管21から供給される蒸気は、入口ヘッダ26から熱交換器20内の図示しないフィンチューブの全体を通過して、空気と熱交換して復水となり、出口ヘッダ27から負圧正圧切換弁23へ至る。
【0010】
負圧正圧切換弁23は図2に示すように、弁ケーシング1に流体入口2と弁室3と負圧流体出口4と正圧流体出口5を設けて、弁室3内に一体に形成した正圧弁体6と負圧弁体7とで構成する。
【0011】
流体入口2は連通路8によって弁室3と連通する。横長円筒状の弁室3内に断面略ロ字状の弁座部材9を変位しないように取り付ける。弁座部材9の左端部に円環状の負圧弁座10を、反対の右端部には同じく円環状の正圧弁座11を取り付ける。弁座部材9の中心部に、正圧弁体6と負圧弁体7を一体に連結する連結棒12を、左右方向摺動自在に配置する。弁座部材9の左右壁面に複数の貫通孔13,14を設ける。
【0012】
負圧弁座10に対向して円板状の負圧弁体7を、同じく、正圧弁座11に対向して円板状の正圧弁体6を、連結棒12を介して一体に形成する。弁室3内の負圧流体出口4側端部にはリブ状の負圧弁体7用着座部15,16を設ける。着座部15,16はリブ状であるために、その周囲に流体の通過できる図示しないスペースを有する。
【0013】
正圧弁体6の正圧流体出口5側に、弾性部材としての引っ張り状態のコイルバネ17を取り付ける。図2に示す状態は、正圧流体出口5側の流体圧力によって引っ張りコイルバネ17が更に伸長して正圧弁体6が弁座11上に着座している状態を示す。
【0014】
流体入口2から大気圧以下の負圧流体が弁室3内へ流入してくると、図2に示すように、正圧弁体6が正圧流体出口5側の正圧と弁室3内の負圧との圧力差に基づいて閉弁することによって、一体に連結した負圧弁体7が弁座10から離座して開弁し、流入した負圧流体は貫通孔13とリブ状着座部15,16の外周を通って負圧流体出口4から図1に示す復水回収手段25へ流下する。
【0015】
一方、流体入口2から大気圧以上の正圧流体が流入してくると、コイルバネ17の引っ張り弾性力によって正圧弁体6が弁座11から離座して開弁すると共に一体に連結された負圧弁体7が弁座10へ着座して閉弁することにより、流入した正圧流体は貫通孔14を通って正圧流体出口5から図1に示すスチームトラップ24へと流下する。
【0016】
復水回収手段25は、復水流入口30と流出口32、及び、高圧操作流体導入口33と排出口34を有し、復水流入口30に逆止弁35を介して負圧流体出口4と接続し、流出口32に同じく逆止弁36を介して復水排出管29を接続すると共に、高圧操作流体導入口33に蒸気供給管21を分岐した高圧蒸気管37を接続する。一方、排出口34は均圧管28によって負圧流体出口4と連通する。
【0017】
復水回収手段25は、内部に配置した図示しないフロートが下方部に位置する場合に、高圧操作流体の導入口33を閉口し、一方、排出口34を開口して、負圧流体出口4から負圧復水を逆止弁35と流入口30を通して復水回収手段25内に流下させる。そして、復水回収手段25内に負圧復水が溜まってフロートが所定上方部に位置すると、排出口34を閉口し、一方、高圧操作流体の導入口33を開口して、高圧蒸気管37から高圧圧送用蒸気を内部に流入させることにより、内部に溜まった復水を流出口32と逆止弁36と復水排出管29を通して所定箇所へ圧送する。
【0018】
復水が圧送されて復水回収手段25内の液位が低下すると、再度、高圧操作流体の導入口33を閉口し、排出口34を開口することにより、流入口30から復水を内部へ流下させる。このような作動サイクルを繰り返すことにより、復水回収手段25は負圧流体出口4からの負圧復水を所定箇所へ圧送する。
【0019】
スチームトラップ24の出口側に逆止弁31を取り付けて、復水排出管29と接続する。なお、逆止弁31,35,36は、図1に示す矢印方向への流体の通過は許容するが、反対方向への通過は許容しないものである。
【0020】
熱交換器20で空気を加熱する場合、蒸気供給管21と入口ヘッダ26から供給される所定圧力の蒸気によって、熱交換器20を流下する空気を加熱する。加熱によって熱を奪われた蒸気は復水となり、通常の状態である大気圧以上の正圧の場合は負圧正圧切換弁23の正圧流体出口5を通ってスチームトラップ24から復水排出管29へと排出される。
【0021】
熱交換器20の出口ヘッダ27内の圧力が大気圧以下の負圧状態になると、復水は負圧正圧切換弁23の負圧流体出口4から復水回収手段25へ流下して、復水排出管29を通って外部へ確実に排出されて、熱交換器20の内部に残留することはない。
【0022】
【発明の効果】
本発明によれば、熱交換器の内部が大気圧以下の負圧状態になっても、負圧正圧切換弁から復水回収手段へ復水を流下させることによって、熱交換器内部の残留復水を確実に系外へ排出することができる。
【図面の簡単な説明】
【図1】本発明の空気加熱装置の実施例を示す構成図。
【図2】本発明の空気加熱装置に用いる負圧正圧切換弁の断面図。
【符号の説明】
1 弁ケーシング
2 流体入口
4 負圧流体出口
5 正圧流体出口
20 熱交換器
21 蒸気供給管
23 負圧正圧切換弁
24 スチームトラップ
25 復水回収手段
29 復水排出管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air heating device that heats air using steam as a heat source, and more particularly to an air heating device that does not accumulate condensed water as steam condensed water inside the heating device.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Publication No. 51-31998 discloses an air heating apparatus using a fin tube type heat exchanger, in which the amount of steam supplied to the heating apparatus is controlled by an adjusting valve and the heating apparatus is checked. The valve and the thermal valve are used in combination to prevent the check valve from opening when the inside of the heating device is evacuated and sucking outside air into the heating device to prevent the condensate from being discharged.
[0003]
[Problems to be solved by the invention]
The conventional air heating device has a problem that the condensate in the heating device cannot be completely discharged. That is, when the inside of the heating device becomes a vacuum, the outside air is sucked in, and the differential pressure between the inlet side and the outlet side of the steam trap for discharging the condensate can be prevented from becoming a negative pressure. The pressure on the outlet side is both atmospheric pressure and the substantial differential pressure remains zero, and condensate remaining in the concave portion or the thin tube portion inside the heating device cannot be discharged to the outside.
[0004]
If the condensed water stays inside the heating device, a water hammer phenomenon occurs, the inside of the heating device is corroded, and in some cases, the fin tube is opened and damaged.
[0005]
Therefore, an object of the present invention is to provide an air heating device that does not cause condensate to stay inside the heating device.
[0006]
[Means for Solving the Problems]
Means for solving the above problem is to heat air passing through the heat exchanger with heating steam supplied through a control valve, and to condensate condensed by the steam being deprived of heat by a steam trap. In what is discharged from the outside, switching means is disposed between the heat exchanger and the steam trap, and the switching means has a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in a valve casing, The negative pressure / positive pressure switching valve discharges from the negative pressure fluid outlet when the negative pressure fluid flows in from the fluid inlet, and discharges from the positive pressure fluid outlet when the positive pressure fluid flows from the fluid inlet. The positive pressure fluid outlet is connected to the steam trap, and the negative pressure fluid outlet is connected to the condensate recovery means.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
A switching means is disposed between the heat exchanger and the steam trap, and the switching means is a negative pressure / positive pressure switching valve. When condensed water as a negative pressure fluid flows from the fluid inlet, the negative pressure Condensate automatically flows down from the fluid outlet to the condensate recovery means. On the other hand, when condensed water flows as a positive pressure fluid from the fluid inlet, it is automatically discharged from the positive pressure fluid outlet via a steam trap.
[0008]
【Example】
In this embodiment, a heat exchanger 20 for heating the passing air, a steam supply pipe 21 for supplying steam to the heat exchanger 20, a control valve 22 attached to the steam supply pipe 21, The negative pressure / positive pressure switching valve 23 connected to the outlet side, the steam trap 24 and the condensate recovery means 25 constitute an air heating device.
[0009]
An inlet header 26 is arranged on the left side of the heat exchanger 20 and connected to the steam supply pipe 21, and an outlet header 27 is arranged on the right side. The steam trap 24 and the condensate recovery means 25 are connected via the negative pressure / positive pressure switching valve 23. Connect with The steam supplied from the steam supply pipe 21 passes through the entire fin tube (not shown) in the heat exchanger 20 from the inlet header 26, exchanges heat with the air to be condensed, and flows from the outlet header 27 to the negative pressure positive pressure. The switching valve 23 is reached.
[0010]
As shown in FIG. 2, the negative pressure / positive pressure switching valve 23 is formed integrally with the valve casing 1 by providing a fluid inlet 2, a valve chamber 3, a negative pressure fluid outlet 4, and a positive pressure fluid outlet 5 in the valve casing 1. The positive pressure valve element 6 and the negative pressure valve element 7 are provided.
[0011]
