JP2004072034A - Capacitor, interposer or printed circuit board incorporating the same - Google Patents

Capacitor, interposer or printed circuit board incorporating the same Download PDF

Info

Publication number
JP2004072034A
JP2004072034A JP2002232794A JP2002232794A JP2004072034A JP 2004072034 A JP2004072034 A JP 2004072034A JP 2002232794 A JP2002232794 A JP 2002232794A JP 2002232794 A JP2002232794 A JP 2002232794A JP 2004072034 A JP2004072034 A JP 2004072034A
Authority
JP
Japan
Prior art keywords
capacitor
comb
electrode
dielectric
interposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232794A
Other languages
Japanese (ja)
Inventor
Hiroyasu Omori
大森 寛康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002232794A priority Critical patent/JP2004072034A/en
Publication of JP2004072034A publication Critical patent/JP2004072034A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor which can be made much thinner than a prior art capacitor, can be easily manufactured and have a high electrostatic capacity, as well as a small, high-performance interposer and a printed circuit board incorporating the capacitor. <P>SOLUTION: The capacitor includes a pair of comb-shaped electrode structures each having electrode teeth and a back electrode arranged so that the electrode teeth are intermeshed to be opposed to each other. Dielectric material is provided between the electrode structures. Consequently the interposer and the printed circuit board can be made small in size and high in performance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基板に内蔵することのできるコンデンサ又はそれを内蔵したインターポーザーもしくはプリント配線板に係るものである。
【0002】
【従来の技術】
従来からプリント配線板に実装される部品の一つとして、コンデンサがある。このコンデンサは、信号の整流等の目的でプリント配線板に実装されるものである。
また、多くのインターポーザーやプリント配線板の場合、グランドプレーンと電源プレーンは2層の平行平板である。この時、グランドプレーンと電源プレーン間の距離が離れていると両者の結合が不十分となるため、グランドプレーンや電源プレーンで電圧の揺れが起こり、他の機器に影響を与えたり、もしくは環境に影響を与えるEMI(電磁波妨害:Electromagnetic Interference)やEMC(電磁波的両立性:Electromagnetic Compatibility)の原因となる。このようなEMI・EMC防止対策として、通常プリント配線板にはデカップリングコンデンサとしてコンデンサが実装されている。
【0003】
【発明が解決しようとする課題】
しかし、プリント配線板上に実装して使用される従来のコンデンサは、使用できる周波数帯に制限が大きいものである。また、コンデンサ自体が縦横にかさばるため、実装にはある程度の大きさが高さ方向だけでなく平面方向に必要となり、配線に制限が発生し、さらにプリント配線板自体もある程度の大きさを要求される。さらにこの平面方向は、伝送線路が引かれる方向と一致しており配線の引き回しにも影響を与える。もちろん、厚みがあるのでインターポーザーやプリント配線板等の内層に埋め込む事は非常に難しい。
【0004】
こられの問題を解決する方法として、小型のコンデンサをインターポーザーあるいはプリント配線板内に埋設することが考えられるが、コンデンサを小型にするとコンデンサの電極面積も狭くなるため、十分な容量のコンデンサを得られないという問題があった。また、複雑な構造のコンデンサとすると、プリント配線板等の内部に埋設するために特殊な処置や装置が必要となり、著しく生産性を害するおそれがあった。
さらに今のところ、インターポーザーでは具体的なEMI・EMC防止対策は取られていないが、電気回路内での高クロック化が進行している現在、インターポーザーから発生するEMI・EMCに対する対策が必要となるのは時間の問題である。
【0005】
【課題を解決するための手段】
本発明は以上の課題を解決するためになされたものである。すなわち、請求項1に係る第1の発明は、一組の、櫛の歯電極と櫛の背電極を有する櫛形電極が、櫛の歯がかみ合うように対向して配置され、かつ電極間に誘電体を挟持する構成としたことを特徴とするコンデンサである。
【0006】
