JP2004071840A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2004071840A
JP2004071840A JP2002229331A JP2002229331A JP2004071840A JP 2004071840 A JP2004071840 A JP 2004071840A JP 2002229331 A JP2002229331 A JP 2002229331A JP 2002229331 A JP2002229331 A JP 2002229331A JP 2004071840 A JP2004071840 A JP 2004071840A
Authority
JP
Japan
Prior art keywords
insulating film
film
pattern
metal film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002229331A
Other languages
Japanese (ja)
Inventor
Eiichi Sato
佐藤 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002229331A priority Critical patent/JP2004071840A/en
Publication of JP2004071840A publication Critical patent/JP2004071840A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a semiconductor device wherein a MIM capacitor can be effectively formed without deteriorating the reliability of a capacitor insulating film. <P>SOLUTION: A lower metal film 2 as a lower electrode and an upper metal film 4 as an upper electrode are deposited on a substrate 1, respectively, and then a resist 5 is patterned with lithography, which is in turn used to dry-etch the metal film 4. Thereafter, the insulating film 7 is deposited and is subjected to anisotropic dry-etching into a spacer shape such that it remains on a side wall of the upper metal film 4 as a side wall insulating film 7a, and simultaneously the capacitor insulating film 3 is dry-etched using the insulating film 7 and the upper metal film 4 as a mask. Hereby, the width of the capacitor insulating film 3 can be more increased than in the upper metal film 4 while more reducing the number of times of the formation of the resist 5 than in prior art. Thus, the manufacturing cost can be suppressed together with an improvement of the reliability of the capacitive insulating film 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路形成される容量部の製造方法に関するものである。
【0002】
【従来の技術】
アナログ回路を搭載したCMOS半導体集積回路装置には、ポリシリコンのような導電体膜を上下の電極とし、その間に絶縁膜を形成した容量(Metal−Insulator−Metal構造、MIM構造)が多用されている。
【0003】
図2は、このようなMIM型容量の製造方法を示す工程断面図である。
まず、図2(a)に示すようなMIM形成のための積層膜を形成する。1は基板、2は下部電極となる下部金属膜、3は容量絶縁膜、4は上部電極となる上部金属膜、5はレジストである。
【0004】
そして、レジスト5を用いて上部金属膜4と容量絶縁膜3を順次にドライエッチし、レジストを除去することにより、上部金属膜4と容量絶縁膜3を図2(b)に示すような所望の形状に加工する。
【0005】
