JP2004071464A - Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it - Google Patents

Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it Download PDF

Info

Publication number
JP2004071464A
JP2004071464A JP2002231603A JP2002231603A JP2004071464A JP 2004071464 A JP2004071464 A JP 2004071464A JP 2002231603 A JP2002231603 A JP 2002231603A JP 2002231603 A JP2002231603 A JP 2002231603A JP 2004071464 A JP2004071464 A JP 2004071464A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
negative electrode
electrode material
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231603A
Other languages
Japanese (ja)
Inventor
Toru Imori
伊森 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002231603A priority Critical patent/JP2004071464A/en
Publication of JP2004071464A publication Critical patent/JP2004071464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery further excellent in charge-discharge capacity, a cycle characteristic and a high-load characteristic. <P>SOLUTION: This negative electrode material for this lithium secondary battery is formed of graphite powder wherein a tin-plated layer is formed at least on the most front surface of each particle. It is preferable in terms of manufacturability that the tin-plated layer is structurally formed by interposing a copper-plated layer. For manufacturing the material, electrodeless copper plating is applied to the graphite powder and thereafter electrodeless tin plating is applied on top of that. The lithium secondary battery using the material as the negative electrode material shows high charge-discharge capacity and a stable and excellent cycle characteristic, and is also excellent in a high-load characteristic. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、電池の充放電容量,充放電サイクル特性,充放電時の高負荷特性を向上することができるリチウム二次電池用の負極材料とその製造方法に関し、更には当該負極材料を用いたリチウム二次電池にも関わるものである。
【0002】
【従来の技術】
近年、正極にリチウム酸化物を用いたリチウム二次電池は、高い放電電圧を示すと共にエネルギ−密度の点でも優れた特性を有していることから携帯型の通信機器等の電源として著しい発展を遂げているが、通信機器類による通信情報量の増大等に伴って更なる高出力,高容量が要望され、リチウム二次電池に関する開発競争は過熱の度合いを一段と高めつつある。
【0003】
このリチウム二次電池は、“正極”,“負極”及び両電極間に介在する“電解質を保持したセパレ−タ”の3つの基本要素によって構成される。
このうち、正極及び負極には、“活物質,導電材,結着材及び必要に応じて可塑剤を分散媒に混合分散させて成るスラリ−”を金属箔や金属メッシュ等の集電体に塗工したものが使用されている。
