JP4472102B2 - Steam heating device - Google Patents

Steam heating device Download PDF

Info

Publication number
JP4472102B2
JP4472102B2 JP2000112834A JP2000112834A JP4472102B2 JP 4472102 B2 JP4472102 B2 JP 4472102B2 JP 2000112834 A JP2000112834 A JP 2000112834A JP 2000112834 A JP2000112834 A JP 2000112834A JP 4472102 B2 JP4472102 B2 JP 4472102B2
Authority
JP
Japan
Prior art keywords
steam
pressure
heating
heating unit
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000112834A
Other languages
Japanese (ja)
Other versions
JP2001293359A (en
Inventor
匡章 隈元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2000112834A priority Critical patent/JP4472102B2/en
Publication of JP2001293359A publication Critical patent/JP2001293359A/en
Application granted granted Critical
Publication of JP4472102B2 publication Critical patent/JP4472102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱交換器内の被加熱物を蒸気で加熱するものに関し、特にその加熱温度が100度C前後程度の比較的低温の場合に適した蒸気加熱装置に関する。具体的には重合反応等に用いられる各種反応釜や食品の蒸溜装置、濃縮装置、あるいは殺菌装置等の蒸気加熱に用いるものである。これらの場合の被加熱物は、僅かな温度変化によって熱損傷や熱劣化を生じてしまう場合が多く、加熱温度を精度良く所定値に維持する必要がある。
【0002】
【従来の技術】
従来の蒸気加熱装置としては、例えば特開平7−328423号公報に示すようなものが用いられていた。これは、蒸気供給管17をノズル18と接続し、ノズル18の外周に形成した吸引室44に2つの通路45,46を設けて、一方の通路45をジャケット部16と接続すると共に、他方の通路46に弁手段47を接続したものである。
【0003】
弁手段47を開弁することにより、ジャケット部16内の残留空気を吸引室44に吸引して、ジャケット部16内を減圧状態とした後、弁手段47を閉弁してジャケット部16内に低圧蒸気を供給して100度C以下の低温蒸気で被加熱物を加熱することができるものである。
【0004】
【発明が解決しようとする課題】
上記従来の蒸気加熱装置では、加熱初期の段階で残留している空気を吸引排除して蒸気加熱を行なうことはできるが、加熱操作中に徐々に溜まる空気を排除することができずに、溜まった空気が蒸気から被加熱物への熱伝達を阻害して加熱温度を精度良く所定値に維持することができない問題があった。加熱装置を大気圧以下の減圧状態とした場合に、装置の蓋や管や弁等の各種接続部から大気を吸引してしまい、加熱部内部に空気が溜まってしまうのである。また、供給される加熱用の蒸気に空気が混入している場合もあり、加熱初期のみならず、加熱操作中でも装置内に空気が溜まってしまうのである。
【0005】
また上記従来の蒸気加熱装置では、例えば、供給される加熱用の蒸気量が一定で、且つ、被加熱物の量が少なくなった場合に、供給される蒸気が消費される蒸気よりも過剰となってしまい、蒸気圧力の上昇、即ち、蒸気温度の上昇を来たしてしまう問題があった。
【0006】
従って本発明の課題は、蒸気温度の上昇を防止すると共に、加熱初期のみならず加熱操作中においても内部に溜まった空気を排除することによって、加熱温度の変動が少ない蒸気加熱装置を得ることである。
【0007】
【課題を解決するための手段】
上記の課題を解決するために講じた本発明の手段は、熱交換器に加熱部を形成して加熱用の蒸気供給管を接続し、加熱により生じた復水を排出する復水回収装置を接続したものにおいて、加熱部とスチームエゼクタの吸引室を逆止弁を介して連通し、該スチームエゼクタの入口側に蒸気供給管を接続し、加熱部の圧力変動を検知して開閉弁する圧力応動弁と上記スチームエゼクタを接続して、該圧力応動弁を自力式の圧力調整弁とし、該自力式の圧力調整弁にダイヤフラムと圧力調整用の引張りコイルバネを配置し、ダイヤフラムの下部室に連通口を設け、該連通口を圧力連通管によって加熱部と連通すると共に、加熱部の圧力が所定値上昇すると圧力応動弁が開弁してスチームエゼクタの吸引力によって加熱部の空気あるいは蒸気を吸引するものである。
【0008】
【発明の実施の形態】
加熱部の圧力が所定値上昇すると開弁する圧力応動弁を取り付けると共に、スチームエゼクタの吸引室と加熱部を連通したことにより、加熱部に空気が溜まってその圧力が所定値だけ上昇すると、あるいは、供給蒸気量が過剰となって蒸気圧力が所定値だけ上昇すると、圧力応動弁が開弁してスチームエゼクタの吸引力によって空気あるいは過剰蒸気は吸引され外部に排除される。
【0009】
【実施例】
本実施例は図1に示すように、熱交換器として反応釜1を用いた例を説明する。
反応釜1の外周に加熱部としてのジャケット部2を形成して蒸気供給管3と接続すると共に、分岐した蒸気供給管4に接続した圧力応動弁12とスチームエゼクタ5、及び、ジャケット部2の下部に配置した復水回収装置6とで蒸気加熱装置を構成する。
【0010】
蒸気供給管3には圧力調節弁7、8を取り付けてジャケット部2と接続する。圧力調節弁7、8はジャケット部2へ供給する蒸気圧力即ち温度が所定値となるように設定する。加熱用の蒸気として飽和蒸気を使用する場合は、蒸気の圧力と温度は一義的に定まるために、蒸気圧力を所定値に設定することにより蒸気温度も所定値に設定することができる。尚、蒸気供給管3は管路9を介して復水回収装置6の高圧操作流体の導入口10と接続する。
【0011】
分岐した蒸気供給管4に、開閉弁11と圧力応動弁12を介してスチームエゼクタ5を接続する。スチームエゼクタ5の吸引室13とジャケット部2を、逆止弁14を介した管路15により連通する。逆止弁14は、ジャケット部2から吸引室13方向への流体の通過のみを許容し、反対方向の流体の通過は許容しないものである。スチームエゼクタ5の出口側には管路16を接続する。
【0012】
圧力応動弁12は、本実施例においては図2に示すように自力式の圧力調整弁を用いた例を示す。図2において、入口30を蒸気供給管4と接続し、出口31をエゼクタ5の吸引室13内の図示しないノズルと接続する。入口30と出口31を区画する弁座32に対向して弁体33を配置する。弁体33は連結棒34によって上方のダイヤフラム35と連結する。ダイヤフラム35の上部には圧力調整用の引張りコイルバネ36を配置する。コイルバネ36はダイヤフラム35を上方に付勢する。コイルバネ36の上部には、調整ネジ37を介して回転ハンドル38を取り付ける。回転ハンドル38を左右に回転することによって、調整ネジ37が上下に移動してコイルバネ36の引張り力を適宜調整することができるものである。
【0013】
ダイヤフラム35の下部室39に連通口40を設ける。連通口40は、圧力連通管19によって図1に示す反応釜1のジャケット部2と連通する。従って、ジャケット部2の圧力が上昇すると、ダイヤフラム下部室39の圧力も上昇して、ダイヤフラム35が上方へ変位することによって弁体33が弁座32から離座して開弁するものである。
【0014】
圧力応動弁12が開弁すると、図1の蒸気供給管4から高圧蒸気がエゼクタ5に供給され、エゼクタ5の吸引室13に吸引力を発生して、ジャケット部2に滞留している空気を、あるいは、過剰な蒸気を吸引して、管路16から外部に排出するものである。
【0016】
ジャケット部2の下部と復水回収装置6の復水流入口20とを管路21によりバルブ22と逆止弁23を介して接続する。逆止弁23はジャケット部2から復水回収装置6方向のみの流体の通過を許容するもので、逆方向の流体の通過は許容しないものである。復水回収装置6の復水還元口24にも逆止弁25を介して復水圧送管路26を取り付ける。この逆止弁25は復水回収装置6から復水圧送管路26側への外部方向へのみ流体を通過させるものである。
【0017】
復水回収装置6上部の高圧操作流体の導入口10の側方には、高圧操作流体の排出循環口27を設けて、管路28と接続する。管路28は、ジャケット部2と同圧状態の図示しないヘッダーや、あるいは、別途のジャケット部2よりも低圧状態箇所と接続する。
【0018】
復水回収装置6は、内部に配置した図示しないフロートが下方部に位置する場合に、高圧操作流体の導入口10が閉口され、一方、排出循環口27が開口されて、管路21と逆止弁23と復水流入口20を通ってジャケット部2内の復水が回収装置6内に流下し、回収装置6内に復水が溜まってフロートが所定上方部に位置すると、排出循環口27が閉口され、一方、高圧操作流体の導入口10が開口されて、高圧操作流体として蒸気供給管3からの高圧蒸気が回収装置6内に流入して、内部の復水を還元口24と逆止弁25と管路26を経て復水回収先へ圧送し回収するものである。
