JP2004072644A - 受信回路およびこれを用いた無線通信装置 - Google Patents

受信回路およびこれを用いた無線通信装置 Download PDF

Info

Publication number
JP2004072644A
JP2004072644A JP2002232322A JP2002232322A JP2004072644A JP 2004072644 A JP2004072644 A JP 2004072644A JP 2002232322 A JP2002232322 A JP 2002232322A JP 2002232322 A JP2002232322 A JP 2002232322A JP 2004072644 A JP2004072644 A JP 2004072644A
Authority
JP
Japan
Prior art keywords
signal
variable gain
digital
gain amplifying
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232322A
Other languages
English (en)
Other versions
JP4039168B2 (ja
Inventor
Masami Abe
阿部 雅美
Noboru Sasho
佐生 登
Hiroaki Fujita
藤田 浩章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002232322A priority Critical patent/JP4039168B2/ja
Publication of JP2004072644A publication Critical patent/JP2004072644A/ja
Application granted granted Critical
Publication of JP4039168B2 publication Critical patent/JP4039168B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

【課題】アナログAGCをかけた後に再度ディジタルAGCをかけるようにした場合、ディジタルフィルタの群遅延特性によってAGCセットアップタイムが長くなる。
【解決手段】可変利得増幅器19i,19qの出力信号に含まれる隣接チャネル信号の信号レベルを検波する隣接チャネル信号検波回路23i,23qを含むフィードフォワードループを形成し、アナログAGCをかけた後に、当該フィードフォワードループによってディジタル可変利得増幅器31i,31qの利得値を調整するディジタルAGCをかけることで、隣接チャネル信号による干渉を受けた場合でも、大きな群遅延特性をもつディジタルLPF30i,30qの影響を受けることなく、ディジタル可変利得増幅器31i,31qの利得値を高速に設定できるようにする。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、無線LAN、携帯電話など無線通信システムの受信回路およびこれを用いた無線通信装置に関し、特にIEEE802.11aなど、高速のAGC(Automatic Gain Control)回路が必要なシステムに用いて好適なダイレクトコンバージョン方式の受信回路およびこれを用いた無線通信装置に関する。
【0002】
【従来の技術】
無線通信システムにおける受信方式は、受信した高周波信号を中間周波数に周波数変換して処理するスーパーヘテロダイン方式と、受信した高周波信号を直接ベースバンド信号に周波数変換して処理するダイレクトコンバージョン方式とに大別される。これらの受信方式のうち、ダイレクトコンバージョン方式の受信機(以下、ダイレクトコンバージョン受信機と記す)は、スーパーヘテロダイン方式の受信機に比較して、IF(中間周波)段が不要な分だけ外付け部品が少ないため低コストであり、また回路構成が比較的簡易であるためマルチバンド、マルチモード受信機などに適している。これらの理由から、最近、多くの無線通信システムにダイレクトコンバージョン受信機が用いられている。
【0003】
従来例(第1従来例)に係るダイレクトコンバージョン受信機の構成を図5に示す。同図において、アンテナ101A,101Bで受信された高周波信号は、切替スイッチ102によっていずれか一方が選択され、バンドパスフィルタ103および低雑音増幅器104を経由してミキサ回路105i,105qに各一方の入力として与えられる。ミキサ回路105i,105qには各他方の入力として、ローカル発振器106から出力されるローカル信号が直接(位相差0°)、あるいは90°移相器107を介して(位相差90°)供給される。