【0004】
このうちの正極に適用される活物質としては、現在のところリチウム・コバルト複合酸化物(Lix CoO :0≦x≦1)が主に用いられている。
一方、負極に適用される活物質としては、リチウムイオンを吸蔵・放出できる物質(例えばコ−クス系炭素や黒鉛系炭素等の炭素材料)が一般に適用されようになった。
【0005】
また、導電材としては、電子伝導性を有する物質(例えば天然黒鉛,カ−ボンブラック,アセチレンブラック等)が用いられ、結着材としてはポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ヘキサフロロプロピレン(HFP)等のフッ素系樹脂やこれらの共重合体等が一般に用いられている。
分散媒としては、結着材を溶解することが可能な有機溶媒、例えばアセトン,メチルエチルケトン(MEK),テトラヒドロフラン(THF),ジメチルホルムアミド,ジメチルアセタミド,テトラメチル尿素,リン酸トリメチル,N−メチル−2−ピロリドン(NMP)等が用いられる。
必要に応じて加えられる可塑剤としては、スラリ−が集電体に塗工され成膜された後に電解液との置換が可能な“有機溶媒”が適切で、フタル酸ジエステル類が好ましい。
【0006】
そして、スラリ−が塗工される集電体としては、銅箔やアルミニウム箔等のパンチングメタルあるいはエキスパンドメタルが一般的に用いられる。
【0007】
なお、塗工に必要なスラリ−は上記活物質,導電材,結着材,分散媒及び可塑剤を所定の比率で混練して調整され、これらスラリ−の集電体への塗工には、グラビアコ−ト,ブレ−ドコ−ト,コンマコ−ト,ディップコ−ト等の各種塗工方法を適用することができる。
【0008】
また、セパレ−タに保持させる電解質としては、液体系,ポリマ−系あるいは固体系のものが知られているが、溶媒とその溶媒に溶解するリチウム塩とから構成される液体系のものが良く用いられている。この場合の溶媒としては、ポリエチレンカ−ボネ−ト,エチレンカ−ボネ−ト,ジメチルスルホキシド,ブチルラクトン,スルホラン,1,2−ジメトキシエタン,テトラヒドロフラン,ジエチルカ−ボネ−ト,メチルエチルカ−ボネ−ト,ジメチルカ−ボネ−ト等の有機溶媒が適当であり、またリチウム塩としてはLiCF SO ,LiAsF ,LiClO ,LiBF ,LiPF 等が好ましいとされている。
【0009】
【発明が解決しようとする課題】
ところで、前述したように、近年の通信機器類による通信情報量の加速度的な増大に対処すべく、それらの電源として用いられるリチウム二次電池には一層の高性能化が望まれ、特に充放電する際の充放電容量,充放電サイクル特性,充放電時の高負荷特性の更なる向上が切実な問題となっている。
このようなことから、本発明が目的としたのは、充放電容量,サイクル特性及び高負荷特性により優れたリチウム二次電池を実現することである。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を行ったが、その研究を通じて次の知見を得ることができた。
即ち、現在リチウム二次電池の負極材料として使用されている炭素材に比べてSi,Ag,AlあるいはSn等の金属元素はLiと容易に合金化し、その理論エネルギ−密度(充放電時の充放電容量)は黒鉛材のそれ(理論容量は372 mAh/g)よりも数倍大きいとの報告がなされているが、これらの金属を負極材料としたリチウム二次電池は使用時に形成されるSn−Li合金の充放電による膨張収縮率が大きいことに起因してサイクル寿命が短い(10サイクル程度で充放電容量は60%程度にまで低下する)という問題がある。
【0011】
しかしながら、リチウム二次電池の負極材料である炭素材として特に“表面に錫めっき層が形成された黒鉛粉”を適用すると、その放電容量は負極材料が黒鉛単独のものよりも2倍程度以上となる上、錫めっきされた黒鉛粉は黒鉛−Sn複合体となって黒鉛が膨張収縮を緩和するので十分に優れた充放電サイクル特性も確保され、黒鉛の持つ安定したサイクル特性と、Snの作用による高い充放電容量を併せて具備した高性能負極材となることが明らかとなった。
【0012】
その上、“表面に錫めっき層が形成された黒鉛粉”からなる負極材料では、Snが黒鉛表面にめっきされることによって導電性が高くなり、充放電時の高負荷特性(高電流密度での充放電特性、 並びにリチウム二次電池の弱点であると言われている急速短時間に充電する特性や急速にハイパワ−で放電する特性)も向上することが分かった。
【0013】
また、黒鉛粉は錫めっき層の形成が非常に困難な材料であるが、中間層としてまず黒鉛粉の表面に銅めっきを施し、この銅めっき層を介してその上に錫めっきを施すようにすれば、最表面に錫めっき層が形成された黒鉛粉を安定して製造できることも解明した。
【0014】