The fluid inlet 2 communicates with the valve chamber 3 through the communication passage 8. A valve seat member 9 having a substantially rectangular cross section is mounted in the horizontally long cylindrical valve chamber 3 so as not to be displaced. An annular negative pressure valve seat 10 is attached to the left end of the valve seat member 9, and an annular positive pressure valve seat 11 is attached to the opposite right end. A connecting rod 12 that integrally connects the positive pressure valve body 6 and the negative pressure valve body 7 is disposed at the center of the valve seat member 9 so as to be slidable in the left-right direction. A plurality of through holes 13 and 14 are provided on the left and right wall surfaces of the valve seat member 9.
[0012]
A disk-shaped negative pressure valve element 7 is formed integrally with the negative pressure valve seat 10, and a disk-shaped positive pressure valve element 6 is formed integrally with the positive pressure valve seat 11 via a connecting rod 12. At the end of the valve chamber 3 on the side of the negative pressure fluid outlet 4, there are provided seating portions 15 and 16 for the rib-shaped negative pressure valve 7. Since the seating portions 15 and 16 are rib-shaped, they have a space (not shown) around which the fluid can pass.
[0013]
A tensioned coil spring 17 as an elastic member is attached to the positive pressure fluid outlet 5 side of the positive pressure valve body 6. The state shown in FIG. 2 shows a state in which the tension coil spring 17 is further extended by the fluid pressure on the positive pressure fluid outlet 5 side, and the positive pressure valve body 6 is seated on the valve seat 11.
[0014]
When a negative pressure fluid having a pressure equal to or lower than the atmospheric pressure flows into the valve chamber 3 from the fluid inlet 2, the positive pressure valve body 6 causes the positive pressure on the positive pressure fluid outlet 5 side and the pressure in the valve chamber 3 as shown in FIG. By closing the valve based on the pressure difference from the negative pressure, the integrally connected negative pressure valve element 7 is separated from the valve seat 10 to open the valve, and the inflowing negative pressure fluid flows through the through hole 13 and the rib-shaped seating portion. It flows down from the negative pressure fluid outlet 4 to the condensate recovery means 25 shown in FIG.
[0015]
On the other hand, when a positive pressure fluid having a pressure equal to or higher than the atmospheric pressure flows from the fluid inlet 2, the positive pressure valve body 6 is separated from the valve seat 11 by the tensile elastic force of the coil spring 17 and is opened, and the negative pressure is integrally connected. When the pressure valve body 7 is seated on the valve seat 10 and closed, the inflowing positive pressure fluid flows down from the positive pressure fluid outlet 5 to the steam trap 24 shown in FIG.
[0016]
The condensate recovery means 25 has a condensate inflow port 30 and an outflow port 32, and a high-pressure operating fluid inlet 33 and a discharge port 34. The condensate inflow port 30 is connected to the negative pressure fluid outlet 4 via a check valve 35. Similarly, the condensate discharge pipe 29 is connected to the outlet 32 via the check valve 36, and the high-pressure operating fluid inlet 33 is connected to the high-pressure steam pipe 37 which branches off the steam supply pipe 21. On the other hand, the discharge port 34 communicates with the negative pressure fluid outlet 4 by the pressure equalizing pipe 28.
[0017]
The condensate recovery means 25 closes the inlet 33 for the high-pressure operating fluid, opens the outlet 34 when the float (not shown) disposed inside is located at the lower part, and opens The negative pressure condensate flows down into the condensate recovery means 25 through the check valve 35 and the inflow port 30. When the negative pressure condensate accumulates in the condensate recovery means 25 and the float is positioned at a predetermined upper portion, the discharge port 34 is closed, while the high pressure operation fluid inlet 33 is opened, and the high pressure steam pipe 37 is opened. , The condensed water collected inside is pumped to a predetermined location through the outlet 32, the check valve 36, and the condensate discharge pipe 29.
[0018]
When the condensate is pressure-fed and the liquid level in the condensate recovery means 25 decreases, the condensate is conveyed from the inflow port 30 to the inside by closing the inlet port 33 of the high-pressure operation fluid and opening the discharge port 34 again. Let it flow down. By repeating such an operation cycle, the condensate recovery means 25 pumps the negative pressure condensate from the negative pressure fluid outlet 4 to a predetermined location.
[0019]
A check valve 31 is attached to the outlet side of the steam trap 24 and connected to the condensate discharge pipe 29. The check valves 31, 35, and 36 permit passage of the fluid in the direction of the arrow shown in FIG. 1, but do not permit passage of the fluid in the opposite direction.
[0020]
When air is heated by the heat exchanger 20, the air flowing down the heat exchanger 20 is heated by steam of a predetermined pressure supplied from the steam supply pipe 21 and the inlet header 26. The steam deprived of heat by heating becomes condensed water. In the case of a normal pressure higher than the atmospheric pressure, the condensate is discharged from the steam trap 24 through the positive pressure fluid outlet 5 of the negative pressure / positive pressure switching valve 23. It is discharged to a pipe 29.
[0021]
When the pressure in the outlet header 27 of the heat exchanger 20 becomes a negative pressure state equal to or lower than the atmospheric pressure, the condensate flows down from the negative pressure fluid outlet 4 of the negative pressure / positive pressure switching valve 23 to the condensate recovery means 25 and returns to the condensate state. The water is reliably discharged to the outside through the water discharge pipe 29 and does not remain inside the heat exchanger 20.
[0022]
【The invention's effect】
According to the present invention, even if the inside of the heat exchanger is in a negative pressure state below the atmospheric pressure, the condensate flows down from the negative pressure / positive pressure switching valve to the condensate recovery means, so that the residual heat inside the heat exchanger is maintained. Condensate can be reliably discharged out of the system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an air heating device of the present invention.
FIG. 2 is a sectional view of a negative pressure / positive pressure switching valve used in the air heating device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve casing 2 Fluid inlet 4 Negative pressure fluid outlet 5 Positive pressure fluid outlet 20 Heat exchanger 21 Steam supply pipe 23 Negative pressure positive pressure switching valve 24 Steam trap 25 Condensate recovery means 29 Condensate discharge pipe