その後に、図示を省略する新たなリソグラフィー工程により、上部金属膜4と容量絶縁膜3のパターンよりも大きい所望の形状のレジストをパターンニングし、このレジストをマスクとして下部金属膜2をドライエッチ加工することにより、下部金属膜2のパターンを形成する。
【0006】
図3は、別のMIM型容量の製造方法を示す工程断面図である。
図3(a)に示すようなMIM形成のための積層膜を形成する。1は基板、2は下部電極となる下部金属膜、3は容量絶縁膜、4は上部電極となる上部金属膜、5はレジストである。
【0007】
次に、レジスト5をマスクとして上部金属膜4を選択的にエッチングし、レジストを除去することにより、上部金属膜4を図3(b)に示すような所望の形状に加工する。
【0008】
次に、図3(c)に示すような上部金属膜4を覆うレジスト6のパターンを形成し、このレジスト6をマスクとして容量絶縁膜3をドライエッチし、レジスト6を除去することにより、容量絶縁膜3を図3(d)に示すような所望の形状に加工する。
【0009】
その後に、図示を省略する新たなリソグラフィー工程を行なって、容量絶縁膜3のパターンよりも大きい所望の形状に、下部金属膜2をエッチング加工する。
【0010】
【発明が解決しようとする課題】
しかしながら、上記したようなMIM型容量の形成方法にはそれぞれ一長一短がある。
【0011】
図2を用いて説明した容量形成方法では、リソグラフィーによるレジストの形成は容量絶縁膜3のパターン形成までに1回ですむものの、形成される容量絶縁膜3のパターン幅は上部金属膜4のパターンに比べて同一か又は狭くなる。そして、特に容量絶縁膜3がサイドエッチされて狭くなった場合に、容量完成後の工程で容量周辺に形成される誘電率や絶縁耐圧の低い層間絶縁膜が金属膜4,2間の容量絶縁膜3が狭くなった端部に入り込む。この状態で金属膜4,2を上下の電極として電圧を印加して動作させると、サイドエッチ量に応じた容量値となるため同種の容量間でバラツキが生じ、また耐圧が低くなるという問題がある。
【0012】
図3を用いて説明した容量形成方法では、上部金属膜4よりも容量絶縁膜3を広く形成できるため、上記した容量値のバラツキや耐圧低下という電気的な信頼性の問題は生じないものの、コストの高いレジストパターン形成工程が容量絶縁膜3のパターン形成までの段階で2回も必要であるため、作業が複雑であり、半導体集積回路装置のコスト高を招くという欠点があった。
【0013】
本発明は上記問題を解決するもので、容量絶縁膜の信頼性を損なうことなく効率よくMIM型容量を形成できる半導体装置の製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために本発明は、上部電極と下部電極との間に容量絶縁膜を配した容量を搭載する半導体装置の製造方法であって、基板上に第1の導電膜を堆積する工程と、前記第1の導電膜上に第1の絶縁膜を堆積する工程と、前記第1の絶縁膜上に第2の導電膜を堆積する工程と、前記第2の導電膜を選択的に除去して前記上部電極のパターンを形成する工程と、前記上部電極のパターンの側壁に第2の絶縁膜を形成する工程と、前記上部電極のパターンと前記第2の絶縁膜とをマスクとして前記第1の絶縁膜をエッチングし前記容量絶縁膜のパターンを形成する工程とを行なうことを特徴とする。
【0015】
上記構成によれば、上部電極のパターンの側壁に第2の絶縁膜を形成して、第1の絶縁膜を上部電極のパターンよりも大きくマスクした状態でエッチングするので、この第1の絶縁膜から形成される容量絶縁膜のパターンは必ず上部電極のパターンよりも大きくなる。したがって、容量絶縁膜のパターン幅が上部電極のパターンよりも狭くなることに起因する容量値のバラツキや耐圧低下は発生せず、電気的な信頼性を確保できる。
【0016】
詳細には、第2の導電膜を選択的に除去する工程において、前記第2の導電膜上にレジストパターンを形成し、このレジストパターンをマスクとして第2の導電膜をエッチングし、上部電極のパターンの側壁に第2の絶縁膜を形成する工程において、前記上部電極のパターンを被覆して第2の絶縁膜を堆積し、この第2の絶縁膜を異方性エッチングすることを特徴とする。
【0017】
上記構成によれば、第2の絶縁膜のパターン形成にレジストを用いないので、製造コストを抑えることができる。また、異方性エッチングを用いることで第2の絶縁膜を一定範囲内の任意の寸法に形成できるので、上部電極のパターンに対して容量絶縁膜のパターンを正確に一定寸法だけ大きくすることができ、上部電極パターンと容量絶縁膜パターンとのマージンを小さく設定することが可能になり、パターンの微細化に有利である。
【0018】
第2の絶縁膜は、シリコン酸化膜、シリコン窒化膜、シリコン窒化酸化膜の内のいずれか、あるいはこれらの積層複合膜を用いることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、本発明の一実施形態における半導体装置の製造方法であって、半導体装置に組み込まれるMIM型容量の製造方法を説明する工程断面図である。
【0020】
まず、図1(a)に示すようなMIM形成のための積層膜を形成する。1は半導体基板、2は下部電極となる下部金属膜、3は容量絶縁膜、4は上部電極となる上部金属膜、5はレジストである。