本発明は、上記知見事項等を基にしてなされたもので、次の▲1▼〜▲4▼項に示すリチウム二次電池用負極材料、リチウム二次電池用負極材料の製造方法、並びにリチウム二次電池を提供するものである。
▲1▼ 少なくとも最表面に錫めっき層が形成された黒鉛粉から成ることを特徴とする、リチウム二次電池用負極材料。
▲2▼ 表面に銅めっき層を介して錫めっき層が形成された黒鉛粉から成ることを特徴とする、リチウム二次電池用負極材料。
▲3▼ 黒鉛粉に無電解銅めっきを施した後、その上に無電解錫めっきを施すことを特徴とする、リチウム二次電池用負極材料の製造方法。
▲4▼ 負極材料として、少なくとも最表面に錫めっき層が形成された黒鉛粉が適用されて成ることを特徴とする、リチウム二次電池。
【0015】
【発明の実施の形態】
ここで、黒鉛粉の種類は格別に制限されるものでなく、リチウム二次電池用負極材料用として公知である何れの黒鉛粉も適用が可能である。
また、錫めっき層は何れの手法によって形成されたものでも良いが、無電解めっき法によるのが実際的であると言える。なお、錫めっき層の厚みについても格別に制限されるものではないが、錫めっき層を施した効果の顕著性や効果の飽和状態を考慮すれば錫めっき層は平均厚さで0.01〜2.50μm程度が好ましいと言える。
【0016】
なお、前述したように、黒鉛粉は錫めっき層の形成が困難な材料である。そのため、中間層としてまずめっき層の形成が比較的容易な金属のめっきを施し、その上に錫めっきを施すようにすれば、最表面に錫めっき層が形成された黒鉛粉を安定して製造できる。そして、最表面に錫めっき層が形成された黒鉛粉であるならば、中間層がどのような金属のめっき層であっても本発明の効果に格別な差異は生じない。
【0017】
ただ、錫めっき層の形成容易性やコストの面からすれば、中間層としては銅めっき層、それも無電解銅めっき層が好ましいと言える。
ここで、黒鉛粉の表面に無電解銅めっきを施すためには黒鉛粉表面の前処理が重要となるが、シランカップリング剤を主剤とする市販の前処理剤「PM(日鉱マテリアルズ社の商品名)」によれば安定した無電解銅めっきが可能である。
【0018】
上記“少なくとも最表面に錫めっき層が形成された黒鉛粉から成るリチウム二次電池用負極材料”については、前述した導電材,結着材及び必要に応じて添加される可塑剤と共に分散媒に混合分散し、このスラリ−を集電体(銅箔等)に塗工するという周知の技術によってリチウム二次電池の負極とされる。
【0019】
また、“少なくとも最表面に錫めっき層が形成された黒鉛粉から成るリチウム二次電池用負極材料”を適用するリチウム二次電池は、その正極,電解質を保持するセパレ−タ,電解質等についての制限はなく、これらについては公知のものが適用できる。
【0020】
そして、本発明に係る“少なくとも最表面に錫めっき層が形成された黒鉛粉から成るリチウム二次電池用負極材料”を適用したリチウム二次電池は、高い充放電容量と、安定した良好なサイクル特性と、充放電時における優れた高負荷特性を発揮する。
【0021】
なお、特開平4−184863号公報には、高温放置後の高率放電において放電容量が著しく減少するという問題を解決するための手段として、炭素材を予めNi,Cu,Fe,Coの金属皮膜で被覆し、これを焼結して形成したリチウム二次電池用負極材料が示されている。
また、特開平4−220948号公報には、炭素材を予めNi,Co,Cu等の金属やポリパラフェニレン等の導電性高分子の被覆で被覆した炭素電極を用いると、高温下での貯蔵試験で放電容量の低下が著しく抑制されたとの報告がなされている。
更に、特開平4−259764号公報には、リチウム二次電池の負極を炭素粉末とNi,Cu,Feなどのリチウムと合金化しない金属粉末と結着剤とからなるものとすることにより、放電容量が大きく、繰り返し充放電に対する性能に優れたリチウム二次電池が得られることが示されている。
しかしながら、Ni,Cu,Fe,Co等の遷移金属はSnとは異なってリチウムと合金化しない金属であり、これらの金属で炭素材を被覆したり、これらの金属を混入した炭素材を負極材料としたのでは、前述した本発明材に見られるような効果は得られない。
【0022】
次いで、本発明を実施例によって説明する。
【実施例】
まず、平均粒径が18.0μmのグラファイト粉末に感応化処理を施し、十分に水洗した後、前処理剤であるPM〔株式会社日鉱マテリアルズ製〕によって前処理し、更に十分な水洗を行ってから無電解銅めっき液KC−100〔日鉱メタルプレ−ティング株式会社製〕を用いて無電解銅めっき処理を行った。
このようして銅めっき層(平均層厚 0.4μm)を形成させたグラファイト粉末を十分に水洗した後、化学スズめっき液Z〔日鉱メタルプレ−ティング株式会社製〕を用いて無電解錫めっき処理を行い、表面に銅めっき層を介して錫めっき層(平均層厚が0.20μm)が形成された黒鉛粉を製造した。
【0023】