【0019】
復水が回収されて回収装置6内の水位が低下すると、再度、高圧操作流体の導入口10が閉口され、排出循環口27が開口されることにより、復水流入口20から復水が回収装置6内へ流下してくる。このような作動サイクルを繰り返すことにより、復水回収装置6は、ジャケット部2で発生した復水を回収するものである。
【0020】
図1において反応釜1内の被加熱物を加熱する場合、まず圧力調節弁7、8から蒸気をジャケット部2へ供給する。ジャケット部2内には初期の残留空気が残存していると共に、圧力も大気圧状態であり減圧状態と比較すると高いために、圧力応動弁12が開弁して、スチームエゼクタ5の吸引室13でその残留空気を吸引して外部に排出する。ジャケット部2内部が大気圧以下の所定圧力になると、圧力応動弁12は閉弁し、圧力調節弁7、8から供給される加熱用蒸気はジャケット部2に供給されて、反応釜1を加熱する。
【0021】
反応釜1を加熱した蒸気は凝縮して復水となり、管路21を経て復水回収装置6内へ流下する。空気の排除されたジャケット部2内へ所定圧力即ち温度の加熱蒸気を供給することにより、反応釜1は所定温度の蒸気でもって加熱される。例えば圧力調節弁7、8から大気圧以下の60度Cの蒸気を供給すると反応釜1は60度Cで加熱される。
【0022】
ジャケット部2内を大気圧以下の圧力状態とした場合に、ジャケット部2の各接続部から大気圧が加わり、一部の空気がジャケット部2内に混入したり、あるいは、供給される蒸気に混入している空気によりジャケット部2内に空気が溜まることによって圧力が上昇する。このジャケット部2内の圧力上昇は圧力連通管19からダイヤフラム下部室39に伝わり、ダイヤフラム35を上方へ変位させることによって弁体33が弁座32から離座して、スチームエゼクタ5に高圧蒸気が供給されることによって、スチームエゼクタ5の吸引室13で吸引力を発生する。この吸引力によってジャケット部2内の滞留空気が吸引され外部に排出される。このように本実施例においては、蒸気加熱装置の初期のみならず、加熱操作中に溜まった空気をもスチームエゼクタ5で吸引し外部に排出することができる。
【0023】
圧力調節弁7、8から供給される蒸気量がジャケット部2で消費される蒸気量よりも多い場合、ジャケット部2内の蒸気圧力は上昇する。このように上昇した圧力は圧力連通管19から圧力応動弁12に伝わり、圧力応動弁12を開弁させてスチームエゼクタ5に吸引力を発生させることによって、スチームエゼクタ5に圧力上昇分の流体としての蒸気が吸引され外部に排出されることにより防止される。
【0024】
反応釜1を加熱した蒸気は凝縮して復水となることにより、ジャケット部2内は初期の圧力状態に維持される。一方、凝縮した復水は復水回収装置6内へ流下して、上記した作動の繰り返しにより復水回収先へ圧送される。
【0025】
【発明の効果】
上記のように本発明によれば、加熱部の圧力が所定値上昇すると、圧力応動弁が開弁して加熱部内の流体をスチームエゼクタの吸引室に吸引することにより、加熱部に空気が溜まってその圧力が所定値だけ上昇する場合、及び、供給される蒸気量が過剰となり蒸気圧力が上昇する場合に、その上昇分の流体がスチームエゼクタの吸引力によって吸引され外部に排除される。従って、圧力上昇に伴う温度変動を防止して、所定値の温度で精度良く被加熱物を加熱することができる。
【図面の簡単な説明】
【図1】本発明の蒸気加熱装置の実施例を示す構成図。
【図2】本発明の蒸気加熱装置に用いる圧力応動弁の略構成図。
【符号の説明】
1 反応釜
2 ジャケット部
3 蒸気供給管
5 スチームエゼクタ
6 復水回収装置
10 高圧操作流体導入口
12 圧力応動弁
13 吸引室
19 圧力連通管
20 復水流入口
24 復水還元口
27 排出循環口
30 入口
31 出口
32 弁座
33 弁体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for heating an object to be heated in a heat exchanger with steam, and more particularly to a steam heating apparatus suitable for heating at a relatively low temperature of about 100 ° C. Specifically, it is used for steam heating of various reaction kettles used for polymerization reactions and the like, food distillers, concentrators, and sterilizers. The objects to be heated in these cases often cause thermal damage or thermal degradation due to slight temperature changes, and it is necessary to maintain the heating temperature at a predetermined value with high accuracy.
[0002]
[Prior art]
As a conventional steam heating device, for example, a device as shown in JP-A-7-328423 has been used. This is because the steam supply pipe 17 is connected to the nozzle 18, two passages 45, 46 are provided in the suction chamber 44 formed on the outer periphery of the nozzle 18, one passage 45 is connected to the jacket portion 16, and the other The valve means 47 is connected to the passage 46.
[0003]
By opening the valve means 47, the residual air in the jacket portion 16 is sucked into the suction chamber 44 to reduce the pressure in the jacket portion 16, and then the valve means 47 is closed to enter the jacket portion 16. The object to be heated can be heated with low-temperature steam of 100 ° C. or less by supplying low-pressure steam.
[0004]
[Problems to be solved by the invention]
In the above conventional steam heating apparatus, it is possible to perform the steam heating by sucking out the remaining air in the initial stage of heating, but the air that gradually accumulates during the heating operation cannot be excluded, There is a problem that the heated air hinders the heat transfer from the steam to the object to be heated and the heating temperature cannot be accurately maintained at a predetermined value. When the heating device is in a reduced pressure state below the atmospheric pressure, air is sucked from various connection portions such as a lid, a tube, a valve and the like of the device, and air accumulates inside the heating portion. Further, air may be mixed in the supplied heating steam, and air accumulates not only in the initial stage of heating but also in the heating operation.
[0005]
Further, in the conventional steam heating device, for example, when the amount of steam supplied for heating is constant and the amount of the object to be heated is small, the supplied steam is more than the consumed steam. As a result, there is a problem that the steam pressure rises, that is, the steam temperature rises.