【0021】
半導体基板1は、図示を省略するが、表面にSiOのような絶縁膜が形成されており、この絶縁膜の下層にトランジスタ、配線などが形成されている。下部金属膜2,上部金属膜4は、導電膜であれば何でもよく、Al、Cu、Al/Cu合金、Pt、Ti、TiNなどを使用可能であるが、この半導体装置の配線層の一つとなるべき金属膜、例えばTi膜、TiN膜、Al/Cu積層膜が利用される。下部金属膜2,上部金属膜4の膜厚は50〜400nmとされる。容量絶縁膜3は、シリコン酸化膜(SiO)、シリコン窒化膜(SiN)、シリコン窒化酸化膜(SiON)、酸化タンタルのような高誘電率膜、あるいはこれらの膜の積層複合膜とされる。容量絶縁膜3の膜厚は30〜150nmである。レジスト5は、上部電極のための所望のパターンが形状されるが、集積回路内部の配線パターンと同一レイヤとして形成してもよいし、上部電極専用のマスクレイヤとして形成もよい。
【0022】
このような積層膜に対して、レジスト5をマスクとして上部金属膜4をドライエッチングすることにより、図1(b)に示すように所望の形状に加工し、その後にレジスト5をアッシング、洗浄によって除去する。
【0023】
次に、図1(c)に示すように、400℃程度でのプラズマCVD法などにより、絶縁膜7を100〜300nmの膜厚で全面に堆積する。
次に、図1(d)に示すように、絶縁膜7を異方性エッチングして少なくとも上部金属膜4の側壁部分に残すと同時に、この側壁に残ったサイドウォール絶縁膜7aと上部金属膜4とをマスクとして容量絶縁膜3をエッチングする。このときには絶縁膜7の側壁の膜厚は異方性エッチングの性質により50〜300nm程度となり、それにより容量絶縁膜3の寸法は上部電極4よりも前記絶縁膜7の側壁の膜厚に相応して大きくなる。
【0024】
その後に、図示を省略する新たなリソグラフィー工程によって容量絶縁膜3よりも広いレジストパターンを形成して容量絶縁膜3の領域を被覆し、次いで選択的に下部金属膜2をエッチングすることにより、容量絶縁膜3のパターンよりも大きい所望形状の下部電極のパターンを形成する。
【0025】
このようにして半導体装置に搭載されたMIM型容量の標準的な容量値は数fF/μm2であり、上部金属膜(上部電極)4と下部金属膜(下部電極)2との間に1〜10V程度の電圧が動作中に印加される。
【0026】
以上のような製造方法によれば、上部金属膜(上部電極)4の側壁に形成したサイドウオール絶縁膜7aをマスクとして用いて容量絶縁膜3をエッチングするので、リソグラフィー工程によってレジストパターンを形成することなく、上部金属膜(上部電極)4よりも大きい寸法の容量絶縁膜3を形成できる。
【0027】
したがって、先に図3を用いて説明した従来の方法と比較してリソグラフィー工程を1回低減することができ、製造コストを低減可能となる。
上述した従来の方法のように上部金属膜(上部電極)4よりも容量絶縁膜3のパターンの寸法が小さいことが原因で、上部金属膜(上部電極)4の下に特性の悪い他の絶縁膜が入り込むことがないので、電気的な信頼性を確保できる。この目的のためには図1(c)の工程で形成する絶縁膜7の膜厚を10nm〜100nm程度に薄くしてもよい。
【0028】
しかも、サイドウオール絶縁膜7aは異方性エッチングによって形成するので一定範囲内の任意の膜厚とすることができ、それにより上部金属膜4のパターンに対して容量絶縁膜3のパターンを正確に一定寸法だけ大きくできる。このため、上部金属膜4のパターンと容量絶縁膜3のパターンとのマージンを非常に小さくすることができ、パターンの微細化にも有利である。
【0029】
これに対して、レジストパターンを用いる従来の方法(図3(c)参照)では、上部金属膜4のパターンに対するマスク合わせずれが必ず発生し、そのためにも上部金属膜4のパターンと容量絶縁膜3のパターンとに大きな寸法マージンが必要である。
【0030】
【発明の効果】
以上のように本発明によれば、MIM型容量の容量絶縁膜を加工するに先だって、前記絶縁膜の上層にある電極パターンの側壁に第2の絶縁膜を形成し、これら電極パターンと第2の絶縁膜とをマスクとして前記絶縁膜をエッチングするようにしたため、リソグラフィーの回数を増加させることなく容量絶縁膜の寸法を電極パターンよりも大きくすることができ、製造コストを抑えながら、容量絶縁膜の信頼性を確保できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における半導体装置の製造方法であって、MIM型容量の形成方法を説明する工程断面図である。
【図2】従来のMIM型容量の形成方法を説明する工程断面図
【図3】従来の他のMIM型容量の形成方法を説明する工程断面図
【符号の説明】
1 基板
2 下部金属膜
3 容量絶縁膜
4 上部金属膜
5 レジスト
7 絶縁膜
7a サイドウォール絶縁膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a capacitance section formed on a semiconductor integrated circuit.