次に、得られためっき黒鉛粉を85wt%、結着材としてポリ弗化ビニリデンを7wt%、導電材としてアセチレンブラックを8wt%それぞれ計量し、これに分散媒としてアセトンを加えてスラリ−とした後、これを銅箔上にハンドコ−タ−により塗布して、負電極とした。
【0024】
また、対極(正極)として、リチウム・コバルト複合酸化物(LiCoO )を正極活物質として85wt%、導電材としてのアセチレンブラックを8wt%、そして結着材としてのポリ弗化ビニリデンを7wt%それぞれ計量し、これに分散媒としてアセトンを加えてスラリ−とした後、これをアルミ箔上に塗布してから溶媒を蒸発させてリチウム電池の正電極を作製した。
【0025】
そして、この正極及び負極を適用し、リチウム電池であるコインセル(CR2032)を作製した。
なお、電解質としては1モルのLiPF を含むエチレンカ−ボネ−トとジメチルカ−ボネ−トの混合物(混合比=1:1)を用いた。
【0026】
このコインセルについて、50℃,1C−1C充放電条件でのサイクル試験を行ったが、この試験の結果を図1に示す。
図1に示される結果からも明らかなように、本発明に係る負極材料を適用したリチウム電池は、高い放電容量を示すと共に、高温(50℃)でのサイクル特性にも十分優れていることが分かる。
【0027】
次に、上記リチウム電池について、充放電時の高負荷特性(電流密度を 3.5〜10.5A/cmとした高電流密度での充放電特性)を調査した。
なお、比較例として、平均粒径が18.0μmのグラファイト粉末をそのまま負極材料とした以外は前記と同様にして作成したリチウム二次電池についても充放電時の高負荷特性を調査した。
この調査によって測定された“Cレ−トに対する容量維持率(%)”は、次の表1(放電負荷特性)及び表2(充電負荷特性)に示す通りであった。
【0028】
【表1】

Figure 2004071464
【0029】
【表2】
Figure 2004071464
【0030】
なお、図2及び図3は、上記調査結果(放電負荷特性及び充電負荷特性の調査結果)をそれぞれ線グラフ化して示したものである。
これらの調査結果からも分かるように、本発明に係る負極材料を適用したリチウム電池は充放電時の高負荷特性にも優れていることが明らかてある。
【0031】
【発明の効果】
以上に説明した如く、この発明によれば、高い充放電容量,優れた充放電サイクル特性や充放電時における高負荷特性を発揮するリチウム二次電池用負極材料を提供できる上、これらの特性を有した比較的安価なリチウム二次電池を実現することが可能になるなど、産業上極めて有用な効果がもたらされる。
【図面の簡単な説明】
【図1】実施例において作製したリチウム電池のサイクル試験結果を示したグラフである。
【図2】実施例において作製したリチウム電池の“放電時の高負荷特性”を、比較例のそれと対比して示したグラフである。
【図3】実施例において作製したリチウム電池の“充電時の高負荷特性”を、比較例のそれと対比して示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a lithium secondary battery and a method for manufacturing the same, which can improve the charge / discharge capacity, charge / discharge cycle characteristics, and high load characteristics during charge / discharge of a battery. It also relates to lithium secondary batteries.
[0002]
[Prior art]
In recent years, lithium secondary batteries using lithium oxide for the positive electrode have a remarkable development as a power source for portable communication devices and the like because of their high discharge voltage and excellent characteristics in terms of energy density. However, with the increase in the amount of communication information by communication devices, higher output and higher capacity are demanded, and the competition for development of lithium secondary batteries is further increasing the degree of overheating.