【0004】
ミキサ回路105iは、入力される高周波信号に対して位相差0°のローカル信号を混合することによってベースバンドの同相成分I(以下、I信号と記す)を得る。ミキサ回路105qは、入力される高周波信号に対して位相差90°のローカル信号を混合することによってベースバンドの直交成分Q(以下、Q信号と記す)を得る。I,Q信号は、アナログローパスフィルタ(以下、アナログLPFと記す)108i,108qに供給される。アナログLPF108i,108qは、受信された信号から希望帯域の信号のみを取り出す役割を有している。
【0005】
アナログLPF108i,108qで取り出された希望帯域の信号は、アナログ可変利得増幅器109i,109qで信号振幅が調整された後AGC部110に直接供給され、さらにAD(アナログ−ディジタル)変換器111i,111qでディジタル信号に変換されて復調部(図示せず)を含むディジタル部112に供給される。
【0006】
AGC部110では、AD変換器111i,111qの入力信号を最適かつ安定したレベルに保つために、アナログ可変利得増幅器109i,109qに対する自動利得制御(AGC)が行われる。AGC部110は、検波・LPF回路113i,113q、ADC114i,114q、ディジタル部112内の制御ロジック回路115、DA(ディジタル−アナログ)変換器116i,116qおよびコントロール回路117i,117qを有する構成となっている。
【0007】
ところで、近年、信号の伝送速度の増加および周波数資源の逼迫に伴って、信号の帯域幅が増大し、チャネル間隔が狭くなる傾向にある。このように、信号の帯域幅が増大することにより、アナログLPF108i,108qには高いカットオフ周波数が要求される。また、チャネル間隔が狭くなることにより、アナログLPF108i,108qとして、シャープ(急峻)でかつ線形歪(振幅歪と位相歪)の小さな特性のものが必要とされる。しかしながら、広帯域に遮断特性がシャープでかつ線形歪が小さい特性のアナログLPF108i,108qを、低消費電力で実現することは難しく。また、低雑音、高リニアリティ特性を同時に得ることも難しい。
【0008】
このアナログLPF108i,108qの広帯域化の問題に対する改善策として、図6に示す従来例(第2従来例)がある。図6中、図5と同等部分には同一符号を付して示している。
【0009】
この第2従来例に係るダイレクトコンバージョン受信機では、ディジタル部112内であって、AD変換器111i,111qの後段に、ディジタルローパスフィルタ(以下、ディジタルLPFと記す)201i,201q、ディジタル可変利得増幅器202i,202qを設けた構成を採っている。アナログLPF108i,108qとディジタルLPF202i,202qとのそれぞれの組み合わせで、チャネルセレクトのために必要な遮断特性を得ている。
【0010】
希望チャネルに隣接するチャネルに干渉となる信号(以下、隣接チャネル信号と記す)が存在する場合、アナログLPF108i,108qの遮断特性が不十分であるために、AD変換器111i,111qの入力信号には隣接チャネル信号が残っている。したがって、ディジタルLPF202i,202qでその隣接チャネル信号を所望のレベルまで落とす。そして、復調部入力レベルが最適かつ安定になるように、AGC部110による可変利得増幅器109i,109qの自動利得制御に加えて、ディジタル可変利得増幅器202i,202qの出力レベルを検波回路230i,203qで検出し、その検出レベルに基づいて制御ロジック部115で生成された設定値によりディジタル可変利得増幅器202i,202qの利得を調整する。
【0011】
【発明が解決しようとする課題】
上述したように、第2従来例に係るダイレクトコンバージョン受信機では、アナログLPF108i,108qの広帯域化の問題を解決するために、AD変換器111i,111qの後段に、ディジタルLPF201i,201qおよびディジタル可変利得増幅器202i,202qを設けて、再度ディジタルAGCをかけるようにしている。しかしながら、ディジタルフィルタは一般的に遅延時間が大きく、例えばFIR(Finite Impulse Response;有限長インパルス応答)フィルタで構成した場合には数μsec 〜数十μsec 程度の遅延時間が生じるため、隣接チャネルに干渉信号が存在する場合、その群遅延特性によって最適な利得値を得るためのAGCセットアップタイムが長くなる。
【0012】
このように、AGCセットアップタイムが増加することは、例えば、無線LAN仕様であるIEEE802.11aのようなパケットモードの通信では、受信品質の劣化となる。図7に、IEEE802.11aのトレーニングシンボルの構成を示す。パケットのはじめの8μsec 内にAGCのセットアップを行う必要がある。8μsec 内にAGCのセットアップが正確に行われない場合には、信号のレベルを正しく設定することができず、パケットエラーになることがある。