[0002]
[Prior art]
2. Description of the Related Art In a CMOS semiconductor integrated circuit device equipped with an analog circuit, a capacitor (Metal-Insulator-Metal structure, MIM structure) in which a conductive film such as polysilicon is used as upper and lower electrodes and an insulating film is formed between them is often used. I have.
[0003]
FIG. 2 is a process sectional view showing a method for manufacturing such an MIM type capacitor.
First, a laminated film for MIM formation as shown in FIG. 2A is formed. 1 is a substrate, 2 is a lower metal film serving as a lower electrode, 3 is a capacitor insulating film, 4 is an upper metal film serving as an upper electrode, and 5 is a resist.
[0004]
Then, the upper metal film 4 and the capacitor insulating film 3 are sequentially dry-etched using the resist 5 and the resist is removed, so that the upper metal film 4 and the capacitor insulating film 3 are formed as desired as shown in FIG. Process into shape.
[0005]
Thereafter, a resist having a desired shape larger than the pattern of the upper metal film 4 and the capacitor insulating film 3 is patterned by a new lithography step (not shown), and the lower metal film 2 is dry-etched using the resist as a mask. Thereby, a pattern of the lower metal film 2 is formed.
[0006]
FIG. 3 is a process cross-sectional view illustrating another method for manufacturing an MIM-type capacitor.
A laminated film for forming the MIM as shown in FIG. 1 is a substrate, 2 is a lower metal film serving as a lower electrode, 3 is a capacitor insulating film, 4 is an upper metal film serving as an upper electrode, and 5 is a resist.
[0007]
Next, the upper metal film 4 is selectively etched using the resist 5 as a mask, and the resist is removed, thereby processing the upper metal film 4 into a desired shape as shown in FIG.
[0008]
Next, a pattern of a resist 6 that covers the upper metal film 4 as shown in FIG. 3C is formed, and the capacitive insulating film 3 is dry-etched using the resist 6 as a mask, and the resist 6 is removed. The insulating film 3 is processed into a desired shape as shown in FIG.
[0009]
Thereafter, a new lithography step (not shown) is performed to etch the lower metal film 2 into a desired shape larger than the pattern of the capacitor insulating film 3.
[0010]
[Problems to be solved by the invention]
However, each of the above-described methods for forming the MIM type capacitor has advantages and disadvantages.
[0011]
In the capacitance forming method described with reference to FIG. 2, although the resist is formed by lithography only once until the pattern formation of the capacitance insulating film 3, the pattern width of the formed capacitance insulating film 3 is equal to the pattern width of the upper metal film 4. Is the same or narrower than In particular, when the capacitor insulating film 3 is narrowed due to side etching, an interlayer insulating film having a low dielectric constant and a low withstand voltage formed around the capacitor in a process after completion of the capacitor is used as a capacitor insulating film between the metal films 4 and 2. The membrane 3 penetrates the narrowed end. In this state, when the metal films 4 and 2 are operated by applying a voltage as upper and lower electrodes, the capacitance becomes a value corresponding to the amount of side etching, so that variations occur between the same type of capacitance, and the withstand voltage decreases. is there.
[0012]
In the capacitance forming method described with reference to FIG. 3, since the capacitance insulating film 3 can be formed wider than the upper metal film 4, the above-described electrical reliability problems such as the variation in capacitance value and the decrease in withstand voltage do not occur. Since a high-cost resist pattern forming process is required twice in the stage until the pattern formation of the capacitive insulating film 3, the operation is complicated, and there is a disadvantage that the cost of the semiconductor integrated circuit device is increased.