請求項2に係る第2の発明は、請求項1記載の櫛の背電極が平板であり、かつ、互いに平行に配置されていることを特徴とする請求項1記載のコンデンサである。
【0007】
請求項3に係る第3の発明は、前記櫛の歯電極の直径が10〜200μmの範囲であり、櫛の歯電極の先と、対向する電極の櫛の背電極との距離が5〜10μmの範囲であることを特徴とする請求項1または2のいずれかに記載のコンデンサである。
【0008】
請求項4に係る第4の発明は、少なくとも、
1.誘電体に非貫通孔を両面から、非貫通孔がかみ合うように互い違いに配置する工程、
2.前記非貫通孔を設けた誘電体の両面に電極を形成し櫛形電極とする工程、
の2工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法である。
【0009】
請求項5に係る第5の発明は、少なくとも、
1.一組の対向する導電性物質で挟持された誘電体に非貫通孔を両面から、非貫通孔がかみ合うように互い違いに配置する工程、
2.前記非貫通孔を導電性物質で充填し櫛形電極を形成する工程、
の2工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法である。
【0010】
請求項6に係る第6の発明は、少なくとも、
1.誘電体に貫通孔を形成する工程、
2.前記誘電体と同じ誘電体または異なる誘電体を、厚さが5〜10μmの範囲で前記貫通孔に充填し、互い違いにかみ合う構造の非貫通孔とする工程、
3.前記非貫通孔を設けた誘電体の両面に電極を形成し櫛形電極とする工程、
の3工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法である。
【0011】
請求項7に係る第7の発明は、請求項1〜3のいずれかに記載のコンデンサを内蔵したことを特徴とするインターポーザーまたはプリント配線板である。
【0012】
請求項8に係る第8の発明は、請求項4〜6のいずれかに記載の方法でコンデンサを形成したことを特徴とするインターポーザーまたはプリント配線板である。
【0013】
【発明の実施の形態】
以下、本発明を図1〜7を用いて詳細に説明する。
図1は本発明のコンデンサの断面図である。櫛形電極の櫛の歯の先は、電極から5〜10μmの厚みで誘電体(3)により隔てられている。この櫛の歯電極(1)の配置は、図4に示すように、同じ方向の櫛形電極に接続された櫛の歯が隣り合わないよう、互い違いにかみ合うように形成すると、櫛の背に平行な方向での櫛の歯の間、すなわち電極間の結合が強まり、コンデンサの容量の増加につながる。
【0014】
本発明でいう櫛形電極とは、平板状の導電性物質(2c)から導電性物質で形成された突起が規則正しく林立してなるものであり、前記突起を本明細書中では櫛の歯、あるいは櫛の歯電極(1)と呼ぶ。また、前記平板状の導電性物質を櫛の背あるいは櫛の背電極(2)と呼ぶ。
また本発明のコンデンサの製造方法においては、誘電体(3)を突き抜けて形成された穴を貫通孔(1c)、突き抜けない状態に形成された穴を非貫通孔(1d)と呼び、この非貫通孔(1d)に導電性物質を何らかの方法で充填することにより、本発明のコンデンサの櫛の歯電極(1)とするものである。
【0015】
本発明のコンデンサを作製するにあたって、公知の誘電体、金属などの電極用導電性物質等、従来のインターポーザーあるいはプリント配線板の作製に用いられていた材料を使用することができる。
【0016】
本発明のコンデンサに用いる誘電体(3)の厚みは、通常のコンデンサより厚くても櫛の歯電極(1)のサイズと形成密度で高い静電容量を得ることができるため、大きな制限はない。コンデンサの薄型化・小型化という観点から、好ましく用いることのできる範囲は、インターポーザーにおいては15〜1000μm、プリント配線板の場合では15〜1000μmである。
【0017】
非貫通(あるいは貫通)孔(1cあるいは1d)の形成には、従来公知であるプリント配線板等に対するスルーホールの形成方法ならいずれも用いることができるが、ドリル、またはレーザーによる方法が広く用いられており、本発明の実施形態としても好ましく用いることができる。
【0018】
その際、非貫通(貫通)孔(1cあるいは1d)の直径は小さいほどたくさんの櫛の歯電極(1)を形成することができるため好ましく、精度良く形成できる範囲で有れば小さい程良い。その直径の上限は、コンデンサをインターポーザーに内蔵する場合は100μm以下、プリント配線板に内蔵する場合は200μm以下とするのが好ましい。あまり大きいと電極面積の拡大が図れず、本発明の目的を達成できないからである。
この際、非貫通(貫通)孔(1cあるいは1d)のピッチは細かいほど、小型でも静電容量の大きなコンデンサとできるため好ましい。
【0019】
また、非貫通孔(1c)の長さ(あるいは深さ)は、非貫通孔の底が、対向する櫛の背電極(2)から5〜10μmの範囲を保つことができれば特に制限はない。この範囲であれば十分な静電容量を確保できるからである。
このとき、一方の櫛の歯電極は他方の櫛の歯電極とその壁面同士で誘電体を挟むことのできる長さを有していると、電極間の結合が櫛の歯電極の壁面でもおこるためより強固なものとなり、コンデンサの静電容量の増大、電圧の揺れの防止に非常に有効である。
【0020】
本発明のコンデンサの静電容量は、電極自体のサイズだけでなく、櫛の歯のサイズと櫛の歯の形成密度を変えることで容易に調節することができる。誘電体層の厚みを増し、櫛の歯の長さを長くしても、電極の表面積を広げることができるので高容量とすることができる。このような方法で電極間の結合を強めれば、EMI・EMC防止に効果的である。また、電極により挟持する誘電体の非誘電率を変えることでも調節でき、特に設計変更することもなく、高周波仕様にすることができる。
【0021】
いったん貫通孔(1d)を設けてから、誘電体(3a)を充填して本発明のコンデンサの構造とするコンデンサの製造方法(図7)においては、後に充填する誘電体(3a)を、貫通孔(1d)を設けた誘電体(3)と異なるものとすることでも、コンデンサの静電容量を変化させることができる。
【0022】
非貫通孔(1c)を導電性物質で充填して電極とする方法についても、めっき等、従来公知のスルーホール、ビアホールの充填方法を用いることができ、特に制限はない。