[0003]
This lithium secondary battery is composed of three basic elements: a "positive electrode", a "negative electrode", and a "separator holding an electrolyte" interposed between the two electrodes.
Among these, the positive electrode and the negative electrode are provided with a “slurry obtained by mixing and dispersing an active material, a conductive material, a binder, and a plasticizer in a dispersion medium, if necessary” on a current collector such as a metal foil or a metal mesh. Coated ones are used.
[0004]
As the active material applied to the positive electrode, a lithium-cobalt composite oxide (Li x CoO 2 : 0 ≦ x ≦ 1) is mainly used at present.
On the other hand, as an active material applied to the negative electrode, a material capable of occluding and releasing lithium ions (for example, a carbon material such as coke-based carbon and graphite-based carbon) has been generally applied.
[0005]
As the conductive material, a substance having electron conductivity (for example, natural graphite, carbon black, acetylene black, etc.) is used, and as the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) is used. Fluorinated resins such as hexafluoropropylene (HFP) and copolymers thereof are generally used.
As the dispersion medium, an organic solvent capable of dissolving the binder, for example, acetone, methyl ethyl ketone (MEK), tetrahydrofuran (THF), dimethylformamide, dimethylacetamide, tetramethylurea, trimethyl phosphate, N-methyl -2-Pyrrolidone (NMP) or the like is used.
As an optional plasticizer, an "organic solvent" which can be replaced with an electrolytic solution after a slurry is applied to a current collector and formed into a film is appropriate, and phthalic acid diesters are preferable.
[0006]
As the current collector to which the slurry is applied, a punching metal such as a copper foil or an aluminum foil or an expanded metal is generally used.
[0007]
The slurry required for coating is adjusted by kneading the active material, the conductive material, the binder, the dispersion medium and the plasticizer in a predetermined ratio, and the slurry is applied to a current collector. Various coating methods such as gravure coating, blade coating, comma coating, and dip coating can be applied.
[0008]
As the electrolyte held by the separator, a liquid, polymer or solid electrolyte is known, but a liquid electrolyte comprising a solvent and a lithium salt dissolved in the solvent is preferred. Used. Examples of the solvent in this case include polyethylene carbonate, ethylene carbonate, dimethyl sulfoxide, butyl lactone, sulfolane, 1,2-dimethoxyethane, tetrahydrofuran, diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate. It is said that an organic solvent such as -carbonate is suitable, and that the lithium salt is preferably LiCF 3 SO 3 , LiAsF 6 , LiClO 4 , LiBF 4 , LiPF 4 or the like.
[0009]
[Problems to be solved by the invention]
By the way, as described above, in order to cope with the recent rapid increase in the amount of communication information by communication devices, it is desired that lithium secondary batteries used as power sources for these devices have higher performance, and particularly, charge and discharge. The further improvement of charge-discharge capacity, charge-discharge cycle characteristics, and high-load characteristics during charge-discharge has become a serious problem.
In view of the above, an object of the present invention is to realize a lithium secondary battery excellent in charge / discharge capacity, cycle characteristics and high load characteristics.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive research to achieve the above object, and have obtained the following findings through the research.
That is, metal elements such as Si, Ag, Al, and Sn are easily alloyed with Li as compared with a carbon material currently used as a negative electrode material of a lithium secondary battery, and have a theoretical energy density (charging during charging and discharging). It has been reported that the discharge capacity) is several times larger than that of the graphite material (theoretical capacity is 372 mAh / g). -There is a problem that the cycle life is short (the charge / discharge capacity is reduced to about 60% in about 10 cycles) due to a large expansion / shrinkage rate due to charge / discharge of the Li alloy.
[0011]
However, when "graphite powder having a tin-plated layer formed on its surface" is applied as a carbon material, which is a negative electrode material of a lithium secondary battery, the discharge capacity is about twice as large as that of a negative electrode material of graphite alone. In addition, the tin-plated graphite powder becomes a graphite-Sn composite to reduce the expansion and shrinkage of the graphite, so that a sufficiently excellent charge-discharge cycle characteristic is secured, and the stable cycle characteristic of graphite and the action of Sn It has been clarified that the resulting material is a high-performance negative electrode material having a high charge-discharge capacity.