[0013]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of efficiently forming an MIM-type capacitor without impairing the reliability of a capacitor insulating film.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is a method for manufacturing a semiconductor device in which a capacitor having a capacitor insulating film disposed between an upper electrode and a lower electrode is mounted, wherein a first conductive film is deposited on a substrate. A step of depositing a first insulating film on the first conductive film; a step of depositing a second conductive film on the first insulating film; and selectively forming the second conductive film on the first conductive film. Forming the upper electrode pattern by removing the upper electrode pattern, forming a second insulating film on a side wall of the upper electrode pattern, and using the upper electrode pattern and the second insulating film as a mask. Etching the first insulating film to form a pattern of the capacitive insulating film.
[0015]
According to the above configuration, the second insulating film is formed on the side wall of the pattern of the upper electrode, and the first insulating film is etched while being masked to be larger than the pattern of the upper electrode. Is always larger than the pattern of the upper electrode. Therefore, there is no variation in capacitance value and no reduction in breakdown voltage due to the pattern width of the capacitor insulating film becoming narrower than the pattern of the upper electrode, and electrical reliability can be ensured.
[0016]
Specifically, in the step of selectively removing the second conductive film, a resist pattern is formed on the second conductive film, and the second conductive film is etched using the resist pattern as a mask to form an upper electrode. In the step of forming a second insulating film on the side wall of the pattern, a second insulating film is deposited by covering the pattern of the upper electrode, and the second insulating film is anisotropically etched. .
[0017]
According to the above configuration, since no resist is used for forming the pattern of the second insulating film, the manufacturing cost can be reduced. In addition, since the second insulating film can be formed to have an arbitrary size within a certain range by using anisotropic etching, the pattern of the capacitive insulating film can be made to be exactly larger than the pattern of the upper electrode by a certain size. As a result, the margin between the upper electrode pattern and the capacitor insulating film pattern can be set small, which is advantageous for miniaturization of the pattern.
[0018]
As the second insulating film, any one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film, or a stacked composite film thereof can be used.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention, which illustrates a method for manufacturing an MIM type capacitor incorporated in a semiconductor device.
[0020]
First, a laminated film for MIM formation as shown in FIG. 1A is formed. 1 is a semiconductor substrate, 2 is a lower metal film serving as a lower electrode, 3 is a capacitor insulating film, 4 is an upper metal film serving as an upper electrode, and 5 is a resist.
[0021]
Although not shown, the semiconductor substrate 1 has an insulating film such as SiO 2 formed on the surface, and a transistor, a wiring, and the like are formed below the insulating film. The lower metal film 2 and the upper metal film 4 may be any conductive film, and may be Al, Cu, an Al / Cu alloy, Pt, Ti, TiN, or the like. A metal film to be formed, for example, a Ti film, a TiN film, or an Al / Cu laminated film is used. The film thickness of the lower metal film 2 and the upper metal film 4 is 50 to 400 nm. The capacitance insulating film 3 is a silicon oxide film (SiO 2 ), a silicon nitride film (SiN), a silicon nitride oxide film (SiON), a high dielectric constant film such as tantalum oxide, or a laminated composite film of these films. . The thickness of the capacitance insulating film 3 is 30 to 150 nm. The resist 5 has a desired pattern for the upper electrode, but may be formed as the same layer as the wiring pattern inside the integrated circuit, or may be formed as a mask layer dedicated to the upper electrode.
[0022]
The upper metal film 4 is dry-etched by using the resist 5 as a mask with respect to such a laminated film so as to be processed into a desired shape as shown in FIG. 1B, and then the resist 5 is ashed and washed. Remove.
[0023]
Next, as shown in FIG. 1C, an insulating film 7 is deposited on the entire surface to a thickness of 100 to 300 nm by a plasma CVD method at about 400 ° C. or the like.
Next, as shown in FIG. 1D, the insulating film 7 is anisotropically etched and left at least on the side wall portion of the upper metal film 4, and at the same time, the sidewall insulating film 7a remaining on this side wall and the upper metal film 4 is used as a mask to etch the capacitor insulating film 3. At this time, the thickness of the side wall of the insulating film 7 is about 50 to 300 nm due to the property of the anisotropic etching. It becomes big.