[0006]
Accordingly, an object of the present invention is to obtain a steam heating apparatus that prevents fluctuations in the heating temperature by preventing an increase in the steam temperature and eliminating air accumulated inside not only in the initial stage of heating but also during the heating operation. is there.
[0007]
[Means for Solving the Problems]
The means of the present invention taken in order to solve the above-mentioned problems is a condensate recovery device that forms a heating section in a heat exchanger, connects a heating steam supply pipe, and discharges condensate generated by heating. In the connected one, the heating part and the suction chamber of the steam ejector are communicated via a check valve, the steam supply pipe is connected to the inlet side of the steam ejector, and the pressure at which the pressure fluctuation of the heating part is detected and opened and closed Connect the responsive valve to the steam ejector, and use the pressure responsive valve as a self-acting pressure regulating valve. The self-acting pressure regulating valve has a diaphragm and a tension coil spring for adjusting the pressure, and communicates with the lower chamber of the diaphragm. An opening is provided, and the communication port communicates with the heating unit through a pressure communication pipe. When the pressure of the heating unit rises by a predetermined value, the pressure responsive valve opens and the air or steam in the heating unit is sucked by the suction force of the steam ejector. The It is intended.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Attach a pressure responsive valve that opens when the pressure of the heating part rises by a predetermined value, and when the suction part of the steam ejector communicates with the heating part, air accumulates in the heating part and the pressure rises by a predetermined value, or When the supply steam amount becomes excessive and the steam pressure rises by a predetermined value, the pressure responsive valve is opened, and air or excess steam is sucked by the suction force of the steam ejector and is discharged outside.
[0009]
【Example】
In this embodiment, as shown in FIG. 1, an example in which a reaction kettle 1 is used as a heat exchanger will be described.
A jacket portion 2 as a heating portion is formed on the outer periphery of the reaction kettle 1 and connected to the steam supply pipe 3. The pressure responsive valve 12 connected to the branched steam supply pipe 4, the steam ejector 5, and the jacket portion 2 A steam heating apparatus is comprised with the condensate collection | recovery apparatus 6 arrange | positioned at the lower part.
[0010]
Pressure control valves 7 and 8 are attached to the steam supply pipe 3 and connected to the jacket portion 2. The pressure control valves 7 and 8 are set so that the steam pressure, that is, the temperature supplied to the jacket portion 2 becomes a predetermined value. When saturated steam is used as the steam for heating, the pressure and temperature of the steam are uniquely determined. Therefore, the steam temperature can be set to a predetermined value by setting the steam pressure to a predetermined value. The steam supply pipe 3 is connected to the high-pressure operating fluid inlet 10 of the condensate recovery device 6 through a pipe 9.
[0011]
A steam ejector 5 is connected to the branched steam supply pipe 4 via an on-off valve 11 and a pressure responsive valve 12. The suction chamber 13 of the steam ejector 5 and the jacket portion 2 are communicated with each other by a pipe line 15 through a check valve 14. The check valve 14 allows only passage of fluid from the jacket portion 2 toward the suction chamber 13 and does not allow passage of fluid in the opposite direction. A conduit 16 is connected to the outlet side of the steam ejector 5.
[0012]