[0012]
In addition, in the negative electrode material composed of “graphite powder having a tin-plated layer formed on the surface”, the conductivity is increased by plating Sn on the graphite surface, and high load characteristics during charge / discharge (high current density) It was also found that the charge-discharge characteristics of the battery and the characteristics of a lithium secondary battery, which are said to be the weak points, such as the characteristics of charging in a short period of time and the characteristics of rapidly discharging with high power, were also improved.
[0013]
In addition, graphite powder is a material for which it is very difficult to form a tin plating layer. However, as an intermediate layer, copper plating is first applied to the surface of the graphite powder, and tin plating is applied to the surface through this copper plating layer. It was also clarified that graphite powder having a tin plating layer formed on the outermost surface could be manufactured stably.
[0014]
The present invention has been made based on the above findings and the like, and includes a negative electrode material for a lithium secondary battery described in the following items (1) to (4), a method for producing a negative electrode material for a lithium secondary battery, and lithium A secondary battery is provided.
(1) A negative electrode material for a lithium secondary battery, comprising a graphite powder having a tin plating layer formed on at least the outermost surface.
(2) A negative electrode material for a lithium secondary battery, comprising graphite powder having a tin plating layer formed on a surface thereof with a copper plating layer interposed therebetween.
(3) A method for producing a negative electrode material for a lithium secondary battery, comprising applying electroless copper plating to graphite powder and then applying electroless tin plating thereon.
{Circle around (4)} A lithium secondary battery characterized in that a graphite powder having a tin plating layer formed on at least the outermost surface is applied as a negative electrode material.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Here, the type of the graphite powder is not particularly limited, and any graphite powder known as a material for a negative electrode for a lithium secondary battery can be applied.
The tin plating layer may be formed by any method, but it can be said that the electroless plating method is practical. The thickness of the tin plating layer is not particularly limited, but the tin plating layer has an average thickness of 0.01 to 0.01 in consideration of the remarkable effect of the tin plating layer and the saturated state of the effect. It can be said that about 2.50 μm is preferable.
[0016]
As described above, graphite powder is a material for which it is difficult to form a tin plating layer. Therefore, if an intermediate layer is first plated with a metal that is relatively easy to form a plating layer, and then tin-plated on it, graphite powder with a tin plating layer formed on the outermost surface can be produced stably. it can. If the outermost layer is a graphite powder having a tin plating layer formed thereon, there is no particular difference in the effect of the present invention even if the intermediate layer is any metal plating layer.
[0017]
However, from the viewpoint of the ease of forming the tin plating layer and the cost, it can be said that the intermediate layer is preferably a copper plating layer, which is also preferably an electroless copper plating layer.
Here, in order to apply electroless copper plating to the surface of the graphite powder, pretreatment of the graphite powder surface is important. However, a commercially available pretreatment agent “PM (Nikko Materials Co., Ltd.) According to the product name), stable electroless copper plating is possible.
[0018]
Regarding the above-mentioned "anode material for lithium secondary batteries comprising graphite powder having at least a tin plating layer formed on the outermost surface", a dispersion medium is added together with the above-mentioned conductive material, binder and optional plasticizer. A well-known technique of mixing and dispersing and applying this slurry to a current collector (such as a copper foil) is used as a negative electrode of a lithium secondary battery.
[0019]
In addition, a lithium secondary battery to which "a negative electrode material for a lithium secondary battery comprising a graphite powder having a tin plating layer formed on at least the outermost surface" is applied to a positive electrode, a separator holding an electrolyte, an electrolyte, and the like. There is no limitation, and known ones can be applied to these.
[0020]
The lithium secondary battery to which the “negative electrode material for a lithium secondary battery composed of graphite powder having a tin plating layer formed on at least the outermost surface” according to the present invention has a high charge / discharge capacity and a stable good cycle. It exhibits excellent characteristics and excellent high load characteristics during charging and discharging.