あらかじめ導電性物質で挟持された誘電体(3)に非貫通孔(1c)を形成した場合(図6)は、非貫通孔(1c)を導電性物質で充填することにより櫛の歯電極(1)として、本発明のコンデンサとすることができる。誘電体(3)のみに非貫通孔(1c)を形成(図5)、もしくは貫通孔(1d)の形成後に貫通孔を誘電体(3a)で一部充填して非貫通孔(1c)を形成したもの(図7)については、非貫通孔(1c)の充填だけでなく、平面状の櫛の背電極(2)の形成も行う必要がある。
【0023】
このようにして製造した本発明のコンデンサは、インターポーザー及びプリント配線板の製造過程において同時に組み込むことができるので、本発明によれば、コンデンサを内蔵した、EMI・EMC対応の、生産性の高い小型で高性能なインターポーザー及びプリント配線板を提供することができる。
本発明のコンデンサをインターポーザーあるいはプリント配線板に組み込んだ場合(図2)は、コンデンサの電極としてグランドプレーン(2a)と電源プレーン(2b)を用いることができ、構造及び工程の簡略化を図ることができる。
【0024】
本発明のコンデンサは積層することができるため、多層構造のインターポーザー及びプリント配線板に内蔵すれば、より性能の高いインターポーザー及びプリント配線板とすることができる(図2、図3)。
【0025】
【実施例】
図1は本発明のコンデンサの断面図である。櫛の歯電極(1)の先は、対向する櫛の背電極(2)から5〜10μmの厚みで誘電体(3)により隔てられている。図4は本発明のコンデンサの立体透視図である。この櫛の歯電極(1)の配置は、図4に示すように、同じ方向の櫛の背電極(2)に接続された櫛の歯が隣り合わないよう、対向する櫛の背から出た櫛の歯電極(1)と互い違いにかみ合うように形成されている。
【0026】
図2に、本発明のコンデンサを、電源プレーン(2b)、グランドプレーン(2a)を両電極としてプリント配線板またはインターポーザー内の一部に内蔵した一例の断面図を示す。また図3に、本発明のコンデンサを、インターポーザーまたはプリント配線板の一層として形成した一例の断面図を示す。どちらの適用方法によっても、シグナルラインや配線が平面状となったコンデンサの上下にできるため、配線の自由度が大幅に増す。
【0027】
本発明のコンデンサを、比誘電率=4.0、縦=960μm、横=960μm、厚み=30μmのガラス繊維樹脂に、80μmまたは50μmピッチで直径40μm、対向する他方の櫛の背電極(厚み12μm)からの距離10μmである櫛形電極を設けて作製、実施例1〜3として、静電容量を測定した。また櫛の歯を全く設けない、フラットな電極についても同じガラス繊維樹脂を挟んでコンデンサを作製し比較例として、比較した。結果を表1に示す。
【0028】
【表1】

Figure 2004072034
【0029】
【発明の効果】
以上、本発明によれば、従来のコンデンサと比べ非常に薄く、基板内の埋め込みに適したコンデンサ及び小型で高性能なインターポーザーそしてプリント配線板を提供することができる。
本発明のコンデンサは、誘電体へ互い違いにかみ合う非貫通孔を作成し、この非貫通孔に導電性物質を充填し電極とすることにより、電極の表面積が上がり、コンデンサのサイズが小さくても高い容量を得ることができるものである。このとき電極同士が非常に離れていても密な非貫通孔(櫛の歯電極)を形成することにより結合を強める事ができる。また非貫通孔(櫛の歯電極)のサイズや形成密度を変更することで、容易にコンデンサの容量を変化させることができる。
【0030】
本発明のコンデンサの製造方法によれば、特別な装置を必要とせずに、インターポーザー・プリント配線板の製作と同時に、レーザー等のスルーホール形成工程とめっきなどの手法でコンデンサを基板内に作成する事が可能となり、大幅に工程の簡略化が図れる。コンデンサの電極にはプリント配線板やインターポーザーのグランドプレーン及び電源プレーンを用いることができるため、部品の点数が少なく、単純な構造にできる。さらに、次第に高くなるクロック周波数向けに高周波特性の良好な誘電体を電極間に挿入する事により高周波向けにすぐに対応することができる。
【0031】
また、厚みの少ないインターポーザーに本発明によるコンデンサを内蔵することで、プリント配線板上におけるコンデンサの数が減らすことができ、プリント配線板の小型化が図れるのみならず、高クロック化によるインターポーザーのEMI・EMCの問題を軽減することができる。
その上、本発明のコンデンサは、平面状に構築できるため、多層インターポーザーや多層プリント配線板においては積層方向にも配置出来るので、配線の引き回しの自由度が従来のコンデンサより向上するものである。従来のコンデンサのような高さ方向への制限がなくなるので、本発明のコンデンサを内蔵したインターポーザーまたはプリント配線板を用いた電子機器は、著しい小型化を可能とするものとなる。
【図面の簡単な説明】
【図1】本発明のコンデンサの断面図である。
【図2】本発明のコンデンサをインターポーザーまたはプリント配線板の一部に内蔵した一例の断面図である。
【図3】本発明のコンデンサをインターポーザーまたはプリント配線板の電源プレーン及びグランドプレーンを両電極として作製した一例の断面図である。
【図4】本発明のコンデンサの立体透視図である。
【図5】本発明のコンデンサの製造方法の一例を示す説明図である。
【図6】本発明のコンデンサの製造方法の他の例を示す説明図である。
【図7】本発明のコンデンサの製造方法の他の例を示す説明図である。
【符号の説明】
1 …櫛の歯電極
1a…グランドプレーンからの櫛の歯電極
1b…電源プレーンからの櫛の歯電極
1c…非貫通孔
1d…貫通孔
2 …櫛の背電極
2a…グランドプレーン
2b…電源プレーン
2c…平板状の導電性物質
3 …誘電体
3a…(後に充填した)誘電体
4 …シグナルライン
5 …配線
6 …誘電体もしくは絶縁体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitor that can be incorporated in a substrate, or an interposer or a printed wiring board that incorporates the capacitor.