Claims (1)

熱交換器を通過する空気を、制御弁を介して供給する加熱用の蒸気で加熱して、蒸気が熱を奪われて凝縮した復水をスチームトラップから外部へ排出するものにおいて、熱交換器とスチームトラップの間に切換手段を配置し、当該切換手段を、弁ケーシングに流体入口と弁室と負圧流体出口と正圧流体出口を有し、流体入口から負圧流体が流入してくると負圧流体出口から排出し、一方、流体入口から正圧流体が流入してくると正圧流体出口から排出する負圧正圧切換弁として、上記正圧流体出口とスチームトラップを接続すると共に、上記負圧流体出口と復水回収手段とを接続したことを特徴とする空気加熱装置。A method in which air passing through a heat exchanger is heated by steam for heating supplied through a control valve, and condensate condensed by removing heat from the steam is discharged from a steam trap to the outside. Switching means is disposed between the fluid trap and the steam trap. The switching means has a fluid inlet, a valve chamber, a negative pressure fluid outlet, and a positive pressure fluid outlet in a valve casing, and a negative pressure fluid flows in from the fluid inlet. The positive pressure fluid outlet and the steam trap are connected as a negative pressure / positive pressure switching valve which discharges from the positive pressure fluid outlet when the positive pressure fluid flows in from the fluid inlet while discharging from the negative pressure fluid outlet. An air heating device, wherein the negative pressure fluid outlet is connected to a condensate recovery means.
JP2002331508A 2002-11-15 2002-11-15 Air heating device Pending JP2004163050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331508A JP2004163050A (en) 2002-11-15 2002-11-15 Air heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331508A JP2004163050A (en) 2002-11-15 2002-11-15 Air heating device