In this embodiment, the pressure responsive valve 12 is an example using a self-acting pressure regulating valve as shown in FIG. In FIG. 2, the inlet 30 is connected to the steam supply pipe 4, and the outlet 31 is connected to a nozzle (not shown) in the suction chamber 13 of the ejector 5. A valve element 33 is disposed opposite to a valve seat 32 that partitions the inlet 30 and the outlet 31. The valve body 33 is connected to the upper diaphragm 35 by a connecting rod 34. A tension coil spring 36 for adjusting the pressure is disposed on the upper portion of the diaphragm 35. The coil spring 36 biases the diaphragm 35 upward. A rotary handle 38 is attached to the upper part of the coil spring 36 via an adjustment screw 37. By rotating the rotary handle 38 to the left and right, the adjustment screw 37 can be moved up and down to adjust the tensile force of the coil spring 36 as appropriate.
[0013]
A communication port 40 is provided in the lower chamber 39 of the diaphragm 35. The communication port 40 communicates with the jacket portion 2 of the reaction kettle 1 shown in FIG. Accordingly, when the pressure of the jacket portion 2 rises, the pressure of the diaphragm lower chamber 39 also rises, and the diaphragm 35 is displaced upward, so that the valve element 33 is separated from the valve seat 32 and opened.
[0014]
When the pressure responsive valve 12 is opened, high-pressure steam is supplied from the steam supply pipe 4 of FIG. 1 to the ejector 5, generating a suction force in the suction chamber 13 of the ejector 5, and causing the air staying in the jacket portion 2 to flow. Alternatively, excess steam is sucked and discharged from the pipe line 16 to the outside.
[0016]
The lower part of the jacket part 2 and the condensate inlet 20 of the condensate recovery device 6 are connected via a pipe line 21 via a valve 22 and a check valve 23. The check valve 23 allows passage of fluid only from the jacket portion 2 in the direction of the condensate recovery device 6, and does not allow passage of fluid in the reverse direction. A condensate pressure feed line 26 is also attached to the condensate reduction port 24 of the condensate recovery device 6 via a check valve 25. This check valve 25 allows the fluid to pass only in the outward direction from the condensate recovery device 6 to the condensate pressure feed line 26 side.
[0017]
A high-pressure operating fluid discharge circulation port 27 is provided on the side of the high-pressure operating fluid inlet 10 at the top of the condensate recovery device 6 and is connected to the conduit 28. The pipe line 28 is connected to a header (not shown) in the same pressure state as that of the jacket part 2 or a lower pressure state part than the separate jacket part 2.
[0018]
In the condensate recovery device 6, when a float (not shown) disposed inside is located in the lower part, the inlet 10 for the high-pressure operating fluid is closed, while the discharge circulation port 27 is opened, and the reverse of the conduit 21. When the condensate in the jacket portion 2 flows into the recovery device 6 through the stop valve 23 and the condensate inlet 20, and the condensate accumulates in the recovery device 6 and the float is positioned at a predetermined upper portion, the discharge circulation port 27 On the other hand, the high-pressure operating fluid inlet 10 is opened, and high-pressure steam from the steam supply pipe 3 flows into the recovery device 6 as a high-pressure operating fluid, and the internal condensate is reversed from the reducing port 24. It is pumped to a condensate recovery destination through a stop valve 25 and a pipe line 26 and recovered.
[0019]
When the condensate is recovered and the water level in the recovery device 6 decreases, the high-pressure operating fluid inlet 10 is closed again and the discharge circulation port 27 is opened, whereby the condensate is recovered from the condensate inlet 20. It flows down into 6. By repeating such an operation cycle, the condensate recovery device 6 recovers the condensate generated in the jacket portion 2.
[0020]