[0002]
[Prior art]
2. Description of the Related Art A capacitor is one of the components conventionally mounted on a printed wiring board. This capacitor is mounted on a printed wiring board for the purpose of signal rectification and the like.
In the case of many interposers and printed wiring boards, the ground plane and the power plane are two-layer parallel flat plates. At this time, if the distance between the ground plane and the power plane is large, the coupling between them will be insufficient, and voltage fluctuations will occur in the ground plane and the power plane, affecting other devices or affecting the environment. It causes EMI (Electromagnetic Interference) and EMC (Electromagnetic Compatibility) which affect. As a measure to prevent such EMI / EMC, a capacitor is usually mounted on a printed wiring board as a decoupling capacitor.
[0003]
[Problems to be solved by the invention]
However, conventional capacitors mounted and used on a printed wiring board have a large limitation on the usable frequency band. Also, since the capacitors themselves are bulky both vertically and horizontally, a certain amount of mounting is required not only in the height direction but also in the plane direction, which limits wiring, and the printed wiring board itself also requires a certain size. You. Further, this plane direction coincides with the direction in which the transmission line is drawn, which also affects the routing of the wiring. Of course, since it is thick, it is very difficult to embed it in an inner layer such as an interposer or a printed wiring board.
[0004]
As a method to solve these problems, it is conceivable to embed a small capacitor in an interposer or a printed wiring board.However, if the capacitor is made smaller, the electrode area of the capacitor becomes smaller, so a capacitor with sufficient capacity must be used. There was a problem that it could not be obtained. In addition, when a capacitor having a complicated structure is used, a special treatment or device is required to bury the capacitor inside a printed wiring board or the like, which may significantly impair productivity.
At present, no specific EMI / EMC prevention measures have been taken for the interposer, but as clocks in electric circuits are increasing, measures must be taken against EMI / EMC generated from the interposer. Is a matter of time.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above problems. That is, according to the first aspect of the present invention, a pair of comb-shaped electrodes having a comb tooth electrode and a comb back electrode are disposed so as to face each other so that the teeth of the comb mesh with each other, and a dielectric is provided between the electrodes. A capacitor characterized in that it is configured to hold a body.
[0006]
A second invention according to a second aspect is the capacitor according to the first aspect, wherein the back electrodes of the comb according to the first aspect are flat plates and are arranged parallel to each other.
[0007]
According to a third aspect of the present invention, the diameter of the comb tooth electrode is in the range of 10 to 200 μm, and the distance between the tip of the comb tooth electrode and the back electrode of the opposing electrode is 5 to 10 μm. The capacitor according to claim 1, wherein:
[0008]
According to a fourth aspect of the present invention, at least
1. A step of alternately arranging the non-through holes in the dielectric so that the non-through holes engage from both sides,
2. Forming electrodes on both surfaces of the non-through-hole-provided dielectric to form a comb-shaped electrode,
4. The method for manufacturing a capacitor according to claim 1, comprising the following two steps.
[0009]
According to a fifth aspect of the present invention, at least
1. A step of alternately arranging the non-through holes on both sides of the dielectric sandwiched by a pair of opposing conductive materials so that the non-through holes mesh with each other,
2. Filling the non-through hole with a conductive material to form a comb-shaped electrode,
4. The method for manufacturing a capacitor according to claim 1, comprising the following two steps.
[0010]
According to a sixth aspect of the present invention, at least
1. Forming a through hole in the dielectric,
2. Filling the through holes with the same dielectric material or a different dielectric material as the dielectric material in a thickness range of 5 to 10 μm, and forming a non-through hole having a structure that alternately meshes;
3. Forming electrodes on both surfaces of the non-through-hole-provided dielectric to form a comb-shaped electrode,
4. The method of manufacturing a capacitor according to claim 1, comprising the following three steps.
[0011]
According to a seventh aspect of the present invention, there is provided an interposer or a printed wiring board including the capacitor according to any one of the first to third aspects.