[0024]
Thereafter, a resist pattern wider than the capacitor insulating film 3 is formed by a new lithography step (not shown) to cover the region of the capacitor insulating film 3, and then the lower metal film 2 is selectively etched to obtain a capacitor. A lower electrode pattern having a desired shape larger than the pattern of the insulating film 3 is formed.
[0025]
The standard capacitance value of the MIM-type capacitor mounted on the semiconductor device in this manner is several fF / μm 2, and 1 to 1 between the upper metal film (upper electrode) 4 and the lower metal film (lower electrode) 2. A voltage of about 10 V is applied during operation.
[0026]
According to the manufacturing method as described above, since the capacitance insulating film 3 is etched using the sidewall insulating film 7a formed on the side wall of the upper metal film (upper electrode) 4 as a mask, a resist pattern is formed by a lithography process. Thus, the capacitance insulating film 3 having a size larger than that of the upper metal film (upper electrode) 4 can be formed.
[0027]
Therefore, the lithography step can be reduced by one time as compared with the conventional method described above with reference to FIG. 3, and the manufacturing cost can be reduced.
Because the pattern size of the capacitor insulating film 3 is smaller than that of the upper metal film (upper electrode) 4 as in the above-described conventional method, another insulating film having poor characteristics is formed under the upper metal film (upper electrode) 4. Since the film does not enter, electrical reliability can be ensured. For this purpose, the thickness of the insulating film 7 formed in the step of FIG. 1C may be reduced to about 10 nm to 100 nm.
[0028]
Moreover, since the sidewall insulating film 7a is formed by anisotropic etching, it can be formed to have an arbitrary thickness within a certain range, whereby the pattern of the capacitor insulating film 3 can be accurately formed with respect to the pattern of the upper metal film 4. Can be increased by a certain size. Therefore, the margin between the pattern of the upper metal film 4 and the pattern of the capacitor insulating film 3 can be made very small, which is advantageous for miniaturization of the pattern.
[0029]
On the other hand, in the conventional method using a resist pattern (see FIG. 3C), a mask misalignment with respect to the pattern of the upper metal film 4 always occurs. A large dimensional margin is required for the third pattern.
[0030]
【The invention's effect】
As described above, according to the present invention, prior to processing the capacitance insulating film of the MIM type capacitor, the second insulating film is formed on the side wall of the electrode pattern on the insulating film, and these electrode patterns and the second Since the insulating film is etched using the insulating film as a mask, the size of the capacitor insulating film can be made larger than the electrode pattern without increasing the number of times of lithography. Reliability can be secured.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention, which illustrates a method of forming an MIM-type capacitor.
FIG. 2 is a process cross-sectional view illustrating a conventional method of forming an MIM-type capacitor. FIG. 3 is a process cross-sectional view illustrating another conventional method of forming an MIM-type capacitor.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower metal film 3 Capacitive insulating film 4 Upper metal film 5 Resist 7 Insulating film 7a Sidewall insulating film

Claims (3)

上部電極と下部電極との間に容量絶縁膜を配した容量を搭載する半導体装置の製造方法であって、
基板上に第1の導電膜を堆積する工程と、
前記第1の導電膜上に第1の絶縁膜を堆積する工程と、
前記第1の絶縁膜上に第2の導電膜を堆積する工程と、
前記第2の導電膜を選択的に除去して前記上部電極のパターンを形成する工程と、
前記上部電極のパターンの側壁に第2の絶縁膜を形成する工程と、
前記上部電極のパターンと前記第2の絶縁膜とをマスクとして前記第1の絶縁膜をエッチングし前記容量絶縁膜のパターンを形成する工程と
を行なう半導体装置の製造方法。
A method for manufacturing a semiconductor device including a capacitor having a capacitor insulating film disposed between an upper electrode and a lower electrode,
Depositing a first conductive film on the substrate;
Depositing a first insulating film on the first conductive film;
Depositing a second conductive film on the first insulating film;
Forming a pattern of the upper electrode by selectively removing the second conductive film;
Forming a second insulating film on a side wall of the pattern of the upper electrode;
Forming a pattern of the capacitive insulating film by etching the first insulating film using the pattern of the upper electrode and the second insulating film as a mask.