In FIG. 1, when heating an object to be heated in the reaction vessel 1, first, steam is supplied from the pressure control valves 7 and 8 to the jacket portion 2. Since the initial residual air remains in the jacket portion 2 and the pressure is also in the atmospheric pressure state and is higher than the reduced pressure state, the pressure responsive valve 12 is opened and the suction chamber 13 of the steam ejector 5 is opened. The residual air is sucked and discharged to the outside. When the inside of the jacket part 2 reaches a predetermined pressure below atmospheric pressure, the pressure responsive valve 12 is closed, and the heating steam supplied from the pressure control valves 7 and 8 is supplied to the jacket part 2 to heat the reaction kettle 1. To do.
[0021]
The steam heated in the reaction kettle 1 condenses to become condensate, and flows down into the condensate recovery device 6 via the conduit 21. By supplying heated steam having a predetermined pressure, that is, temperature, into the jacket portion 2 from which air has been removed, the reaction kettle 1 is heated with steam having a predetermined temperature. For example, when steam at 60 ° C. below atmospheric pressure is supplied from the pressure control valves 7, 8, the reaction kettle 1 is heated at 60 ° C.
[0022]
When the inside of the jacket part 2 is set to a pressure state equal to or lower than the atmospheric pressure, atmospheric pressure is applied from each connection part of the jacket part 2, and a part of air is mixed in the jacket part 2 or is supplied to the supplied steam. The pressure rises when air is accumulated in the jacket portion 2 by the mixed air. The pressure rise in the jacket portion 2 is transmitted from the pressure communication pipe 19 to the diaphragm lower chamber 39, and the diaphragm 35 is displaced upward, so that the valve body 33 is separated from the valve seat 32, and high-pressure steam is applied to the steam ejector 5. By being supplied, a suction force is generated in the suction chamber 13 of the steam ejector 5. By this suction force, the staying air in the jacket portion 2 is sucked and discharged to the outside. Thus, in the present embodiment, not only the initial stage of the steam heating apparatus but also the air accumulated during the heating operation can be sucked by the steam ejector 5 and discharged to the outside.
[0023]
When the amount of steam supplied from the pressure control valves 7 and 8 is larger than the amount of steam consumed by the jacket part 2, the steam pressure in the jacket part 2 increases. The pressure thus increased is transmitted from the pressure communication pipe 19 to the pressure responsive valve 12, and the pressure responsive valve 12 is opened to generate a suction force in the steam ejector 5. Is prevented by being sucked and discharged to the outside.
[0024]
The steam heated in the reaction kettle 1 condenses and becomes condensate, whereby the inside of the jacket portion 2 is maintained at the initial pressure state. On the other hand, the condensed condensate flows down into the condensate recovery device 6 and is pumped to the condensate recovery destination by repeating the above-described operation.
[0025]
【The invention's effect】
As described above, according to the present invention, when the pressure of the heating unit rises by a predetermined value, the pressure responsive valve opens and the fluid in the heating unit is sucked into the suction chamber of the steam ejector, so that air accumulates in the heating unit. When the pressure rises by a predetermined value, and when the amount of steam to be supplied becomes excessive and the steam pressure rises, the fluid corresponding to the rise is sucked by the suction force of the steam ejector and removed to the outside. Therefore, it is possible to prevent the temperature fluctuation associated with the pressure rise and to heat the object to be heated with a predetermined temperature.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam heating apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram of a pressure responsive valve used in the steam heating apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 3 Steam supply pipe 5 Steam ejector 6 Condensate recovery device 10 High pressure operation fluid inlet 12 Pressure responsive valve 13 Suction chamber 19 Pressure communication pipe 20 Condensate inlet 24 Condensate reduction inlet 27 Discharge circulation outlet 30 Inlet 31 outlet 32 valve seat 33 disc