【0013】
上述したことから明らかなように、ディジタルAGCを含む構成の受信回路では、特に、希望チャネルの隣接または次隣接チャネルに干渉信号が存在する場合に、ディジタルLPF201i,201qの遅延特性によってAGCのセットアップタイムが長くなるため、例えばパケットモードの通信では受信品質の劣化を来すという課題がある。
【0014】
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、隣接チャネル信号による干渉を受けた場合でも、高速かつ高精度にて自動利得制御を行うことが可能な受信回路およびこれを用いた無線通信装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明による受信回路は、受信信号を周波数変換して得られる信号から希望チャネルの信号を取り出すアナログフィルタ手段と、このアナログフィルタ手段で取り出された信号の振幅を調整するアナログ可変利得増幅手段と、このアナログ可変利得増幅手段の出力信号をディジタル信号に変換するAD変換手段と、このAD変換手段の出力信号から希望チャネルの信号を取り出すディジタルフィルタ手段と、このディジタルフィルタ手段で取り出された信号の振幅を調整するディジタル可変利得増幅手段と、アナログ可変利得増幅手段の出力信号または入力信号に含まれる希望チャネルに隣接するチャネルの信号レベルに応じてディジタル可変利得増幅手段の利得値を調整するフィードフォワード制御手段とを備えた構成となっている。この受信回路は、ダイレクトコンバージョン受信機などの無線通信装置において、高周波信号から周波数変換されて得られる信号を処理する信号処理部、例えばベースバンド部として用いられる。
【0016】
上記構成の受信回路またはこれを用いた無線通信装置において、ディジタルフィルタ手段はアナログフィルタ手段との組み合わせで、希望チャネルを選択するために必要な遮断特性を得るとともに、希望チャネルに隣接するチャネルの信号を所望のレベルまで落とす作用をなす。フィードフォワード制御手段は、アナログ可変利得増幅手段の出力信号または入力信号に含まれる希望チャネルに隣接するチャネルの信号レベルを検波し、その検波レベルに応じてディジタル可変利得増幅手段の利得値を調整する。この利得制御がフィードフォワード制御であることから、隣接チャネル信号による干渉を受けた場合においても、大きな群遅延特性をもつディジタルフィルタ手段の影響を受けずにディジタル可変利得増幅手段の利得値を高速に設定できる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0018】
[第1実施形態]
図1は、本発明の第1実施形態に係る受信回路を用いた無線通信装置、例えばダイレクトコンバージョン受信機の構成例を示すブロック図である。本実施形態に係るダイレクトコンバージョン受信機は、フェージングによる品質劣化を防止して高受信感度を実現するために、複数本(本例では、2本)のアンテナで伝搬経路の異なる信号を受信するダイバーシティ受信方式を採用している。ただし、本発明は、ダイバーシティ受信方式の受信機への適用に限られるものではない。
【0019】
図1において、2本のアンテナ11A,11Bで受信された高周波信号は、切替スイッチ12によっていずれか一方が選択される。選択された高周波信号は、バンドパスフィルタ13および低雑音増幅器14を経由してミキサ回路15i,15qに各一方の入力として与えられる。一方、ローカル発振器16から出力されるローカル信号は、90°移相器17で位相差0°のローカル信号と位相差90°のローカル信号に移相された後、周波数変換器であるミキサ回路15i,15qに各他方の入力として与えられる。
【0020】
ミキサ回路15iは、入力される高周波信号に対して位相差0°のローカル信号を混合することによってベースバンドのI(同相)信号を得る。ミキサ回路15qは、入力される高周波信号に対して位相差90°のローカル信号を混合することによってベースバンドのQ(直交)信号を得る。I,Q信号は、アナログLPF18i,18qで希望帯域の信号成分のみが取り出され、アナログ可変利得増幅器19i,19qで信号振幅が調整された後AGC部20に直接供給され、さらにAD変換器21i,21qでディジタル信号に変換されてディジタル部22に供給される。
【0021】
AGC部20においては、AD変換器21i,21qの入力信号を最適かつ安定したレベルに保つために、アナログ可変利得増幅器19i,19qに対する自動利得制御(AGC)が行われる。AGC部20は、隣接チャネル信号検波回路23i,23q、検波回路24i,24q、AD変換器25i,25q、ディジタル部22内の制御ロジック回路26、DA変換器27i,27qおよびコントロール回路28i,28qを有する構成となっている。