[0012]
According to an eighth aspect of the present invention, there is provided an interposer or printed wiring board, wherein a capacitor is formed by the method according to any one of the fourth to sixth aspects.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIGS.
FIG. 1 is a sectional view of the capacitor of the present invention. The tips of the comb teeth of the comb-shaped electrode are separated from the electrode by a dielectric (3) with a thickness of 5 to 10 μm. As shown in FIG. 4, when the comb tooth electrodes (1) are arranged so that the teeth of the combs connected to the comb-shaped electrodes in the same direction are not adjacent to each other and are staggered, as shown in FIG. The connection between the teeth of the comb in different directions, that is, between the electrodes is strengthened, which leads to an increase in the capacitance of the capacitor.
[0014]
The term “comb-shaped electrode” as used in the present invention refers to an electrode in which protrusions formed of a conductive material from a plate-like conductive material (2c) are regularly arranged in a forest. It is referred to as a comb tooth electrode (1). The flat conductive material is referred to as a comb back or a comb back electrode (2).
In the method of manufacturing a capacitor according to the present invention, a hole formed through the dielectric (3) is referred to as a through hole (1c), and a hole formed so as not to penetrate is referred to as a non-through hole (1d). The through-hole (1d) is filled with a conductive substance by any method to form the comb tooth electrode (1) of the capacitor of the present invention.
[0015]
In manufacturing the capacitor of the present invention, a material used for manufacturing a conventional interposer or a printed wiring board, such as a known dielectric or a conductive material for an electrode such as a metal, can be used.
[0016]
The thickness of the dielectric (3) used in the capacitor of the present invention is not particularly limited even if it is thicker than a normal capacitor because a high capacitance can be obtained with the size and formation density of the comb tooth-shaped electrode (1). . From the viewpoint of reducing the thickness and size of the capacitor, a range that can be preferably used is 15 to 1000 μm for an interposer and 15 to 1000 μm for a printed wiring board.
[0017]
For forming the non-penetrating (or penetrating) hole (1c or 1d), any conventionally known method for forming a through-hole in a printed wiring board or the like can be used, but a method using a drill or a laser is widely used. Therefore, it can be preferably used as an embodiment of the present invention.
[0018]
At this time, the smaller the diameter of the non-penetrating (through) hole (1c or 1d), the more it is possible to form a large number of comb tooth electrodes (1), and the smaller the diameter, the better. The upper limit of the diameter is preferably 100 μm or less when the capacitor is built in the interposer, and 200 μm or less when the capacitor is built in the printed wiring board. If the diameter is too large, the electrode area cannot be increased, and the object of the present invention cannot be achieved.
At this time, it is preferable that the pitch of the non-penetrating (penetrating) holes (1c or 1d) is small, because a capacitor having a small capacitance and a large capacitance can be obtained.
[0019]
The length (or depth) of the non-through hole (1c) is not particularly limited as long as the bottom of the non-through hole can keep the range of 5 to 10 μm from the opposing back electrode (2) of the comb. This is because a sufficient capacitance can be secured in this range.
At this time, if the tooth electrode of one comb has such a length that a dielectric can be sandwiched between the wall surface of the tooth electrode of the other comb and the wall thereof, the coupling between the electrodes also occurs on the wall surface of the tooth electrode of the comb. Therefore, it becomes more robust and is very effective in preventing an increase in capacitance of the capacitor and fluctuation in voltage.
[0020]
The capacitance of the capacitor of the present invention can be easily adjusted by changing not only the size of the electrode itself, but also the size of the teeth of the comb and the formation density of the teeth of the comb. Even if the thickness of the dielectric layer is increased and the length of the teeth of the comb is increased, the surface area of the electrode can be increased, so that the capacity can be increased. If the coupling between the electrodes is strengthened by such a method, it is effective to prevent EMI and EMC. Further, it can be adjusted by changing the non-dielectric constant of the dielectric material sandwiched between the electrodes, and can be made to have a high frequency specification without any particular design change.
[0021]
In the method of manufacturing a capacitor according to the present invention (FIG. 7) in which the through hole (1d) is provided and then the dielectric (3a) is filled, the dielectric (3a) to be filled later is penetrated. By making the dielectric material different from the dielectric material (3) provided with the hole (1d), the capacitance of the capacitor can be changed.
[0022]
The method of filling the non-through hole (1c) with a conductive substance to form an electrode can be a conventionally known method of filling through holes and via holes, such as plating, and is not particularly limited.
When the non-through hole (1c) is formed in the dielectric (3) sandwiched between conductive materials in advance (FIG. 6), the non-through hole (1c) is filled with a conductive material to form a comb-shaped tooth electrode ( As 1), the capacitor of the present invention can be used. The non-through hole (1c) is formed only in the dielectric (3) (FIG. 5), or after the formation of the through hole (1d), the through hole is partially filled with the dielectric (3a) to form the non-through hole (1c). With respect to the formed one (FIG. 7), it is necessary not only to fill the non-through hole (1c), but also to form the planar comb back electrode (2).