[0021]
Japanese Unexamined Patent Publication No. Hei 4-184863 discloses, as a means for solving the problem that the discharge capacity is significantly reduced in a high-rate discharge after being left at a high temperature, a carbon material is previously coated with a metal film of Ni, Cu, Fe or Co. And a negative electrode material for a lithium secondary battery formed by sintering this.
Japanese Patent Application Laid-Open No. 4-220948 discloses that a carbon material coated with a metal such as Ni, Co, Cu or the like or a conductive polymer such as polyparaphenylene in advance can be used for storage under high temperature. It has been reported that a decrease in discharge capacity was significantly suppressed in the test.
Further, Japanese Patent Application Laid-Open No. 4-259768 discloses that a negative electrode of a lithium secondary battery is made of a carbon powder, a metal powder such as Ni, Cu, Fe or the like that does not alloy with lithium, and a binder. It is shown that a lithium secondary battery having a large capacity and excellent performance in repeated charging and discharging can be obtained.
However, transition metals such as Ni, Cu, Fe, and Co are metals that do not alloy with lithium, unlike Sn, and these metals can be used to coat a carbon material, or a carbon material mixed with these metals can be used as a negative electrode material. However, the effect as seen in the material of the present invention described above cannot be obtained.
[0022]
Next, the present invention will be described with reference to examples.
【Example】
First, a graphite powder having an average particle size of 18.0 μm is subjected to a sensitization treatment, washed sufficiently with water, then pretreated with a pretreatment agent PM (manufactured by Nikko Materials Co., Ltd.), and further thoroughly washed with water. After that, an electroless copper plating treatment was performed using an electroless copper plating solution KC-100 [manufactured by Nikko Metal Plating Co., Ltd.].
After the graphite powder on which the copper plating layer (average layer thickness: 0.4 μm) is formed is sufficiently washed with water, it is subjected to an electroless tin plating treatment using a chemical tin plating solution Z (manufactured by Nikko Metal Plating Co., Ltd.). Was performed to produce a graphite powder having a tin plating layer (average layer thickness 0.20 μm) formed on the surface via a copper plating layer.
[0023]
Next, 85% by weight of the obtained plated graphite powder, 7% by weight of polyvinylidene fluoride as a binder, and 8% by weight of acetylene black as a conductive material were added, and acetone was added as a dispersion medium to form a slurry. Thereafter, this was applied on a copper foil by a hand coater to form a negative electrode.
[0024]
As a counter electrode (positive electrode), lithium-cobalt composite oxide (LiCoO 2 ) was used as a positive electrode active material at 85 wt%, acetylene black as a conductive material at 8 wt%, and polyvinylidene fluoride as a binder at 7 wt%. It was weighed, and acetone was added thereto as a dispersion medium to form a slurry. The slurry was applied on an aluminum foil, and the solvent was evaporated to prepare a positive electrode of a lithium battery.
[0025]
Then, a coin cell (CR2032) as a lithium battery was manufactured by applying the positive electrode and the negative electrode.
The electrolyte used was a mixture of ethylene carbonate and dimethyl carbonate containing 1 mol of LiPF 6 (mixing ratio = 1: 1).
[0026]
This coin cell was subjected to a cycle test under the conditions of 50 ° C. and 1C-1C charge / discharge. The results of this test are shown in FIG.
As is clear from the results shown in FIG. 1, the lithium battery to which the negative electrode material according to the present invention is applied exhibits a high discharge capacity and sufficiently excellent cycle characteristics at a high temperature (50 ° C.). I understand.
[0027]
Next, with respect to the lithium battery, high load characteristics during charge / discharge (charge / discharge characteristics at a high current density of 3.5 to 10.5 A / cm 2 at the time of charge / discharge) were investigated.
As a comparative example, high load characteristics during charging and discharging were also investigated for a lithium secondary battery prepared in the same manner as above except that graphite powder having an average particle size of 18.0 μm was used as the negative electrode material as it was.