【0022】
このAGC部20において、隣接チャネル信号検波回路23i,23qは、ハイパスフィルタ231i,231q、検波回路232i,232qおよびAD変換器233i,233qから構成されている。ここで、ハイパスフィルタ231i,231qは、アナログ可変利得増幅器19i,19qの出力信号から、希望チャネルの信号(希望信号)をカットして希望チャネルに隣接するチャネルの信号(隣接社信号)のみを取り出す。検波回路232i,232qは、ハイパスフィルタ231i,231qで取り出された隣接チャネル信号をレベル検波し、その信号レベルIu,Quをそれぞれ得る。AD変換器233i,233qは、検波回路232i,232qで検波された信号レベルIu,Quをディジタル信号に変換して制御ロジック回路26に供給する。
【0023】
検波回路24i,24qは、アナログ可変利得増幅器19i,19qの出力信号をレベル検波する。AD変換器25i,25qは、検波回路24i,24qで得られた検波レベルI1,Q1をディジタル信号に変換して制御ロジック回路26に供給する。制御ロジック回路26は、AD変換器25i,25qから与えられる検波レベルI1,Q1、即ちアナログ可変利得増幅器19i,19qの出力信号レベルに対応した利得データを設定する。DA変換器27i,27qは、制御ロジック回路26で設定された利得データをアナログ信号に変換する。コントロール回路28i,28qは、DA変換器27i,27qから与えられる利得データに応じてアナログ可変利得増幅器19i,19qの利得を調整する。
【0024】
上述したアナログ可変利得増幅器19i,19q→検波回路24i,24q→AD変換器25i,25q→制御ロジック回路26→DA変換器27i,27q→コントロール回路28i,28q→アナログ可変利得増幅器19i,19qの系は、従来と同じように、アナログ可変利得増幅器19i,19qの出力信号のレベルに応じて当該可変利得増幅器19i,19qの利得値を設定するフィードバックのアナログAGCループを形成している。
【0025】
ディジタル部22内には、AGC部20の一部を構成する制御ロジック回路26の他に、受信信号を復調する復調部29と、AD変換器21i,21qと復調部29との間に縦続接続されたディジタルLPF30i,30qおよびディジタル可変利得増幅器31i,31qが設けられている。ディジタルLPF30i,30qは、アナログLPF18i,18qとのそれぞれの組み合わせで、チャネルセレクトのために必要な遮断特性を得るとともに、隣接チャネル信号を所望のレベルまで落とす作用をなす。
【0026】
制御ロジック回路26は、隣接チャネル信号検波回路23i,23qで検出された信号レベルIu,Quを加算し、その加算結果(Iu+Qu)に応じて、利得制御信号Cg=Kg*(Iu+Qu)を生成する。ここで、Kgは(Iu+Qu)からCgに変換する変換係数であり、ディジタル可変利得増幅器31i,31qおよび隣接チャネル信号検波回路23i,23qの特性から、最適なAGC性能が得られるように決定される。
【0027】
制御ロジック回路26で生成された利得制御信号Cgは、ディジタル可変利得増幅器31i,31qに与えられ、当該可変利得増幅器31i,31qの利得値を設定する。ディジタル可変利得増幅器31i,31qについては、ディジタルLPF30i,30qの出力信号をビットシフトし、±6dBの簡単な可変利得回路とすることでAGC設定の高速化を行うことも可能である。
【0028】
上述したアナログ可変利得増幅器19i,19q→隣接チャネル信号検波回路23i,23q→制御ロジック回路26→ディジタル可変利得増幅器31i,31qの系は、アナログ可変利得増幅器19i,19qの出力信号のレベルに応じてディジタル可変利得増幅器31i,31qの利得値を設定するフィードフォワードのディジタルAGCループを形成している。
【0029】
以上説明したように、本実施形態に係る受信回路では、アナログAGCループとディジタルAGCループとを併用した構成を採ることにより、信号の帯域幅が増加することに伴ってアナログLPF18i,18qのカットオフ周波数が高くなったとしても、アナログLPF18i,18qとディジタルLPF30i,30qとのそれぞれの組み合わせでチャネルセレクトのために必要な遮断特性を得ることができるため、広帯域に遮断特性がシャープでかつ線形歪(振幅歪と位相歪)が小さい特性を、低消費電力で実現でき、また低雑音、高リニアリティ特性を同時に得ることが可能になる。
【0030】