[0023]
Since the capacitor of the present invention manufactured in this way can be incorporated simultaneously in the manufacturing process of the interposer and the printed wiring board, according to the present invention, the EMI / EMC-compatible and high-productivity built-in capacitor is provided. A small and high-performance interposer and printed wiring board can be provided.
When the capacitor of the present invention is incorporated in an interposer or a printed wiring board (FIG. 2), a ground plane (2a) and a power supply plane (2b) can be used as electrodes of the capacitor, thereby simplifying the structure and steps. be able to.
[0024]
Since the capacitor of the present invention can be stacked, a higher performance interposer and printed wiring board can be obtained by incorporating the capacitor in a multilayered interposer and printed wiring board (FIGS. 2 and 3).
[0025]
【Example】
FIG. 1 is a sectional view of the capacitor of the present invention. The tip of the comb tooth electrode (1) is separated from the opposing back electrode (2) of the comb by a dielectric (3) with a thickness of 5 to 10 μm. FIG. 4 is a three-dimensional perspective view of the capacitor of the present invention. As shown in FIG. 4, the arrangement of the comb tooth electrode (1) is such that the teeth of the comb connected to the back electrode (2) of the comb in the same direction protrude from the back of the opposing comb so that they do not adjoin. It is formed so as to alternately engage with the comb tooth electrode (1).
[0026]
FIG. 2 shows a cross-sectional view of an example in which the capacitor of the present invention is built in a printed wiring board or a part of an interposer using both a power plane (2b) and a ground plane (2a) as both electrodes. FIG. 3 shows a cross-sectional view of an example in which the capacitor of the present invention is formed as a single layer of an interposer or a printed wiring board. With either application method, signal lines and wiring can be formed above and below the planar capacitor, so that the degree of freedom in wiring is greatly increased.
[0027]
The capacitor of the present invention is prepared by adding a dielectric constant = 4.0, a vertical = 960 μm, a horizontal = 960 μm, a thickness = 30 μm, a glass fiber resin having a diameter of 40 μm at a pitch of 80 μm or 50 μm, and a back electrode of another opposing comb (thickness of 12 μm). ), A comb-shaped electrode at a distance of 10 μm was provided, and the capacitance was measured as in Examples 1 to 3. In addition, a flat electrode having no comb teeth was formed with a capacitor sandwiching the same glass fiber resin, and was compared as a comparative example. Table 1 shows the results.
[0028]
[Table 1]
Figure 2004072034
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a capacitor which is extremely thin compared to a conventional capacitor and is suitable for embedding in a substrate, and a small and high-performance interposer and a printed wiring board.
The capacitor of the present invention creates a non-through hole that alternately meshes with the dielectric, fills the non-through hole with a conductive material to form an electrode, thereby increasing the surface area of the electrode and increasing the size of the capacitor even when the size of the capacitor is small. The capacity can be obtained. At this time, even if the electrodes are very far from each other, the connection can be strengthened by forming a dense non-through hole (comb-shaped electrode). Further, by changing the size and the formation density of the non-through holes (comb tooth electrodes), the capacitance of the capacitor can be easily changed.
[0030]
According to the method for manufacturing a capacitor of the present invention, a capacitor is formed in a substrate by a method such as a through-hole forming step of a laser or the like and plating at the same time as manufacturing an interposer / printed wiring board without requiring special equipment. It is possible to greatly simplify the process. Since the ground plane and the power plane of the printed wiring board and the interposer can be used for the electrodes of the capacitor, the number of parts is small and the structure can be simple. Further, by inserting a dielectric material having good high-frequency characteristics between the electrodes for a clock frequency that is gradually increased, it is possible to immediately respond to a high frequency.
[0031]
In addition, by incorporating the capacitor according to the present invention into an interposer having a small thickness, the number of capacitors on the printed wiring board can be reduced. EMI / EMC problem can be reduced.
In addition, since the capacitor of the present invention can be constructed in a planar shape, it can be arranged also in the stacking direction in a multilayer interposer or a multilayer printed wiring board, so that the degree of freedom of wiring can be improved as compared with the conventional capacitor. . Since there is no restriction in the height direction as in the conventional capacitor, the electronic device using the interposer or the printed wiring board incorporating the capacitor of the present invention can be remarkably reduced in size.
[Brief description of the drawings]
FIG. 1 is a sectional view of a capacitor of the present invention.
FIG. 2 is a cross-sectional view of an example in which the capacitor of the present invention is built in a part of an interposer or a printed wiring board.
FIG. 3 is a cross-sectional view of an example in which the capacitor of the present invention is manufactured using both a power plane and a ground plane of an interposer or a printed wiring board as both electrodes.
FIG. 4 is a three-dimensional perspective view of the capacitor of the present invention.
FIG. 5 is an explanatory view showing one example of a method for manufacturing a capacitor of the present invention.