"Capacity maintenance ratio (%) for C rate" measured by this investigation is as shown in the following Table 1 (discharge load characteristics) and Table 2 (charge load characteristics).
[0028]
[Table 1]
Figure 2004071464
[0029]
[Table 2]
Figure 2004071464
[0030]
FIG. 2 and FIG. 3 show the above-mentioned investigation results (investigation results of discharge load characteristics and charge load characteristics) in the form of line graphs.
As can be seen from the results of these investigations, it is clear that the lithium battery to which the negative electrode material according to the present invention is applied has excellent high load characteristics during charge and discharge.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a negative electrode material for a lithium secondary battery that exhibits high charge / discharge capacity, excellent charge / discharge cycle characteristics, and high load characteristics during charge / discharge. Thus, it is possible to realize a relatively inexpensive lithium secondary battery having such an effect, which brings about an industrially useful effect.
[Brief description of the drawings]
FIG. 1 is a graph showing a cycle test result of a lithium battery manufactured in an example.
FIG. 2 is a graph showing “high load characteristics at the time of discharge” of a lithium battery manufactured in an example in comparison with that of a comparative example.
FIG. 3 is a graph showing “high load characteristics during charging” of a lithium battery manufactured in an example in comparison with that of a comparative example.

Claims (4)

少なくとも最表面に錫めっき層が形成された黒鉛粉から成ることを特徴とする、リチウム二次電池用負極材料。A negative electrode material for a lithium secondary battery, comprising a graphite powder having a tin plating layer formed on at least the outermost surface. 表面に銅めっき層を介して錫めっき層が形成された黒鉛粉から成ることを特徴とする、リチウム二次電池用負極材料。A negative electrode material for a lithium secondary battery, comprising graphite powder having a tin plating layer formed on a surface thereof via a copper plating layer. 黒鉛粉に無電解銅めっきを施した後、その上に無電解錫めっきを施すことを特徴とする、リチウム二次電池用負極材料の製造方法。A method for producing a negative electrode material for a lithium secondary battery, comprising: subjecting graphite powder to electroless copper plating, and then subjecting the powder to electroless tin plating. 負極材料として、少なくとも最表面に錫めっき層が形成された黒鉛粉が適用されて成ることを特徴とする、リチウム二次電池。A lithium secondary battery, wherein a graphite powder having a tin plating layer formed on at least the outermost surface is applied as a negative electrode material.
JP2002231603A 2002-08-08 2002-08-08 Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it Pending JP2004071464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231603A JP2004071464A (en) 2002-08-08 2002-08-08 Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231603A JP2004071464A (en) 2002-08-08 2002-08-08 Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2004071464A true JP2004071464A (en) 2004-03-04

Family

ID=32017322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231603A Pending JP2004071464A (en) 2002-08-08 2002-08-08 Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2004071464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066134A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Negative electrode active material, negative electrode, and lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066134A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Negative electrode active material, negative electrode, and lithium secondary battery
US20090274960A1 (en) * 2006-09-07 2009-11-05 Keiichi Yokouchi Anode active material, anode, and lithium secondary battery
KR101229903B1 (en) * 2006-09-07 2013-02-05 도요타 지도샤(주) Negative electrode active material, negative electrode and lithium secondary battery
US8507133B2 (en) 2006-09-07 2013-08-13 Toyota Jidosha Kabushiki Kaisha Anode active material, anode, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US6946223B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
US20070202365A1 (en) Lithium secondary battery
JP4837614B2 (en) Lithium secondary battery
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
EP2424014A2 (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
US8377591B2 (en) Anode material for secondary battery, anode for secondary battery and secondary battery therewith
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2006120612A (en) Lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2009238663A (en) Nonaqueous secondary battery
JP3670938B2 (en) Lithium secondary battery
JP3157079B2 (en) Manufacturing method of lithium secondary battery
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2005063731A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4747514B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP2002151066A (en) Negative electrode material for lithium secondary battery
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP2001052757A (en) Adjustment method of battery
JP2000156224A (en) Nonaqueous electrolyte battery