Publications (1)

Publication Number Publication Date
JP2004163050A true JP2004163050A (en) 2004-06-10

Family

ID=32808851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331508A Pending JP2004163050A (en) 2002-11-15 2002-11-15 Air heating device

Country Status (1)

Country Link
JP (1) JP2004163050A (en)

Similar Documents

Publication Publication Date Title
US7364609B2 (en) Method and kit for use with standard pipe couplings to construct a de-aerator
JP4648430B2 (en) Hot water generator
JP7189792B2 (en) Drain recovery device
JP4908074B2 (en) Steam waste heat recovery and decompression equipment
JP3785215B2 (en) Steam heating device
JP2004076987A (en) Steam-heating device
JP2004163050A (en) Air heating device
JP2000304465A (en) Heat exchanger
JP4594270B2 (en) Heat exchanger
JP5335316B2 (en) Condensate recovery device
JP2004163049A (en) Air heating apparatus
JP4949770B2 (en) Condensate recovery device
JP2004076986A (en) Steam-heating device
JP4964831B2 (en) Hot water generator
JP2009222284A (en) Air heating device
JP2004163048A (en) Air heating apparatus
JP2009222286A (en) Air heating device
JP5940338B2 (en) Condensate recovery device
JP2004073942A (en) Steam heating equipment
JP4187867B2 (en) Heat exchanger
JP5715811B2 (en) Liquid pumping device
WO2022249670A1 (en) Heat recovery system
WO2016052726A1 (en) Drain recovery device
JP5047425B2 (en) Steam heating device
JP4975424B2 (en) Steam waste heat recovery and decompression equipment