FIG. 6 is an explanatory view showing another example of the method for manufacturing a capacitor of the present invention.
FIG. 7 is an explanatory view showing another example of the method for manufacturing a capacitor of the present invention.
[Explanation of symbols]
1 Comb tooth electrode 1a Comb tooth electrode 1b from the ground plane Comb electrode 1c from the power plane Non-through hole 1d Through hole 2 Comb back electrode 2a Ground plane 2b Power plane 2c ... a plate-like conductive substance 3 ... a dielectric 3a ... (filled later) 4 ... a signal line 5 ... a wiring 6 ... a dielectric or an insulator

Claims (8)

一組の、櫛の歯電極と櫛の背電極を有する櫛形電極が、櫛の歯がかみ合うように対向して配置され、かつ電極間に誘電体を挟持する構成としたことを特徴とするコンデンサ。A capacitor, wherein a pair of comb-shaped electrodes having a comb tooth electrode and a comb back electrode are arranged to face each other so that the teeth of the comb mesh with each other, and a dielectric is sandwiched between the electrodes. . 請求項1記載の櫛の背電極が平板であり、かつ、互いに平行に配置されていることを特徴とする請求項1記載のコンデンサ。The capacitor according to claim 1, wherein the back electrodes of the comb according to claim 1 are flat plates and are arranged in parallel with each other. 前記櫛の歯電極の直径が10〜200μmの範囲であり、櫛の歯電極の先と、対向する電極の櫛の背電極との距離が5〜10μmの範囲であることを特徴とする請求項1または2のいずれかに記載のコンデンサ。The diameter of the comb tooth electrode is in the range of 10 to 200 µm, and the distance between the tip of the comb tooth electrode and the back electrode of the opposing electrode is in the range of 5 to 10 µm. 3. The capacitor according to any one of 1 and 2. 少なくとも、
1.誘電体に非貫通孔を両面から、非貫通孔がかみ合うように互い違いに配置する工程、
2.前記非貫通孔を設けた誘電体の両面に電極を形成し櫛形電極とする工程、
の2工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法。
at least,
1. A step of alternately arranging the non-through holes in the dielectric so that the non-through holes engage from both sides,
2. Forming electrodes on both surfaces of the non-through-hole-provided dielectric to form a comb-shaped electrode,
4. The method for manufacturing a capacitor according to claim 1, comprising the following two steps.
少なくとも、
1.一組の対向する導電性物質で挟持された誘電体に非貫通孔を両面から、非貫通孔がかみ合うように互い違いに配置する工程、
2.前記非貫通孔を導電性物質で充填し櫛形電極を形成する工程、
の2工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法。
at least,
1. A step of alternately arranging the non-through holes on both sides of the dielectric sandwiched by a pair of opposing conductive materials so that the non-through holes mesh with each other,
2. Filling the non-through hole with a conductive material to form a comb-shaped electrode,
4. The method for manufacturing a capacitor according to claim 1, comprising the following two steps.
少なくとも、
1.誘電体に貫通孔を形成する工程、
2.前記誘電体と同じ誘電体または異なる誘電体を、厚さが5〜10μmの範囲で前記貫通孔に充填し、互い違いにかみ合う構造の非貫通孔とする工程、
3.前記非貫通孔を設けた誘電体の両面に電極を形成し櫛形電極とする工程、
の3工程を含むことを特徴とする、請求項1から3のいずれかに記載のコンデンサの製造方法。
at least,
1. Forming a through hole in the dielectric,
2. Filling the through holes with the same dielectric material or a different dielectric material as the dielectric material in a thickness range of 5 to 10 μm, and forming a non-through hole having a structure that alternately meshes;
3. Forming electrodes on both surfaces of the non-through-hole-provided dielectric to form a comb-shaped electrode,
4. The method for manufacturing a capacitor according to claim 1, comprising the following three steps.
請求項1〜3のいずれかに記載のコンデンサを内蔵したことを特徴とするインターポーザーまたはプリント配線板。An interposer or a printed wiring board, comprising the capacitor according to claim 1. 請求項4〜6のいずれかに記載の方法でコンデンサを形成したことを特徴とするインターポーザーまたはプリント配線板。An interposer or a printed wiring board, wherein a capacitor is formed by the method according to claim 4.