第2の導電膜を選択的に除去する工程で、前記第2の導電膜上にレジストパターンを形成し、このレジストパターンをマスクとして第2の導電膜をエッチングし、
上部電極のパターンの側壁に第2の絶縁膜を形成する工程で、前記上部電極のパターンを被覆して第2の絶縁膜を堆積し、この第2の絶縁膜を異方性エッチングする
請求項1記載の半導体装置の製造方法。
A step of selectively removing the second conductive film, forming a resist pattern on the second conductive film, etching the second conductive film using the resist pattern as a mask,
A step of forming a second insulating film on a side wall of the pattern of the upper electrode, depositing a second insulating film covering the pattern of the upper electrode, and anisotropically etching the second insulating film; 2. The method for manufacturing a semiconductor device according to item 1.
第2の絶縁膜がシリコン酸化膜、シリコン窒化膜、シリコン窒化酸化膜のいずれか、あるいはこれらの積層複合膜である請求項1または請求項2のいずれかに記載の半導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 1, wherein the second insulating film is any one of a silicon oxide film, a silicon nitride film, and a silicon nitride oxide film, or a laminated composite film thereof.
JP2002229331A 2002-08-07 2002-08-07 Manufacturing method for semiconductor device Withdrawn JP2004071840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229331A JP2004071840A (en) 2002-08-07 2002-08-07 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229331A JP2004071840A (en) 2002-08-07 2002-08-07 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2004071840A true JP2004071840A (en) 2004-03-04

Family

ID=32015746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229331A Withdrawn JP2004071840A (en) 2002-08-07 2002-08-07 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2004071840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012923A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor device and its fabrication process
KR100866683B1 (en) 2007-05-18 2008-11-04 주식회사 동부하이텍 Method for forming capacitor of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012923A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor device and its fabrication process
JP4679270B2 (en) * 2005-06-30 2011-04-27 株式会社東芝 Semiconductor device and manufacturing method thereof
KR100866683B1 (en) 2007-05-18 2008-11-04 주식회사 동부하이텍 Method for forming capacitor of semiconductor device

Similar Documents

Publication Publication Date Title
US7629222B2 (en) Method of fabricating a semiconductor device
US7683415B2 (en) Semiconductor device and method for fabricating the same
US6653186B2 (en) Methods of fabrication integrated circuit capacitors having a dielectric layer between a u-shaped lower electrode and a support layer
US6924207B2 (en) Method of fabricating a metal-insulator-metal capacitor
US7183171B2 (en) Pyramid-shaped capacitor structure
US20060054960A1 (en) Semiconductor device and method for fabricating the same
KR100678638B1 (en) Method for fabricating semiconductor device
JP2008210843A (en) Fabrication process of semiconductor device and semiconductor device
US20030231458A1 (en) Metal-insulator-metal (MIM) capacitor and method for fabricating the same
KR100482029B1 (en) Method for forming mim capacitor
KR100924879B1 (en) Method for fabricating mim structure capacitor
KR100303225B1 (en) Semiconductor device and method of producing the same
JP2004071840A (en) Manufacturing method for semiconductor device
US20080153248A1 (en) Method for manufacturing semiconductor device
US20040121593A1 (en) Method for manufacturing semiconductor device through use of mask material
JP2002141472A (en) Semiconductor device and manufacturing method therefor
KR100781446B1 (en) Method for manufacturing mim type capacitor on the semiconductor device
JP2004266005A (en) Method for manufacturing semiconductor device
KR100807513B1 (en) Metal-insulator-metal capacitor forming method for semiconductor device
KR100688724B1 (en) Method for manufacturing high volume mim capacitor
KR100607749B1 (en) Method for fabricating inte metal dielectric layer
KR100527868B1 (en) MIM capacitor with high capacitance and fabricating method thereof
JP2003258108A (en) Semiconductor device and its manufacturing method
KR20040059860A (en) Method for manufacturing mim capacitor in a semiconductor stack structure
TW202005101A (en) Capacitor structures and methods for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081017