しかも、本実施形態に係る受信回路においては、ディジタルAGCループがフィードフォワード制御であることから、隣接チャネル信号による干渉を受けた場合においても、大きな遅延特性をもつディジタルLPF30i,30qの影響を受けずにディジタル可変利得増幅器31i,31qの利得値を高速に設定することができるため、AGCセットアップの高速化を図ることができる。以下に、フィードフォワードのディジタルAGCループの回路動作についてさらに詳細に説明する。
【0031】
隣接チャネルに干渉信号が存在する場合には、アナログLPF18i,18qには、図2(a)に示すスペクトラムの信号が入力される。この信号は、アナログLPF18i,18qを通過することによって高域成分がカットされ、アナログ可変利得増幅器19i,19qから図2(b)に示すスペクトラムの信号として出力される。そして、隣接チャネル信号検波回路23i,23qのハイパスフィルタ231i,231qを通過することによって低域成分がカットされ、図2(c)に示すスペクトラムの信号として出力される。すなわち、希望チャネルの信号成分がカットされ、隣接チャネルの信号成分が取り出される。
【0032】
この取り出された隣接チャネルの信号成分は、検波回路232i,232qにおいてレベル検波された後、AD変換器233i,233qにおいてディジタル信号に変換されて制御ロジック回路26に送られる。すると、制御ロジック回路26は、検波回路232i,232qでの検波レベル、即ち隣接チャネルの信号レベルに応じてディジタル可変利得増幅器31i,31qの利得値を決定する。具体的には、制御ロジック回路26は、隣接チャネル信号がある場合、その信号レベルに応じてディジタル可変利得増幅器31i,31qの利得を下げるように制御する。
【0033】
上述したディジタルAGCループによるフィードフォワード制御により、隣接チャネル信号による干渉を受けた場合においても、大きな群遅延特性をもつディジタルLPF30i,30qの影響を受けることなくディジタル可変利得増幅器31i,31qの利得値を高速に設定することができるため、AGCセットアップの高速化を図ることができるのである。
【0034】
[第2実施形態]
図3は、本発明の第2実施形態に係る受信回路を用いた無線通信装置、例えばダイレクトコンバージョン受信機の構成例を示すブロック図であり、図中、図1と同等部分には同一符号を付して示している。
【0035】
本実施形態に係る受信回路では、先述した第1実施形態に係る受信回路の構成に加えて、ディジタル部22内にディジタル可変利得増幅器31i,31qの出力信号をレベル検波する検波回路33i,33qを設ける一方、制御ロジック回路26が検波回路33i,33qの検波レベルI2,Q2と、隣接チャネル信号検波回路23i,23qの検波レベルIu,Quとから、ディジタル可変利得増幅器31i,31qの利得値を設定する構成となっている。
【0036】
制御ロジック回路26は、例えば、Cg=Kg*(Iu+Qu)+K2*(I2+Q2)の計算を行う。ここで、I2,Q2はディジタル可変利得増幅器31i,31qの出力での検波レベルである。K2はその検波結果(I2+Q2)から利得制御信号Cgへ変換する変換係数となる。
【0037】
上記構成の第2実施形態に係る受信回路においては、アナログAGCループによるフィードバック制御により、検波回路24i,24qでの検波レベルI1,Q1に応じてアナログ可変利得増幅器19i,19qの利得値が設定され、またディジタルAGCループでは、隣接チャネル信号検波回路23i,23qでの検波レベルIu,Quおよび検波回路33i,33qの検波レベルI2,Q2に応じてディジタル可変利得増幅器31i,31qの利得値が設定される。
【0038】
このように、ディジタルAGCループにおいて、フィードフォワードループに加えて、ディジタル可変利得増幅器31i,31qの出力信号をレベル検波し、その検波レベルI2,Q2を用いてディジタル可変利得増幅器31i,31qの利得値を設定するフィードバックループを形成することにより、第1実施形態に係る受信回路の場合の作用効果に加えて、ディジタル可変利得増幅器31i,31qの利得値についてさらに細かい精度で修正を加えることができるため、受信回路の性能をさらに上げることができる。
【0039】
本実施形態に係る受信回路のように、隣接チャネル信号検波回路23i,23q以外に、検波回路33i,33qを構成要素として有する場合には、当該検波回路33i,33qの検波レベルI2,Q2を用いてアナログ可変利得増幅器19i,19qの利得値を設定するフィードバックループを形成するようにすることも可能である。具体的には、制御ロジック回路26による制御の下に、隣接チャネル信号検波回路23i,23qでの検波レベルIu,Quを用いてディジタル可変利得増幅器31i,31qの利得値を設定する一方、検波回路24i,24qでの検波レベルI1,Q1と検波回路33i,33qでの検波レベルI2,Q2とを用いてアナログ可変利得増幅器19i,19qの利得値を設定するように構成すれば良い。