JP2002232794A 2002-08-09 2002-08-09 Capacitor, interposer or printed circuit board incorporating the same Pending JP2004072034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232794A JP2004072034A (en) 2002-08-09 2002-08-09 Capacitor, interposer or printed circuit board incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232794A JP2004072034A (en) 2002-08-09 2002-08-09 Capacitor, interposer or printed circuit board incorporating the same

Publications (1)

Publication Number Publication Date
JP2004072034A true JP2004072034A (en) 2004-03-04

Family

ID=32018084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232794A Pending JP2004072034A (en) 2002-08-09 2002-08-09 Capacitor, interposer or printed circuit board incorporating the same

Country Status (1)

Country Link
JP (1) JP2004072034A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237317A (en) * 2005-02-25 2006-09-07 Kyocera Corp Ceramic wiring board with built-in capacitors and manufacturing method thereof
JP2007531326A (en) * 2004-04-02 2007-11-01 ハリス コーポレイション Built-in capacitor using conductor filled vias
CN100466254C (en) * 2005-03-17 2009-03-04 富士通微电子株式会社 Semiconductor device and MIM capacitor
US7505247B2 (en) * 2005-03-30 2009-03-17 Samsung Electro-Mechanics Co., Ltd. Multi-layer ceramic capacitor and production method thereof
CN103854859A (en) * 2012-12-05 2014-06-11 太阳诱电株式会社 Capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314363A (en) * 1976-07-27 1978-02-08 Nippon Electric Co Film capacitance element
JPS5764916A (en) * 1980-10-07 1982-04-20 Murata Manufacturing Co Ceramic condenser
JPH0878270A (en) * 1994-08-31 1996-03-22 Kyocera Corp Multilayer capacitor board
JPH08172029A (en) * 1994-12-20 1996-07-02 Matsushita Electric Ind Co Ltd Thick film printed capacitor and its capacity adjusting method
JPH09251924A (en) * 1996-03-15 1997-09-22 Mitsubishi Materials Corp Thick film capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314363A (en) * 1976-07-27 1978-02-08 Nippon Electric Co Film capacitance element
JPS5764916A (en) * 1980-10-07 1982-04-20 Murata Manufacturing Co Ceramic condenser
JPH0878270A (en) * 1994-08-31 1996-03-22 Kyocera Corp Multilayer capacitor board
JPH08172029A (en) * 1994-12-20 1996-07-02 Matsushita Electric Ind Co Ltd Thick film printed capacitor and its capacity adjusting method
JPH09251924A (en) * 1996-03-15 1997-09-22 Mitsubishi Materials Corp Thick film capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531326A (en) * 2004-04-02 2007-11-01 ハリス コーポレイション Built-in capacitor using conductor filled vias
JP2006237317A (en) * 2005-02-25 2006-09-07 Kyocera Corp Ceramic wiring board with built-in capacitors and manufacturing method thereof
JP4641826B2 (en) * 2005-02-25 2011-03-02 京セラ株式会社 Capacitor built-in ceramic wiring board and manufacturing method thereof
CN100466254C (en) * 2005-03-17 2009-03-04 富士通微电子株式会社 Semiconductor device and MIM capacitor
US7505247B2 (en) * 2005-03-30 2009-03-17 Samsung Electro-Mechanics Co., Ltd. Multi-layer ceramic capacitor and production method thereof
CN103854859A (en) * 2012-12-05 2014-06-11 太阳诱电株式会社 Capacitor
JP2014112603A (en) * 2012-12-05 2014-06-19 Taiyo Yuden Co Ltd Capacitor
US9299495B2 (en) 2012-12-05 2016-03-29 Taiyo Yuden Co., Ltd. Capacitor

Similar Documents

Publication Publication Date Title
JP4752901B2 (en) Electronic components and electronic component built-in substrates
US8264846B2 (en) Ceramic package substrate with recessed device
TWI373992B (en) Circuitized substrate with split conductive layer, method of making same, electrical assembly utilizing same, and information handling system utilizing same
JP5463823B2 (en) Signal line
JP2006196886A (en) Electric power core device and method for fabricating it
WO2011010393A1 (en) Resonant elements designed vertically in a multilayer board and filters based on these elements
WO2012098616A1 (en) Wiring substrate having built-in component
CN102638931B (en) Electronic assembly, method for minimizing parasitic capacitance, and method for manufacturing circuit board structure
KR20090027569A (en) Capacitor-embedded substrate and method of manufacturing the same
JP2011023439A (en) Capacitor and method of manufacturing the same
TW200806107A (en) Multilayer wiring board capable of reducing noise over wide frequency band with simple structure
KR20090057922A (en) Improved methods of mid-frequency decoupling
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
KR20100066080A (en) Multi layer ceramic capacitor module
WO2011074105A1 (en) Resonant via structures in multilayer substrates and filters based on these via structures
KR100870380B1 (en) Design of Low Inductance Embedded Capacitor Layer Connections
JP2007116178A (en) PACKAGE HAVING ARRAY OF EMBEDDED CAPACITORS FOR POWER TRANSFER AND DECOUPLING IN FREQUENCY RANGE OF 1 MHz TO 3 GHz
JP6634696B2 (en) Method of manufacturing printed circuit board having capacitor
CN1822356A (en) Interposer for decoupling integrated circuits on a circuit board
EP1951009B1 (en) Printed circuit board
JP2004072034A (en) Capacitor, interposer or printed circuit board incorporating the same
JP2007250867A (en) Capacitor sheet and electronic circuit board
JP2015173141A (en) Capacitor built-in substrate and method of manufacturing capacitor built-in substrate
JP2008109020A (en) Multiple chip component and substrate mounted with multiple chip
US7035082B2 (en) Structure of multi-electrode capacitor and method for manufacturing process of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701