Claims (1)

熱交換器に加熱部を形成して加熱用の蒸気供給管を接続し、加熱により生じた復水を排出する復水回収装置を接続したものにおいて、加熱部とスチームエゼクタの吸引室を逆止弁を介して連通し、該スチームエゼクタの入口側に蒸気供給管を接続し、加熱部の圧力変動を検知して開閉弁する圧力応動弁と上記スチームエゼクタを接続して、該圧力応動弁を自力式の圧力調整弁とし、該自力式の圧力調整弁にダイヤフラムと圧力調整用の引張りコイルバネを配置し、ダイヤフラムの下部室に連通口を設け、該連通口を圧力連通管によって加熱部と連通すると共に、加熱部の圧力が所定値上昇すると圧力応動弁が開弁してスチームエゼクタの吸引力によって加熱部の空気あるいは蒸気を吸引することを特徴とする蒸気加熱装置。A heating unit is formed in the heat exchanger, a steam supply pipe for heating is connected, and a condensate recovery device that discharges condensate generated by heating is connected. The heating unit and the suction chamber of the steam ejector are non-returned. A steam supply pipe connected to the inlet side of the steam ejector, connected to the pressure responsive valve that opens and closes by detecting pressure fluctuations in the heating unit, and the steam responsive valve, The self-acting pressure regulating valve is equipped with a diaphragm and a tension coil spring for adjusting the pressure, and a communication port is provided in the lower chamber of the diaphragm, and the communication port communicates with the heating unit through a pressure communicating tube. In addition, when the pressure of the heating unit rises by a predetermined value, the pressure responsive valve opens to suck the air or steam of the heating unit by the suction force of the steam ejector.
JP2000112834A 2000-04-14 2000-04-14 Steam heating device Expired - Fee Related JP4472102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112834A JP4472102B2 (en) 2000-04-14 2000-04-14 Steam heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112834A JP4472102B2 (en) 2000-04-14 2000-04-14 Steam heating device