【0040】
[第3実施形態]
図4は、本発明の第3実施形態に係る受信回路を用いた無線通信装置、例えばダイレクトコンバージョン受信機の構成例を示すブロック図であり、図中、図3と同等部分には同一符号を付して示している。
【0041】
第2実施形態に係る受信回路では、隣接チャネル信号検波回路23i,23qの検波入力をアナログ可変利得増幅器19i,19qの出力側から取り出しているのに対して、本実施形態に係る受信回路では、隣接チャネル信号検波回路23i,23qの検波入力をアナログ可変利得増幅器19i,19qの入力側から取り出す構成を採っており、それ以外の構成は第2実施形態に係る受信回路と同じである。
【0042】
このように、隣接チャネル信号検波回路23i,23qにおいて、アナログ可変利得増幅器19i,19qの入力信号をレベル検波する構成を採る場合にも、アナログ可変利得増幅器19i,19qの出力信号をレベル検波する構成を採る場合と同様の作用効果、即ち隣接チャネル信号による干渉を受けた場合でも、大きな群遅延特性をもつディジタルLPF30i,30qの影響を受けることなくディジタル可変利得増幅器31i,31qの利得値を高速に設定することができるため、AGCセットアップの高速化を図ることができる。
【0043】
ただし、アナログ可変利得増幅器19i,19qの入力信号をレベル検波する構成を採る場合、ハイパスフィルタ231i,231qの入力レベル範囲は、アナログ可変利得増幅器19i,19qの出力信号をレベル検波する場合に比べて大きい。そこで、ハイパスフィルタ231i,231qの前段に対数増幅器を入れると、ハイパスフィルタ231i,231qの入力レベル範囲を小さくすることができる。
【0044】
本実施形態に係る技術思想、即ち隣接チャネル信号検波回路23i,23qにおいて、アナログ可変利得増幅器19i,19qの入力信号をレベル検波する構成は、第1実施形態に係る受信回路にも同様に適用することができる。
【0045】
なお、上記各実施形態では、アナログAGCループとディジタルAGCループとを併用することを前提としたが、隣接チャネル信号による干渉を受けた際に、高速かつ高精度にてAGCを行うことを可能とする、という観点からすれば、ディジタルAGCループによるフィードフォワード制御のみでも所期の目的を達成することができる。
【0046】
また、上記各実施形態においては、隣接チャネル信号検波回路23i,23qをI,Q両方に設ける構成としたが、片側だけに配置する構成を採ることも可能である。この構成を採ることにより、隣接チャネル信号検波回路を1個省略できる分だけ回路構成の簡略化を図ることができる。
【0047】
さらに、上記各実施形態においては、ダイレクトコンバージョン方式の受信回路に適用した場合を例に挙げて説明したが、本発明はこの適用例に限られるものではなく、受信した高周波信号を低IF(中間周波数)に周波数変換して処理する低IF方式の受信回路にも同様に適用可能である。
【0048】
【発明の効果】
以上説明したように、本発明によれば、フィードフォワードのディジタルAGCループによって利得制御を行うようにしたことで、隣接チャネル信号による干渉を受けた場合においても、高速にかつ高精度に自動利得制御を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る受信回路を用いたダイレクトコンバージョン受信機の構成例を示すブロック図である。
【図2】第1実施形態に係る受信回路におけるアナログLPFの入力信号(a)、アナログ可変利得増幅器の出力信号(b)およびハイパスフィルタの出力信号(c)の各スペクトラムを示す図である。
【図3】本発明の第2実施形態に係る受信回路を用いたダイレクトコンバージョン受信機の構成例を示すブロック図である。
【図4】本発明の第3実施形態に係る受信回路を用いたダイレクトコンバージョン受信機の構成例を示すブロック図である。
【図5】第1従来例に係るダイレクトコンバージョン受信機の構成を示すブロック図である。
【図6】第2従来例に係るダイレクトコンバージョン受信機の構成を示すブロック図である。
【図7】IEEE802.11aのトレーニングシンボルの構成を示す図である。
【符号の説明】
18i,18q…アナログLPF(ローパスフィルタ)、19i,19q…アナログ可変利得増幅器、20…AGC部、22…ディジタル部、23i,23q…隣接チャネル信号検波回路、24i,24q,33i,33q…検波回路、26…制御ロジック回路、28i,28q…コントロール回路、29…復調部、30i,30q…ディジタルLPF、31i,31q…ディジタル可変利得増幅器、231i,231q…ハイパスフィルタ

Claims (10)

  1. 受信信号を周波数変換して得られる信号から希望チャネルの信号を取り出すアナログフィルタ手段と、
    前記アナログフィルタ手段で取り出された信号の振幅を調整するアナログ可変利得増幅手段と、
    前記アナログ可変利得増幅手段の出力信号をディジタル信号に変換するAD変換手段と、
    前記AD変換手段の出力信号から希望チャネルの信号を取り出すディジタルフィルタ手段と、
    前記ディジタルフィルタ手段で取り出された信号の振幅を調整するディジタル可変利得増幅手段と、
    前記アナログ可変利得増幅手段の出力信号または入力信号に含まれる希望チャネルに隣接するチャネルの信号レベルに応じて前記ディジタル可変利得増幅手段の利得値を調整するフィードフォワード制御手段と
    を備えたことを特徴とする受信回路。
  2. 請求項1記載の受信回路においてさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段
    を備えたことを特徴とする受信回路。
  3. 請求項1記載の受信回路においてさらに、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該ディジタル可変利得増幅手段の利得値を調整する第2のフィードバック制御手段
    を備えたことを特徴とする受信回路。
  4. 請求項1記載の受信回路においてさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段と、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該ディジタル可変利得増幅手段の利得値を調整する第2のフィードバック制御手段と
    を備えたことを特徴とする受信回路。
  5. 請求項1記載の受信回路においてさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段と、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて前記アナログ可変利得増幅手段の利得値を調整する第2のフィードバック制御手段と
    を備えたことを特徴とする受信回路。
  6. アンテナで受信された高周波信号の周波数変換を行う周波数変換手段と、
    前記周波数変換手段で周波数変換された信号を処理する信号処理部と、
    前記信号処理部で処理された信号を復調する復調手段とを備え、
    前記信号処理部は、
    前記周波数変換手段で周波数変換された信号から希望チャネルの信号を取り出すアナログフィルタ手段と、
    前記アナログフィルタ手段で取り出された信号の振幅を調整するアナログ可変利得増幅手段と、
    前記アナログ可変利得増幅手段の出力信号をディジタル信号に変換するAD変換手段と、
    前記AD変換手段の出力信号から希望チャネルの信号を取り出すディジタルフィルタ手段と、
    前記ディジタルフィルタ手段で取り出された信号の振幅を調整するディジタル可変利得増幅手段と、
    前記アナログ可変利得増幅手段の出力信号または入力信号に含まれる希望チャネルに隣接するチャネルの信号レベルに応じて前記ディジタル可変利得増幅手段の利得値を調整するフィードフォワード制御手段とを有する
    ことを特徴とする無線通信装置。
  7. 前記信号処理部はさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段を有する
    ことを特徴とする請求項6記載の無線通信装置。
  8. 前記信号処理部はさらに、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該ディジタル可変利得増幅手段の利得値を調整する第2のフィードバック制御手段を有する
    ことを特徴とする請求項6記載の無線通信装置。
  9. 前記信号処理部はさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段と、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該ディジタル可変利得増幅手段の利得値を調整する第2のフィードバック制御手段とを有する
    ことを特徴とする請求項6記載の無線通信装置。
  10. 前記信号処理部はさらに、
    前記アナログ可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて当該アナログ可変利得増幅手段の利得値を調整する第1のフィードバック制御手段と、
    前記ディジタル可変利得増幅手段の出力信号に含まれる希望チャネルの信号レベルに応じて前記アナログ可変利得増幅手段の利得値を調整する第2のフィードバック制御手段とを有する
    ことを特徴とする請求項6記載の無線通信装置。
JP2002232322A 2002-08-09 2002-08-09 受信回路およびこれを用いた無線通信装置 Expired - Fee Related JP4039168B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232322A JP4039168B2 (ja) 2002-08-09 2002-08-09 受信回路およびこれを用いた無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232322A JP4039168B2 (ja) 2002-08-09 2002-08-09 受信回路およびこれを用いた無線通信装置

Publications (2)

Publication Number Publication Date
JP2004072644A true JP2004072644A (ja) 2004-03-04
JP4039168B2 JP4039168B2 (ja) 2008-01-30

Family

ID=32017769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232322A Expired - Fee Related JP4039168B2 (ja) 2002-08-09 2002-08-09 受信回路およびこれを用いた無線通信装置

Country Status (1)

Country Link
JP (1) JP4039168B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166588A (ja) * 2005-11-16 2007-06-28 Samsung Electronics Co Ltd 自動利得制御装置
JP2007538469A (ja) * 2004-05-18 2007-12-27 トムソン ライセンシング 変動する隣接チャネルの状態を補償するための装置及び方法
CN106712804A (zh) * 2016-12-30 2017-05-24 陕西烽火电子股份有限公司 一种跳频接收信道快速增益控制系统
CN110011678A (zh) * 2019-04-25 2019-07-12 南京信息职业技术学院 一种适用于突变信道的超外差接收机的自动增益控制系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169030A (ja) * 1985-01-22 1986-07-30 Nec Corp 受信回路
JPH05291986A (ja) * 1992-04-07 1993-11-05 Sharp Corp 自動利得制御回路
JP2000040929A (ja) * 1998-07-24 2000-02-08 Miharu Tsushin Kk Fmシグナルプロセッサのagc制御方法
JP2000252868A (ja) * 1999-03-01 2000-09-14 Toshiba Corp Cdma通信装置とその自動利得制御回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169030A (ja) * 1985-01-22 1986-07-30 Nec Corp 受信回路
JPH05291986A (ja) * 1992-04-07 1993-11-05 Sharp Corp 自動利得制御回路
JP2000040929A (ja) * 1998-07-24 2000-02-08 Miharu Tsushin Kk Fmシグナルプロセッサのagc制御方法
JP2000252868A (ja) * 1999-03-01 2000-09-14 Toshiba Corp Cdma通信装置とその自動利得制御回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538469A (ja) * 2004-05-18 2007-12-27 トムソン ライセンシング 変動する隣接チャネルの状態を補償するための装置及び方法
US7995147B2 (en) 2004-05-18 2011-08-09 Thomson Licensing Apparatus and method for compensating for varying adjacent channel conditions
KR101123899B1 (ko) * 2004-05-18 2012-03-26 톰슨 라이센싱 가변 인접 채널 조건을 보상하는 장치 및 방법
JP2007166588A (ja) * 2005-11-16 2007-06-28 Samsung Electronics Co Ltd 自動利得制御装置
CN106712804A (zh) * 2016-12-30 2017-05-24 陕西烽火电子股份有限公司 一种跳频接收信道快速增益控制系统
CN106712804B (zh) * 2016-12-30 2024-04-09 陕西烽火电子股份有限公司 一种跳频接收信道快速增益控制系统
CN110011678A (zh) * 2019-04-25 2019-07-12 南京信息职业技术学院 一种适用于突变信道的超外差接收机的自动增益控制系统和方法
CN110011678B (zh) * 2019-04-25 2024-03-01 南京信息职业技术学院 一种适用于突变信道的超外差接收机的自动增益控制系统和方法

Also Published As

Publication number Publication date
JP4039168B2 (ja) 2008-01-30

Similar Documents

Publication Publication Date Title
US6670901B2 (en) Dynamic range on demand receiver and method of varying same
US8374560B2 (en) Method and system for processing signals in a high performance receive chain
US20050147192A1 (en) High frequency signal receiver and semiconductor integrated circuit
EP2033323B1 (en) Multiple input multiple output signal receiving apparatus with optimized performance
US20040218576A1 (en) Receiver and communication terminal
WO2004049580A2 (en) An amps receiver system using a zero-if architecture
JPH11112461A (ja) デジタル通信の受信機
KR20010041252A (ko) 제어형 수신 장치와 그 제어 방법
WO2000051253A1 (fr) Unite de poste de radio
JPH11234150A (ja) デジタル復調装置
US7127268B2 (en) Radio transmission apparatus and radio transmission method
KR101053136B1 (ko) 공유 기능 블록 멀티 모드 멀티 밴드 통신 트랜시버
JP2004147000A (ja) Agcシステム
JP5025198B2 (ja) 無線受信装置と無線受信方法
JP4039168B2 (ja) 受信回路およびこれを用いた無線通信装置
WO2006098173A1 (ja) 高周波受信機および隣接妨害波の低減方法
JP2004080455A (ja) 受信回路およびこれを用いた無線通信装置
JP2007228342A (ja) 受信装置およびそれを用いた送受信装置
JP2003188754A (ja) 局部発振周波信号出力回路及びこれを用いた携帯端末
JP3746209B2 (ja) 無線送受信機
JP2003298674A (ja) マルチレート受信装置
JP5438599B2 (ja) 無線通信受信機
JP2001244861A (ja) 無線受信装置及び方法
CN103428832A (zh) 节能的无线接收器、通信系统和用于无线通信接收器的节能方法
JP4039169B2 (ja) 受信回路およびこれを用いた無線通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees