JP2004278874A - Condensate re-evaporation device - Google Patents

Condensate re-evaporation device Download PDF

Info

Publication number
JP2004278874A
JP2004278874A JP2003069058A JP2003069058A JP2004278874A JP 2004278874 A JP2004278874 A JP 2004278874A JP 2003069058 A JP2003069058 A JP 2003069058A JP 2003069058 A JP2003069058 A JP 2003069058A JP 2004278874 A JP2004278874 A JP 2004278874A
Authority
JP
Japan
Prior art keywords
condensate
evaporation tank
evaporation
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069058A
Other languages
Japanese (ja)
Inventor
Tetsuya Mita
哲也 見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2003069058A priority Critical patent/JP2004278874A/en
Publication of JP2004278874A publication Critical patent/JP2004278874A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condensate re-evaporation device capable of increasing re-evaporation amount of condensate in a re-evaporation tank without discharging high-temperature condensate from the re-evaporation tank. <P>SOLUTION: The condensate re-evaporation device is constituted by connecting a condensate feed pipe 2 and a communication pipe 8 to an upper part of a re-evaporation tank 1. A pressure sensor 9 and a pressure control valve 4 are fitted to the communication pipe 8 so as to be connected to a suction chamber 12 of an ejector 3, and a liquid force-feed member 7 is disposed on a predetermined lower part of the re-evaporation tank 1 and connected via a condensate outlet pipe 5. A temperature regulating valve 23 is fitted to the condensate outlet pipe 5. In the condensate re-evaporation device, a part of condensate fed from the condensate feed pipe 2 to the re-evaporation tank 1 is re-evaporated, and sucked by the ejector 3 through the communication pipe 8, and the remaining condensate flows down into the liquid force-feed member 7 from the temperature regulating valve 23 only when the temperature of the remaining condensate is low. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、蒸気の凝縮した高温復水を、再蒸発タンク内で再蒸発させて蒸気として再度利用する復水の再蒸発装置に関する。
【0002】
【従来の技術】
【特許文献1】特開平9−196305号公報
これには、蒸気使用機器の出口側にスチームトラップを介して再蒸発タンクを接続して、再蒸発タンク内で発生した再蒸発蒸気をエゼクタで吸引して所定の再蒸発蒸気使用箇所へ供給すると共に、再蒸発タンクの下部に渦巻きポンプを接続した復水回収装置が開示されている。
【0003】
【発明が解決しようとする課題】
上記従来の再蒸発タンクでは、再蒸発タンク内でより多くの再蒸発蒸気を得られない問題があった。これは、再蒸発タンク内に溜まった復水の温度に係わり無く、すなわち、未だ高温状態の復水をも渦巻きポンプで再蒸発タンクから吸引して排出してしまうためである。
【0004】
従って、本発明の課題は、高温の復水を再蒸発タンクから排出することなく、再蒸発タンク内での復水の再蒸発量をより多くすることのできる復水の再蒸発装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するために講じた本発明の手段は、再蒸発タンクに復水供給管を接続して、当該再蒸発タンク内で復水を再蒸発させて発生した蒸気を、再蒸発蒸気使用箇所へ供給するものにおいて、再蒸発タンクにエゼクタの吸引室を接続し、再蒸発タンクの復水出口に、排出する復水の温度を制御することのできる温度調節弁を取り付けると共に、温水等の液体を高圧の圧縮空気や蒸気等の気体で圧送する液体圧送部材を配置したものである。
【0006】
【発明の実施の形態】
復水供給管から再蒸発タンクへ供給される復水の一部は再蒸発してエゼクタの吸引室に吸引され、再蒸発し切れない復水は再蒸発タンク内に溜まる。再蒸発タンクの復水出口に温度調節弁を取り付けたことにより、再蒸発タンクから排出する復水の温度を任意に制御することができ、復水の温度が低い場合は温度調節弁を開弁して復水を液体圧送部材へ流下させ、一方、復水の温度が高い場合は温度調節弁を閉弁して復水が液体圧送部材へ流下しないようにすることによって、再蒸発タンク内での復水の再蒸発量を増大させることができる。
【0007】
【実施例】
図1において、再蒸発タンク1と、再蒸発タンク1に復水を供給する復水供給管2と、再蒸発タンク1の上部と接続したエゼクタ3と、再蒸発タンク1の復水出口に接続した復水出口管5と、復水出口管5に取り付けた温度調節弁23、及び、復水出口管5の下端を接続した液体圧送部材7とで復水の再蒸発装置を構成する。
【0008】
再蒸発タンク1は円筒形密閉状で、側面上部に復水供給管2を接続すると共に、側面下部に復水出口管5を接続する。復水供給管2にはバルブ6を介在させて図示しない蒸気使用機器などの復水発生源と接続する。一方、復水出口管5には温度調節弁23と逆止弁14を介在させて液体圧送部材7の液体流入口15と接続する。逆止弁14は、再蒸発タンク1から下方の液体圧送部材7への液体の流下のみを許容し、反対側への液体の通過は許容しないものである。また、再蒸発タンク1の左側面上部にオーバーフロー管24を取り付ける。
【0009】
温度調節弁23は、復水出口管5内あるいは再蒸発タンク1内の復水の温度が所定値よりも低い場合は開弁して低温復水を液体圧送部材7へ流下させ、一方、復水の温度が所定値よりも高くなると閉弁して高温復水を再蒸発タンク1内に滞留することができるものであれば用いることができ、例えば、自動温度調節弁や自力式温調弁あるいは温調トラップと呼ばれて従来から使用されているものを用いることができる。
【0010】
復水出口管5の下端を液体圧送部材7に接続する。液体圧送部材7は、例えば、特開平10−61885号公報に開示されているものを用いることができる。すなわち、液体圧送部材7は、液体流入口15と液体流出口16、及び、高圧操作流体導入口17と高圧操作流体排出口18を有し、液体流出口16に逆止弁19を介して復水排出管20を接続すると共に、高圧操作流体導入口17に後述する蒸気排出管13を分岐した高圧蒸気管21を接続する。一方、高圧操作流体排出口18は均圧管22によって再蒸発タンク1の上部と連通する。
【0011】
液体圧送部材7は、再蒸発タンク1から復水が自然流下できるだけの距離を隔てた下方に配置する。また、液体圧送部材7は、内部に配置した図示しないフロートが下方部に位置する場合に、高圧操作流体導入口17を閉口し、一方、高圧操作流体排出口18を開口して、再蒸発タンク1から低温復水を温度調節弁23と逆止弁14と液体流入口15を通して液体圧送部材7内に流下させる。
【0012】
液体圧送部材7内に低温復水が溜まって図示しないフロートが所定上方部に位置すると、高圧操作流体排出口18を閉口し、一方、高圧操作流体導入口17を開口して、高圧蒸気管21から高圧圧送用蒸気を内部に流入させることにより、内部に溜まった低温復水を液体流出口16と逆止弁19と復水排出管20を通して所定箇所へ圧送する。
【0013】
低温復水が圧送されて液体圧送部材7内の液位が低下すると、再度、高圧操作流体導入口17を閉口し、高圧操作流体排出口18を開口することにより、液体流入口15から低温復水を内部へ流下させる。このような作動サイクルを繰り返すことにより、液体圧送部材7は再蒸発タンク1からの低温復水を所定箇所へ圧送する。
【0014】
再蒸発タンク1の上面に連通管8を接続して、圧力制御弁4とエゼクタ3を連通する。圧力制御弁4は、圧力センサ9とコントローラ10を組み合わせて用いる。圧力センサ9で連通管8内すなわち再蒸発タンク1内の圧力を検出して、コントローラ10で設定した設定圧力に成るように圧力制御弁4の弁開度を自動的に制御するものである。
【0015】
エゼクタ3には蒸気供給管11を接続すると共に、エゼクタ3の吸引室12に連通管8の端部を接続する。エゼクタ3は、蒸気供給管11から供給される高圧蒸気によって吸引室12で所定の吸引力を発生して、再蒸発タンク1内の再蒸発蒸気を吸引するものである。
【0016】
復水供給管2から再蒸発タンク1内へ供給される復水は、再蒸発タンク1内で一部が再蒸発して連通管8からエゼクタ3へ吸引され、再蒸発し切れない復水はタンク1内に溜まる。この場合、復水の温度が低い場合のみ温度調節弁23が開弁して液体圧送部材7内へ流下させ、復水の温度が高い場合は温度調節弁23が閉弁して高温復水を再蒸発タンク1内に滞留することによって、再蒸発タンク1内での再蒸発量が増加する。
【0017】
また、連通管8に取り付けた圧力制御弁4によって、再蒸発タンク1内の圧力を所定の圧力状態、すなわち、再蒸発タンク1から液体圧送部材7内へ復水が自然流下できるだけの圧力状態に維持することにより、再蒸発タンク1内の低温復水を液体圧送部材7内へ流下させることができる。
【0018】
このように圧力制御弁4により、再蒸発タンク1内の圧力を復水が自然流下できるだけの比較的低い圧力に設定することによって、再蒸発タンク1内での復水の再蒸発量を更に増加させることができ、復水の再蒸発蒸気への変換率を高めることができる。
【0019】
エゼクタ3に吸引された再蒸発タンク1内の再蒸発蒸気は、蒸気供給管11からの高圧蒸気と混合されて、蒸気排出管13から図示しない別途の蒸気使用箇所へ配送される。
【0020】
【発明の効果】
上記のように本発明によれば、再蒸発タンクの上部にエゼクタを接続すると共に、再蒸発タンクの復水出口に温度調節弁と液体圧送部材を取り付けたことにより、高温の復水を再蒸発タンクから排出することなく、再蒸発タンク内での復水の再蒸発量をより多くすることができる。
【図面の簡単な説明】
【図1】本発明に係る復水の再蒸発装置の実施例を示す構成図。
【符号の説明】
1 再蒸発タンク
2 復水供給管
3 エゼクタ
4 圧力制御弁
5 復水出口管
7 液体圧送部材
11 蒸気供給管
15 液体流入口
16 液体流出口
17 高圧操作流体導入口
18 高圧操作流体排出口
23 温度調節弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a condensate re-evaporation device for re-evaporating high-temperature condensate in which steam is condensed in a re-evaporation tank and reusing the condensed steam as steam.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 9-196305 In this, a re-evaporation tank is connected to the outlet side of a steam-using device via a steam trap, and the re-evaporation steam generated in the re-evaporation tank is sucked by an ejector. A condensate recovery device is disclosed in which a vortex pump is connected to a lower portion of a re-evaporation tank and supplied to a predetermined re-evaporation steam use point.
[0003]
[Problems to be solved by the invention]
The above-mentioned conventional re-evaporation tank has a problem in that more re-evaporated steam cannot be obtained in the re-evaporation tank. This is because regardless of the temperature of the condensed water stored in the re-evaporation tank, that is, the condensate still in a high temperature state is sucked and discharged from the re-evaporation tank by the spiral pump.
[0004]
Accordingly, an object of the present invention is to provide a condensate re-evaporation apparatus capable of increasing the amount of condensate re-evaporation in a re-evaporation tank without discharging hot condensate from the re-evaporation tank. It is.
[0005]
[Means for Solving the Problems]
Means of the present invention taken to solve the above-mentioned problem is that a condensate supply pipe is connected to the re-evaporation tank, and steam generated by re-evaporating the condensate in the re-evaporation tank is re-evaporated steam. In the equipment to be supplied to the point of use, the suction chamber of the ejector is connected to the re-evaporation tank, and a temperature control valve that can control the temperature of the condensate discharged is installed at the condensate outlet of the re-evaporation tank. A liquid pumping member for pumping the liquid with a gas such as high-pressure compressed air or steam is disposed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Part of the condensed water supplied from the condensate supply pipe to the re-evaporation tank is re-evaporated and sucked into the suction chamber of the ejector, and the condensed water that cannot be completely re-evaporated accumulates in the re-evaporation tank. By installing a temperature control valve at the condensate outlet of the re-evaporation tank, the temperature of the condensate discharged from the re-evaporation tank can be controlled arbitrarily. When the temperature of the condensate is low, the temperature control valve is opened. In the re-evaporation tank, the condensate flows down to the liquid pumping member, while if the condensate temperature is high, the temperature control valve is closed to prevent the condensate from flowing down to the liquid pumping member. The amount of re-evaporation of condensate can be increased.
[0007]
【Example】
In FIG. 1, the re-evaporation tank 1, a condensate supply pipe 2 for supplying condensate to the re-evaporation tank 1, an ejector 3 connected to the upper part of the re-evaporation tank 1, and a condensate outlet of the re-evaporation tank 1 The condensate outlet pipe 5, the temperature control valve 23 attached to the condensate outlet pipe 5, and the liquid pumping member 7 connected to the lower end of the condensate outlet pipe 5 constitute a condensate reevaporation apparatus.
[0008]
The re-evaporation tank 1 has a cylindrical shape and has a condensate supply pipe 2 connected to the upper side and a condensate outlet pipe 5 connected to the lower side. The condensate supply pipe 2 is connected to a condensate generation source such as a steam-using device (not shown) via a valve 6. On the other hand, the condensate outlet pipe 5 is connected to the liquid inlet 15 of the liquid pressure feeding member 7 via a temperature control valve 23 and a check valve 14. The check valve 14 allows only the liquid to flow downward from the re-evaporation tank 1 to the liquid pumping member 7 below, and does not allow the liquid to pass to the opposite side. Further, an overflow pipe 24 is attached to the upper left side of the re-evaporation tank 1.
[0009]
When the temperature of the condensate in the condensate outlet pipe 5 or the re-evaporation tank 1 is lower than a predetermined value, the temperature control valve 23 is opened to allow the low-temperature condensate to flow down to the liquid pumping member 7. If the temperature of the water becomes higher than a predetermined value, any valve can be used as long as the valve can be closed and the high-temperature condensate can be retained in the re-evaporation tank 1. For example, an automatic temperature control valve or a self-operated temperature control valve can be used. Alternatively, a conventional trap called a temperature control trap can be used.
[0010]
The lower end of the condensate outlet pipe 5 is connected to the liquid pumping member 7. As the liquid pumping member 7, for example, the one disclosed in Japanese Patent Application Laid-Open No. 10-61885 can be used. That is, the liquid pumping member 7 has a liquid inlet 15 and a liquid outlet 16, a high-pressure operating fluid inlet 17 and a high-pressure operating fluid outlet 18, and returns to the liquid outlet 16 via the check valve 19. A water discharge pipe 20 is connected, and a high-pressure steam pipe 21 which branches off a steam discharge pipe 13 to be described later is connected to the high-pressure operating fluid inlet 17. On the other hand, the high-pressure operation fluid discharge port 18 communicates with the upper part of the re-evaporation tank 1 by the equalizing pipe 22.
[0011]
The liquid pumping member 7 is disposed below the condensate from the re-evaporation tank 1 with a distance as far as possible to flow naturally. Further, when the float (not shown) disposed inside is located at the lower part, the liquid pressure feeding member 7 closes the high pressure operation fluid introduction port 17 and opens the high pressure operation fluid discharge port 18 to open the reevaporation tank. From 1, the low-temperature condensate flows down into the liquid pumping member 7 through the temperature control valve 23, the check valve 14, and the liquid inlet 15.
[0012]
When the low-temperature condensate is collected in the liquid pressure feeding member 7 and a float (not shown) is located at a predetermined upper portion, the high-pressure operation fluid discharge port 18 is closed, while the high-pressure operation fluid introduction port 17 is opened, and the high-pressure steam pipe 21 is opened. The high-pressure pressurized steam is caused to flow into the inside, whereby the low-temperature condensate collected therein is pumped to a predetermined location through the liquid outlet 16, the check valve 19, and the condensate discharge pipe 20.
[0013]
When the low-temperature condensate is pressure-fed and the liquid level in the liquid pumping member 7 drops, the high-pressure operation fluid inlet 17 is closed again and the high-pressure operation fluid outlet 18 is opened, so that the low-temperature condensate is discharged from the liquid inlet 15. Let the water flow down. By repeating such an operation cycle, the liquid pumping member 7 pumps low-temperature condensate from the re-evaporation tank 1 to a predetermined location.
[0014]
A communication pipe 8 is connected to the upper surface of the re-evaporation tank 1 to communicate the pressure control valve 4 with the ejector 3. The pressure control valve 4 uses a pressure sensor 9 and a controller 10 in combination. The pressure sensor 9 detects the pressure in the communication pipe 8, that is, the pressure in the re-evaporation tank 1, and automatically controls the opening degree of the pressure control valve 4 so as to reach the set pressure set by the controller 10.
[0015]
A steam supply pipe 11 is connected to the ejector 3, and an end of the communication pipe 8 is connected to a suction chamber 12 of the ejector 3. The ejector 3 generates a predetermined suction force in the suction chamber 12 by the high-pressure steam supplied from the steam supply pipe 11 to suck the re-evaporated steam in the re-evaporation tank 1.
[0016]
The condensed water supplied from the condensate supply pipe 2 into the re-evaporation tank 1 is partially re-evaporated in the re-evaporation tank 1 and is sucked from the communication pipe 8 to the ejector 3. Collects in tank 1. In this case, only when the temperature of the condensed water is low, the temperature control valve 23 is opened to flow down into the liquid pumping member 7, and when the temperature of the condensed water is high, the temperature control valve 23 is closed and the high-temperature condensate is conveyed. By staying in the reevaporation tank 1, the amount of reevaporation in the reevaporation tank 1 increases.
[0017]
Further, the pressure in the re-evaporation tank 1 is set to a predetermined pressure state by the pressure control valve 4 attached to the communication pipe 8, that is, a pressure state in which the condensate can flow naturally from the re-evaporation tank 1 into the liquid pressure feeding member 7. By maintaining, the low-temperature condensate in the re-evaporation tank 1 can flow down into the liquid pumping member 7.
[0018]
As described above, the pressure in the re-evaporation tank 1 is set to a relatively low pressure that allows the condensate to naturally flow by the pressure control valve 4, thereby further increasing the re-evaporation amount of the condensate in the re-evaporation tank 1. And the conversion rate of condensed water to reevaporated steam can be increased.
[0019]
The re-evaporated steam in the re-evaporation tank 1 sucked by the ejector 3 is mixed with the high-pressure steam from the steam supply pipe 11 and delivered from the steam discharge pipe 13 to a separate steam use location (not shown).
[0020]
【The invention's effect】
As described above, according to the present invention, the ejector is connected to the upper part of the re-evaporation tank, and the temperature control valve and the liquid pumping member are attached to the condensate outlet of the re-evaporation tank. The amount of condensed water re-evaporated in the re-evaporation tank can be increased without discharging from the tank.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a condensate re-evaporation apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Re-evaporation tank 2 Condensate supply pipe 3 Ejector 4 Pressure control valve 5 Condensate outlet pipe 7 Liquid pumping member 11 Vapor supply pipe 15 Liquid inlet 16 Liquid outlet 17 High-pressure operating fluid inlet 18 High-pressure operating fluid outlet 23 Temperature Control valve

Claims (1)

再蒸発タンクに復水供給管を接続して、当該再蒸発タンク内で復水を再蒸発させて発生した蒸気を、再蒸発蒸気使用箇所へ供給するものにおいて、再蒸発タンクにエゼクタの吸引室を接続し、再蒸発タンクの復水出口に、排出する復水の温度を制御することのできる温度調節弁を取り付けると共に、温水等の液体を高圧の圧縮空気や蒸気等の気体で圧送する液体圧送部材を配置したことを特徴とする復水の再蒸発装置。A condensate supply pipe is connected to the re-evaporation tank, and steam generated by re-evaporation of the condensate in the re-evaporation tank is supplied to a point where the re-evaporation steam is used. And a temperature control valve that can control the temperature of the condensate discharged at the condensate outlet of the re-evaporation tank, and a liquid that pumps liquid such as hot water with high-pressure compressed air or steam. A condensate re-evaporation device comprising a pumping member.
JP2003069058A 2003-03-14 2003-03-14 Condensate re-evaporation device Pending JP2004278874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069058A JP2004278874A (en) 2003-03-14 2003-03-14 Condensate re-evaporation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069058A JP2004278874A (en) 2003-03-14 2003-03-14 Condensate re-evaporation device

Publications (1)

Publication Number Publication Date
JP2004278874A true JP2004278874A (en) 2004-10-07

Family

ID=33286192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069058A Pending JP2004278874A (en) 2003-03-14 2003-03-14 Condensate re-evaporation device

Country Status (1)

Country Link
JP (1) JP2004278874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363617B (en) * 2008-10-09 2011-03-30 扬中市华能电力设备有限公司 Closed type condensate water recovery device
JP2012017926A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
CN102537936A (en) * 2012-03-02 2012-07-04 济南华闻节能工程技术有限公司 Internal steam-water separating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363617B (en) * 2008-10-09 2011-03-30 扬中市华能电力设备有限公司 Closed type condensate water recovery device
JP2012017926A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
CN102537936A (en) * 2012-03-02 2012-07-04 济南华闻节能工程技术有限公司 Internal steam-water separating device

Similar Documents

Publication Publication Date Title
JP2004278871A (en) Condensate re-evaporation device
JP2004278872A (en) Condensate re-evaporation device
JP4908074B2 (en) Steam waste heat recovery and decompression equipment
JP2004278874A (en) Condensate re-evaporation device
JP2007218473A (en) Waste heat-recovering/pressure-reducing device for steam
JP4949770B2 (en) Condensate recovery device
JP2007218471A (en) Waste heat-recovering/pressure-reducing device for steam
JP2004278873A (en) Condensate re-evaporation device
JP5295726B2 (en) Ejector device
JP5295725B2 (en) Ejector device
JP2004076987A (en) Steam-heating device
JP2008170126A (en) Condensate collecting apparatus
JP4908463B2 (en) Liquid pumping device
JP2007218472A (en) Waste heat-recovering/pressure-reducing device for steam
JP5188831B2 (en) Vacuum steam heater
JP4975424B2 (en) Steam waste heat recovery and decompression equipment
JP2007247973A (en) Condensate recovery device
JP4908075B2 (en) Steam ejector device
JP5940338B2 (en) Condensate recovery device
JP4954637B2 (en) Condensate recovery device
JP2004278870A (en) Condensate re-evaporation device
JP2010216697A (en) Air heating device
JP2007218474A (en) Waste heat-recovering/pressure-reducing device for steam
JP2007051800A (en) Condensate recovery device
JP2002147400A (en) Ejector vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Effective date: 20070921

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212