Publications (2)

Publication Number Publication Date
JP2001293359A JP2001293359A (en) 2001-10-23
JP4472102B2 true JP4472102B2 (en) 2010-06-02

Family

ID=18624914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112834A Expired - Fee Related JP4472102B2 (en) 2000-04-14 2000-04-14 Steam heating device

Country Status (1)

Country Link
JP (1) JP4472102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537108B2 (en) * 2009-09-28 2014-07-02 株式会社テイエルブイ Check valve and steam supply system using the same

Also Published As

Publication number Publication date
JP2001293359A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
KR100470880B1 (en) Steam heating device
JP4472102B2 (en) Steam heating device
JPH09250887A (en) Steam heating device
JP4472103B2 (en) Steam heating device
JP4387536B2 (en) Steam heating device
JP4409715B2 (en) Steam heating device
JP4583610B2 (en) Steam heating device
JPH07328423A (en) Heater by steam
JP4583583B2 (en) Steam heating device
JP4361203B2 (en) Steam heating device
JP4540771B2 (en) Steam heating device
JP4330730B2 (en) Steam heating device
JP2001321660A (en) Steam heating device
JP4540772B2 (en) Steam heating device
JP5047426B2 (en) Steam heating device
JP2001201274A (en) Steam-heating equipment
JP3282005B2 (en) Steam heating device
JP2000354541A (en) Steam heating device
JP5047425B2 (en) Steam heating device
JP2003148705A (en) Steam attemper
JP3341209B2 (en) Steam heating device
JPH09137909A (en) Low pressure steam heater by heat medium
JP2001296089A (en) Vapor heating apparatus
JP3394929B2 (en) Steam heating device
JP2001293361A (en) Steam heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees