JP2005063731A - Nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005063731A
JP2005063731A JP2003289949A JP2003289949A JP2005063731A JP 2005063731 A JP2005063731 A JP 2005063731A JP 2003289949 A JP2003289949 A JP 2003289949A JP 2003289949 A JP2003289949 A JP 2003289949A JP 2005063731 A JP2005063731 A JP 2005063731A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
silicon oxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003289949A
Other languages
Japanese (ja)
Inventor
Koko Ryu
興江 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003289949A priority Critical patent/JP2005063731A/en
Publication of JP2005063731A publication Critical patent/JP2005063731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery enhancing safety and charge/discharge cycle performance by forming a stable lithium ion conductive film on the surface of metallic lithium or a lithium alloy. <P>SOLUTION: The nonaqueous electrolyte secondary battery has a positive electrode 1, a negative electrode 2 containing lithium or the lithium alloy, and a nonaqueous electrolyte, and a film 6 containing silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide is formed on the surface of the negative active material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は非水電解質二次電池およびその製造方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same.

近年、各種電子機器が高機能化に伴って、その電源として用いられる二次電池の高性能化に対する期待はますます大きくなっている。正極にコバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)を、負極に黒鉛やハードカーボンを使用したリチウムイオン電池は、従来の鉛蓄電、Ni−Cd電池およびニッケル−水素電池よりはエネルギー密度が高い。しかし、リチウムイオン電池の実装エネルギー密度が限界に近づき、各種電子機器のニーズに満足できなくなってきている。 In recent years, as various electronic devices have advanced functions, expectations for higher performance of secondary batteries used as their power sources are increasing. Lithium ion batteries using lithium cobaltate (LiCoO 2 ) or lithium nickelate (LiNiO 2 ) for the positive electrode and graphite or hard carbon for the negative electrode are more energy efficient than conventional lead storage, Ni-Cd batteries and nickel-hydrogen batteries. High density. However, the mounting energy density of lithium ion batteries is approaching its limit, and it has become impossible to satisfy the needs of various electronic devices.

そこで、負極活物質として金属リチウムやリチウム−珪素合金などのリチウム合金を用いることが再検討されている。金属リチウムやリチウム合金は、卑な電位を有し、大きな理論容量を示す。これらの負極活物質と、金属酸化物や硫黄系の正極活物質と組み合わせると、高いエネルギー密度を示す非水電解質二次電池が得られるため、次世代高エネルギー密度二次電池の負極活物質として有望である。   Thus, the use of lithium alloys such as metallic lithium and lithium-silicon alloys as the negative electrode active material has been reviewed. Metallic lithium and lithium alloys have a low potential and show a large theoretical capacity. Combining these negative electrode active materials with metal oxides or sulfur-based positive electrode active materials yields non-aqueous electrolyte secondary batteries that exhibit high energy density. Therefore, as negative electrode active materials for next-generation high energy density secondary batteries. Promising.

しかし、金属リチウムは活性が高く、電解質と反応し、固体電解質界面(SEI)層が形成される。また、このSEI層は電池長期保存時または充放電に伴って成長していく。さらに、充放電にともなって、樹枝状または粉末状リチウムも形成されやすくなる。これがリチウム電池の安全性問題および活物質の損失を引き起こすことだけでなく、電池内部短絡の原因でもある。   However, metallic lithium is highly active and reacts with the electrolyte to form a solid electrolyte interface (SEI) layer. The SEI layer grows during long-term storage of the battery or with charge / discharge. Furthermore, dendritic or powdery lithium is also easily formed with charge and discharge. This not only causes safety problems and loss of active material of the lithium battery, but also causes internal short circuit of the battery.

そこで、金属リチウム電池の充放電効率の向上および安全性の改善を図るために、固体電解質の使用が提案された。その中でガラス固体電解質の適用が注目されている。ガラス固体電解質として、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩やこれらの誘導体等が知られている。   Therefore, the use of solid electrolytes has been proposed to improve the charge / discharge efficiency and safety of metal lithium batteries. Among them, the application of a glass solid electrolyte has attracted attention. Known glass solid electrolytes include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.

また、LiS−SiS、LiS−P、LiS−B等のリチウムイオン伝導性硫化物(ガラス固体電解質)や、これらのガラス固体電解質にLiI等のハロゲン化リチウム、LiPO、LiSiOなどをドープする方法が検討されている。 Further, Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 and other lithium ion conductive sulfides (glass solid electrolytes), and these glass solid electrolytes such as LiI A method of doping lithium halide, Li 3 PO 4 , Li 4 SiO 4 or the like has been studied.

特に、LiSiOをドープしたリチウムイオン伝導性ガラス固体電解質は、常温付近で10−4〜10−3S/cmの高いリチウムイオン伝導度を示す報告が、非特許文献1および非特許文献2に示されている。 In particular, a lithium ion conductive glass solid electrolyte doped with Li 4 SiO 4 is reported to show a high lithium ion conductivity of 10 −4 to 10 −3 S / cm near normal temperature. 2.

これらのガラス固体電解質がツインロールを用いた急冷法やメカニカルミーリング法で作製されている。また、金属リチウムを保護する目的で、ガラス固体電解質をスパッタリング法で直接リチウムメタル表面に形成される技術も、非特許文献3および特許文献1に開示されており、これらのガラス電解質またはガラス電解質を用いた全固体二次電池の研究開発が進められている。   These glass solid electrolytes are produced by a rapid cooling method using twin rolls or a mechanical milling method. In addition, for the purpose of protecting metallic lithium, a technique in which a glass solid electrolyte is directly formed on a lithium metal surface by a sputtering method is also disclosed in Non-Patent Document 3 and Patent Document 1, and these glass electrolytes or glass electrolytes are also disclosed. Research and development of the all-solid-state secondary battery used is underway.

また、Si、Ge、AlおよびSnなどの金属や半金属は、リチウムと合金化しやすく、多量のリチウムを吸蔵でき、高容量を示している。ところが、これらの金属あるいは半金属は、充放電に伴ってリチウムとの合金化/脱合金化反応が起こり、その時に大きな体積変化を示すことが知られている。この大きな体積変化によって、合金相の微粉化や集電不良および電解液との副反応が発生し、放電容量の低下が激しいという問題がある。   Further, metals and metalloids such as Si, Ge, Al, and Sn are easily alloyed with lithium, can absorb a large amount of lithium, and have a high capacity. However, it is known that these metals or metalloids undergo an alloying / dealloying reaction with lithium during charging and discharging, and show a large volume change at that time. Due to this large volume change, there is a problem that the alloy phase is pulverized, current collection is poor, and a side reaction with the electrolytic solution occurs, resulting in a significant reduction in discharge capacity.

これらの技術課題を解決するために、微細な粒子を使用する方法および薄い多孔性膜を使用することが提案されている。しかし、実装容量の高いかつサイクル性能の良い合金材料が未だに得られていない。   In order to solve these technical problems, it has been proposed to use a method using fine particles and a thin porous membrane. However, an alloy material having a high mounting capacity and good cycle performance has not yet been obtained.

一方、硫黄は高い比容量を有しているため(1675mAh・g−1)、非水電解質二次電池の正極活物質への利用がかなり以前から検討されてきた。例えば、正極に硫黄、負極にリチウムを用いた室温で作動するリチウム/硫黄二次電池の研究は、20数年前に非特許文献4および非特許文献5で報告された。 On the other hand, since sulfur has a high specific capacity (1675 mAh · g −1 ), its use as a positive electrode active material for non-aqueous electrolyte secondary batteries has been studied for a long time. For example, research on a lithium / sulfur secondary battery operating at room temperature using sulfur for the positive electrode and lithium for the negative electrode was reported in Non-Patent Document 4 and Non-Patent Document 5 20 years ago.

これらの報告では、正極活物質として可溶性のリチウム多硫化物(Li12.2)を用い、充放電特性に対する電流密度、非水電解液に用いる溶媒の種類、温度、活物質濃度などについて検討されたが、充放電サイクル寿命が短く、硫黄の利用率も低いという問題を解決できなかったため、実用レベルの電池を得ることはできなかった。 In these reports, soluble lithium polysulfide (Li 2 S 12.2 ) is used as the positive electrode active material, and the current density for charge / discharge characteristics, the type of solvent used in the non-aqueous electrolyte, temperature, active material concentration, etc. However, the problem of short charge / discharge cycle life and low utilization rate of sulfur could not be solved, so that a battery at a practical level could not be obtained.

また、Yaminらは、リチウム/硫黄二次電池について、詳細に検討した結果を、非特許文献6および非特許文献7で報告している。   Yaman et al. Reported the results of detailed studies on lithium / sulfur secondary batteries in Non-Patent Document 6 and Non-Patent Document 7.

さらに、Choらは、リチウム負極の表面にガラス固体電解質からなる保護被膜をとりつけたり、電解液を最適化することにより、正極活物質である硫黄の利用率の向上や、正、負極間で硫化物の化学的な酸化還元が繰り返されて、シャトル電流が発生することを遮断することを試み、特許文献2、3および4で開示している。   Furthermore, Cho et al. Improved the utilization rate of sulfur, which is a positive electrode active material, and sulfided between the positive and negative electrodes by attaching a protective coating made of a glass solid electrolyte to the surface of the lithium negative electrode or optimizing the electrolyte. Patent Documents 2, 3 and 4 disclose attempts to block the generation of shuttle current by repeated chemical redox of the product.

特開2000−340257号公報JP 2000-340257 A

アメリカ特許第5,523,179号US Pat. No. 5,523,179 アメリカ特許第5,814,420号US Pat. No. 5,814,420 アメリカ特許第6,025,094号US Patent No. 6,025,094 S.Kondo,K.Takada,Y.Yamamura,Solid State Ionics,53−56(1992)1183S. Kondo, K .; Takada, Y .; Yamamura, Solid State Ionics, 53-56 (1992) 1183 K.Hirai,M.Tatsumisago,T.Minami,Solid State Ionics,78(1995)269K. Hirai, M .; Tatsumisago, T .; Minami, Solid State Ionics, 78 (1995) 269 S.J.Visco,U.S.Pat.6,025,094(2000)S. J. et al. Visco, U. S. Pat. 6,025,094 (2000) R.D.Rauh etc.,21st IECEC、P283(1977)R. D. Rauh etc. , 21st IECEC, P283 (1977) R.D.Rauh etc.,J.Electrochem.Soc.,126,523(1979)R. D. Rauh etc. , J .; Electrochem. Soc. , 126, 523 (1979) Yamin etc.,J.Electrochem.Soc.,135,1045(1988)Yamin etc. , J .; Electrochem. Soc. , 135, 1045 (1988) Yamin etc.,J.Power Sources,9,281(1983)Yamin etc. , J .; Power Sources, 9, 281 (1983)

負極に金属リチウムまたはリチウム合金を用いた非水電解質二次電池において、負極表面に硫黄系ガラス固体電解質を形成することによって、サイクル性能および電池安全性が向上する。しかし、この硫黄系ガラス電解質は、水分20ppm以下の環境においても分解し、有毒なHSガスが発生する危険性があり、さらに電解質としての機能も消失する。また、力が加わると、硫黄系ガラス固体電解質が罅割れして破壊される恐れがある。また、硫黄系ガラス固体電解質を用いる場合には、予め膜状の硫黄系ガラス固体電解質を作製したり、直接金属リチウムやリチウム合金の表面に成膜しているため、量産コストが高くなるという問題があった。このように、硫黄系ガラス固体電解質には、取扱い方法、貯蔵方法、機械強度および量産性の面において大きな課題があった。 In a non-aqueous electrolyte secondary battery using metallic lithium or a lithium alloy as a negative electrode, cycle performance and battery safety are improved by forming a sulfur-based glass solid electrolyte on the negative electrode surface. However, this sulfur-based glass electrolyte is decomposed even in an environment having a water content of 20 ppm or less, and there is a risk that toxic H 2 S gas is generated, and the function as an electrolyte is lost. Moreover, when force is applied, the sulfur-based glass solid electrolyte may crack and be destroyed. In addition, when a sulfur-based glass solid electrolyte is used, a film-like sulfur-based glass solid electrolyte is prepared in advance or directly formed on the surface of metallic lithium or a lithium alloy, resulting in an increase in mass production cost. was there. As described above, the sulfur-based glass solid electrolyte has significant problems in terms of handling method, storage method, mechanical strength, and mass productivity.

そこで本発明は、このような課題を解決し、金属リチウムまたはリチウム合金の表面に安定なリチウムイオン導電性被膜を形成することにより、安全性に優れ、しかも充放電サイクル性能に優れた非水電解質二次電池を提供することを目的とするものである。   Therefore, the present invention solves such problems and forms a stable lithium ion conductive coating on the surface of metallic lithium or lithium alloy, thereby providing a non-aqueous electrolyte that has excellent safety and charge / discharge cycle performance. The object is to provide a secondary battery.

本発明者は金属リチウムまたはリチウム合金の表面の被膜を鋭意研究したところ、以下の知見を見出した。   The present inventor conducted extensive research on the coating film on the surface of metallic lithium or lithium alloy, and found the following findings.

請求項1の発明は、正極と、リチウムまたはリチウム合金を含む負極と、非水電解質とを備えた非水電解質二次電池において、前記負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含む被膜が形成されていることを特徴とする。   The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte. On the surface of the negative electrode active material, silicon oxide, silicon sulfide, lithium oxide and sulfide A film containing lithium is formed.

請求項1の発明によれば、負極活物質表面がSi−OおよびSi−Sを骨格としたリチウムイオン導電性被膜で被覆され、負極活物質と電解液との接触による副反応が抑制され、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。   According to the invention of claim 1, the negative electrode active material surface is coated with a lithium ion conductive film having Si—O and Si—S as a skeleton, and side reactions due to contact between the negative electrode active material and the electrolytic solution are suppressed, A nonaqueous electrolyte secondary battery having excellent charge / discharge cycle performance can be obtained.

請求項2の発明は、請求項1記載の非水電解質二次電池の製造方法に関するもので、表面に非晶質酸化ケイ素を形成したリチウムまたはリチウム合金からなる負極活物質を、多硫化物アニオンを含む非水溶液と接触させる工程を経ることを特徴とする。   A second aspect of the present invention relates to a method for producing a nonaqueous electrolyte secondary battery according to the first aspect of the present invention, wherein a negative electrode active material comprising lithium or a lithium alloy having amorphous silicon oxide formed on the surface thereof is used as a polysulfide anion. It is characterized by passing through a step of contacting with a non-aqueous solution containing.

請求項2の発明によれば、リチウム含有負極活物質の表面が、湿気に強い非晶質酸化ケイ素の新しい保護層で被覆され、毒ガスの発生しない負極板が得られる。なお、本発明において、「非晶質酸化ケイ素」としては、一般式SiOx(O<x<2)で表される化合物を示すものとする。また、電池を組立て直前に、この保護層が多硫化物アニオンと反応して、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜になることにより、安全で充放電サイクル性能に優れた非水電解質二次電池を作製することができる。   According to invention of Claim 2, the surface of a lithium containing negative electrode active material is coat | covered with the new protective layer of the amorphous silicon oxide strong against moisture, and the negative electrode plate which does not generate | occur | produce poison gas is obtained. In the present invention, “amorphous silicon oxide” refers to a compound represented by the general formula SiOx (O <x <2). Also, just before the battery is assembled, this protective layer reacts with polysulfide anions to form a lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide. It is possible to produce a non-aqueous electrolyte secondary battery excellent in the above.

請求項3の発明は、請求項1記載の非水電解質二次電池の製造方法に関するもので、リチウムまたはリチウム合金からなる負極活物質の表面に、非晶質酸化ケイ素を形成した負極を用いて電池を組立てた後、多硫化物アニオンを含む非水電解液を注液することを特徴とする。   A third aspect of the present invention relates to a method for producing a nonaqueous electrolyte secondary battery according to the first aspect, wherein a negative electrode in which amorphous silicon oxide is formed on the surface of a negative electrode active material made of lithium or a lithium alloy is used. After assembling the battery, a non-aqueous electrolyte containing a polysulfide anion is injected.

請求項3の発明によれば、多硫化物アニオンを含む非水電解液を注液することにより、リチウム含有負極活物質の表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜がその場で形成させるため、プロセスが簡便であり、湿気の影響が避けられ、生産工程に有利で、充放電サイクル性能に優れた非水電解質二次電池を作製することができる。   According to the invention of claim 3, by injecting a non-aqueous electrolyte containing a polysulfide anion, lithium ions containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide are formed on the surface of the lithium-containing negative electrode active material. Since the conductive coating is formed on the spot, the process is simple, the influence of moisture is avoided, the production process is advantageous, and a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle performance can be manufactured.

請求項4の発明は、請求項1記載の非水電解質二次電池の製造方法に関するもので、リチウムまたはリチウム合金からなる負極活物質の表面に、非晶質酸化ケイ素を形成した負極と、硫黄を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする。   The invention of claim 4 relates to a method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein a negative electrode in which amorphous silicon oxide is formed on the surface of a negative electrode active material made of lithium or a lithium alloy, and sulfur After assembling a battery using a positive electrode containing, a non-aqueous electrolyte is injected to charge / discharge the battery.

請求項4の発明によれば、正極中の硫黄から電解液に可溶性の多硫化物アニオンが生成し、これが負極に移動し、負極表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成され、負極表面をリチウムイオン伝導性被膜で保護した負極を用いた、充放電サイクル特性に優れた非水電解質二次電池を作製することができる。   According to the invention of claim 4, a polysulfide anion soluble in the electrolyte is generated from sulfur in the positive electrode, which moves to the negative electrode, and includes silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the negative electrode surface. A nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics using a negative electrode in which a lithium ion conductive film is formed and the negative electrode surface is protected with a lithium ion conductive film can be produced.

請求項5の発明は、請求項1記載の非水電解質二次電池の製造方法に関するもので、リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、多硫化物アニオンを含む非水電解液を注液し、電池を充放電することを特徴とする。   Invention of Claim 5 is related with the manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1, and the negative electrode which formed the amorphous silicon oxide on the surface of the metal or metalloid which forms an alloy with lithium, A battery is assembled using a positive electrode containing a lithium composite oxide in a discharged state, and then a non-aqueous electrolyte containing a polysulfide anion is injected to charge / discharge the battery.

請求項5の発明によれば、電解液中の多硫化物アニオンが負極に移動し、電池の充放電により、負極表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜がより確実に形成され、充放電サイクル特性に優れた非水電解質二次電池を作製することができる。   According to invention of Claim 5, the polysulfide anion in electrolyte solution moves to a negative electrode, and lithium ion conductivity containing silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide is formed on the negative electrode surface by charge / discharge of the battery. A nonaqueous electrolyte secondary battery in which a coating is more reliably formed and has excellent charge / discharge cycle characteristics can be produced.

請求項6の発明は、請求項1記載の非水電解質二次電池の製造方法に関するもので、リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、硫黄と放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする。   Invention of Claim 6 is related with the manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1, and the negative electrode which formed the amorphous silicon oxide on the surface of the metal or metalloid which forms an alloy with lithium, After assembling a battery using sulfur and a positive electrode containing a lithium composite oxide in a discharged state, the battery is charged and discharged by pouring a non-aqueous electrolyte.

請求項6の発明によれば、正極中の硫黄から電解液に可溶性の多硫化物アニオンが生成し、これが負極に移動し、電池の充放電により、負極表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜がより確実に形成され、充放電サイクル特性に優れた非水電解質二次電池を作製することができる。   According to the invention of claim 6, a polysulfide anion soluble in the electrolytic solution is generated from sulfur in the positive electrode, and this anion moves to the negative electrode. By charging / discharging of the battery, silicon oxide, silicon sulfide, and oxidation are formed on the negative electrode surface. A lithium ion conductive coating containing lithium and lithium sulfide can be more reliably formed, and a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be produced.

本発明の、正極と、リチウムまたはリチウム合金を含む負極と、非水電解液とを備えた非水電解質二次電池において、負極活物質表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成され、この負極表面の被膜が負極活物質と電解液との副反応を抑制するため、優れたサイクル寿命を示す非水電解質二次電池が得られる。   In the non-aqueous electrolyte secondary battery of the present invention comprising a positive electrode, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte, silicon oxide, silicon sulfide, lithium oxide and lithium sulfide are provided on the surface of the negative electrode active material. Since the lithium ion conductive coating is formed and the coating on the negative electrode surface suppresses side reactions between the negative electrode active material and the electrolytic solution, a nonaqueous electrolyte secondary battery exhibiting excellent cycle life can be obtained.

また、負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を形成する方法としては、あらかじめリチウムまたはリチウム合金を含む負極活物質表面に非晶質酸化ケイ素を形成しておき、この負極活物質を多硫化物アニオンを含む非水溶液と接触させる方法、電池を組立て後、多硫化物アニオンを含む非水電解液を注液する方法、正極中に硫黄を含ませておき、非水電解液を注液した後、充放電する方法、また、あらかじめリチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立て後、多硫化物アニオンを含む非水電解液を注液した後、電池を充放電する方法、正極中に硫黄を含ませておき、非水電解液を注液した後、電池を充放電する方法などの製造方法を採ることにより、簡便で、より確実に、負極活物質表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を形成することができる。   As a method for forming a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the surface of the negative electrode active material, amorphous silicon oxide is previously formed on the surface of the negative electrode active material containing lithium or a lithium alloy. The anode active material is contacted with a non-aqueous solution containing a polysulfide anion, a battery is assembled, a non-aqueous electrolyte solution containing a polysulfide anion is injected, and the positive electrode contains sulfur. In addition, a method of charging / discharging after injecting a non-aqueous electrolyte, a negative electrode in which amorphous silicon oxide is formed on the surface of a metal or metalloid that forms an alloy with lithium in advance, After assembling a battery using a positive electrode containing a lithium composite oxide, a method of charging and discharging the battery after injecting a non-aqueous electrolyte containing a polysulfide anion, and containing sulfur in the positive electrode In addition, by injecting a non-aqueous electrolyte and then taking a production method such as a method of charging / discharging the battery, the surface of the negative electrode active material can be more easily and more reliably coated with silicon oxide, silicon sulfide, lithium oxide and A lithium ion conductive coating containing lithium sulfide can be formed.

本発明は、正極と、リチウムまたはリチウム合金を含む負極と、非水電解質とを備えた非水電解質二次電池において、負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されているものである。   The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte, and lithium containing silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide on the negative electrode active material surface. An ion conductive film is formed.

また、本発明は、上記非水電解質二次電池の製造方法に関するもので、表面に非晶質酸化ケイ素を形成したリチウムまたはリチウム合金からなる負極活物質を、多硫化物アニオンを含む非水溶液と接触させる工程を経ることを特徴とする。非水溶液としては、エーテル系またはエステル系有機溶媒を含むことが好ましい。   The present invention also relates to a method for producing the above non-aqueous electrolyte secondary battery, wherein a negative electrode active material made of lithium or a lithium alloy having amorphous silicon oxide formed on the surface thereof, a non-aqueous solution containing a polysulfide anion and It is characterized by undergoing a contact process. The non-aqueous solution preferably contains an ether-based or ester-based organic solvent.

本発明においては、まず、スプレー噴霧メッキ法やスパッター法または真空蒸着メッキ法で、リチウムまたはリチウム合金からなる負極活物質の表面に、非晶質酸化ケイ素を形成する。非晶質酸化ケイ素は一般式SiO(但し、0<x<2とする)で表される。 In the present invention, first, amorphous silicon oxide is formed on the surface of the negative electrode active material made of lithium or a lithium alloy by spray spray plating, sputtering, or vacuum deposition plating. Amorphous silicon oxide is represented by the general formula SiO x (where 0 <x <2).

つぎに、上記表面に非晶質酸化ケイ素を形成した負極活物質を、多硫化物アニオンを含む非水溶液と接触させると、式1)〜4)の局部電池反応が起こる。   Next, when the negative electrode active material having amorphous silicon oxide formed on the surface is brought into contact with a non-aqueous solution containing a polysulfide anion, local cell reactions of formulas 1) to 4) occur.

SiO+Li(M)→a−SiO+LiSi+LiO (1)
LiSi+S n−→a−SiS+Liz−2 (2)
Liz−2+Li(M)→LiS (3)
Li(M)+S n−→LiS (4)
このようにして最終的に、酸化ケイ素(SiO)、硫化ケイ素(SiS、但し、0<y<2)、酸化リチウム(LiO)および硫化リチウム(LiS)を含む被膜が負極活物質の表面に形成される。ここで、負極活物質表面に形成される被膜は、リチウムイオン伝導性のガラス固体電解質である。なお、式(1)〜(4)において、a−SiOは非晶質酸化ケイ素を表し、Mはリチウムと合金化できる金属または半金属、例えばAl、Si、Geを表し、0<b≦4.4、z>2とする。
SiO + Li (M) → a-SiO x + Li b Si + Li 2 O (1)
Li b Si + S y n- → a-SiS 2 + Li b S z-2 (2)
Li x S z-2 + Li (M) → Li 2 S (3)
Li (M) + S z n− → Li 2 S (4)
Thus, finally, the coating containing silicon oxide (SiO x ), silicon sulfide (SiS y , where 0 <y <2), lithium oxide (Li 2 O), and lithium sulfide (Li 2 S) is the negative electrode. Formed on the surface of the active material. Here, the film formed on the surface of the negative electrode active material is a lithium ion conductive glass solid electrolyte. In the formulas (1) to (4), a-SiO x represents amorphous silicon oxide, M represents a metal or metalloid that can be alloyed with lithium, for example, Al, Si, Ge, and 0 <b ≦ 4.4, z> 2.

また、本発明は、あらかじめリチウムまたはリチウム合金からなる負極活物質の表面に非晶質酸化ケイ素を形成しておき、電池を組立てた後、多硫化物アニオンを含む非水電解液を注液することにより、負極活物質の表面で、リチウムと非晶質酸化ケイ素と多硫化物アニオンとが反応して、リチウム含有負極活物質の表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を、その場で形成させることができる。この方法により、プロセスが簡便であり、湿気の影響が避けられ、生産工程に有利な非水電解質二次電池を製造することができる。   In the present invention, amorphous silicon oxide is previously formed on the surface of a negative electrode active material made of lithium or a lithium alloy, and after assembling the battery, a non-aqueous electrolyte containing a polysulfide anion is injected. Thus, lithium, amorphous silicon oxide, and polysulfide anion react on the surface of the negative electrode active material, and the surface of the lithium-containing negative electrode active material contains silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide. The lithium ion conductive coating can be formed in situ. By this method, the process is simple, the influence of moisture is avoided, and a nonaqueous electrolyte secondary battery advantageous for the production process can be manufactured.

さらに本発明は、リチウムまたはリチウム合金からなる負極活物質の表面に非晶質酸化ケイ素を形成した負極と、硫黄を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする。この場合、正極活物質が硫黄であってもよいし、正極活物質がリチウム複合酸化物であって、正極中に硫黄を含んでいてもよい。   Furthermore, the present invention assembles a battery using a negative electrode in which amorphous silicon oxide is formed on the surface of a negative electrode active material made of lithium or a lithium alloy and a positive electrode containing sulfur, and then injects a non-aqueous electrolyte. The battery is charged and discharged. In this case, the positive electrode active material may be sulfur, or the positive electrode active material may be a lithium composite oxide, and the positive electrode may contain sulfur.

この場合には、電解液中に多硫化物を溶解させなくても、正極中の硫黄から可溶性多硫化物(Li)が生成し、これが電解液中で一部解離して生成した多硫ラジカル(・S 2−、但しn>4)や多硫アニオン(S 2−)などとともに負極に移動し、充放電によって、負極表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成される。 In this case, soluble polysulfide (Li x Sn ) was generated from sulfur in the positive electrode without dissolving the polysulfide in the electrolytic solution, and this was generated by partial dissociation in the electrolytic solution. It moves to the negative electrode together with polysulfur radicals (.S n 2− , where n> 4), polysulfur anions (S n 2− ), etc., and is charged and discharged to the surface of the negative electrode to form silicon oxide, silicon sulfide, lithium oxide and sulfide. A lithium ion conductive coating containing lithium is formed.

なお、本発明においては、「多硫化物アニオン」とは、部分解離したLi m−、多硫ラジカル・S 2−および多硫アニオンS 2−を指す。 In the present invention, the “polysulfide anion” refers to partially dissociated Li x S n m− , polysulfur radical / S n 2− and polysulfur anion S n 2− .

このように簡便な方法で、常温におけるその場での電気化学反応により、負極表面をリチウムイオン導電性被膜で保護した負極を用いた非水電解質二次電池を作製することができる。   In this way, a nonaqueous electrolyte secondary battery using a negative electrode whose surface is protected with a lithium ion conductive film can be produced by an in situ electrochemical reaction at room temperature.

さらに本発明は、リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、多硫化物アニオンを含む非水電解液を注液し、電池を充放電することにより、非水電解質二次電池を製造するものである。   Furthermore, the present invention, after assembling a battery using a negative electrode in which amorphous silicon oxide is formed on the surface of a metal or metalloid that forms an alloy with lithium and a positive electrode including a lithium composite oxide in a discharged state, A non-aqueous electrolyte secondary battery is manufactured by injecting a non-aqueous electrolyte containing a polysulfide anion and charging and discharging the battery.

この製造方法によれば、電池を充電することにより、正極の放電状態のリチウム複合酸化物からリチウムイオンが生成し、非晶質酸化ケイ素を形成したリチウムと合金を形成する金属または半金属の表面にリチウムが電着してリチウム合金が形成され、引き続いて、電解液中の多硫化物アニオンがリチウム合金の表面に移動し、リチウム合金と非晶質酸化ケイ素と多硫化物とが反応して、リチウム合金の表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜がその場で形成され、表面が被膜で保護された負極を用いた非水電解質二次電池を製造することができる。   According to this manufacturing method, by charging the battery, lithium ions are generated from the lithium composite oxide in the discharged state of the positive electrode, and the surface of the metal or metalloid that forms an alloy with lithium forming amorphous silicon oxide Lithium is electrodeposited to form a lithium alloy. Subsequently, the polysulfide anion in the electrolyte moves to the surface of the lithium alloy, and the lithium alloy, amorphous silicon oxide, and polysulfide react with each other. A non-aqueous electrolyte secondary battery using a negative electrode in which a lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is formed in situ on the surface of the lithium alloy and the surface is protected by the coating Can be manufactured.

また本発明は、リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、硫黄と放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする。   In the present invention, a battery is assembled using a negative electrode in which amorphous silicon oxide is formed on the surface of a metal or metalloid that forms an alloy with lithium, and a positive electrode containing sulfur and a lithium composite oxide in a discharged state. Thereafter, a non-aqueous electrolyte is injected to charge / discharge the battery.

この製造方法によれば、非晶質酸化ケイ素を形成したリチウムと合金を形成する金属または半金属の表面に、まずリチウムが電着してリチウム合金が形成され、同時に正極中の硫黄から可溶性多硫化物(Li)が生成し、これが電解液中で一部解離して生成した多硫ラジカル(・S 2−、但しn>4)や多硫アニオン(S 2−)などとともに負極に移動し、リチウム合金と非晶質酸化ケイ素と硫黄または多硫化物とが反応して、リチウム合金の表面に、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜がその場で形成され、表面が被膜で保護された負極を用いた非水電解質二次電池を作製することができる。 According to this manufacturing method, lithium is first electrodeposited on the surface of a metal or metalloid that forms an alloy with lithium that has formed amorphous silicon oxide, and a lithium alloy is formed at the same time. Sulfide (Li x S n ) is generated, and this is partially dissociated in the electrolytic solution to generate polysulfur radical (· S n 2− , where n> 4), polysulfur anion (S n 2− ), etc. Lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide on the surface of the lithium alloy when the lithium alloy, amorphous silicon oxide, and sulfur or polysulfide react with each other. Is formed in situ, and a non-aqueous electrolyte secondary battery using a negative electrode whose surface is protected with a film can be produced.

つぎに、金属リチウム、リチウム合金またはリチウムと合金を形成する金属の表面に、非晶質酸化ケイ素(SiO)を被覆する方法の例を説明する。スプレー噴霧メッキ法で被覆する場合、1μm以下の粒子径を有する非晶質酸化ケイ素を使用するのが望ましい。 Next, an example of a method for coating amorphous silicon oxide (SiO x ) on the surface of metal lithium, a lithium alloy, or a metal forming an alloy with lithium will be described. When coating by spray spray plating, it is desirable to use amorphous silicon oxide having a particle size of 1 μm or less.

この非晶質酸化ケイ素微粉末を金属リチウムの表面にドライルーム内で噴霧メッキする場合、非晶質酸化ケイ素層の厚さは2μm以下が好ましく、より好ましくは1μm以下である。膜厚が厚くなると、保護効果が良いが、イオン導電抵抗が上昇し、電池の出力に影響する。膜厚は、非晶質酸化ケイ素被覆前後のリチウムシートの質量変化および非晶質酸化ケイ素の粉体密度から求めることができる。この負極は、20kg/cmの圧力でロールプレスして電池に使用する。 When this amorphous silicon oxide fine powder is spray-plated on the surface of metallic lithium in a dry room, the thickness of the amorphous silicon oxide layer is preferably 2 μm or less, more preferably 1 μm or less. When the film thickness is increased, the protective effect is good, but the ionic conduction resistance is increased, which affects the output of the battery. The film thickness can be determined from the mass change of the lithium sheet before and after the amorphous silicon oxide coating and the powder density of the amorphous silicon oxide. This negative electrode is roll-pressed at a pressure of 20 kg / cm 2 and used for a battery.

リチウム合金としてLi−Si合金を用いる場合、粒子状のLi−Siと上記非晶質酸化ケイ素微粉末とを質量比95:5以上で混合するのが好ましく、質量比が約99:1のものが最も好ましい。非晶質酸化ケイ素が多くなると、リチウム箔の場合と同様に最終生成物のリチウムイオン導電性被膜が多くなり、電池の内部抵抗の上昇をもたらす。また、これらの混合物を遊星型ボールミールで混合させて、電極板の作製に使う。   When a Li—Si alloy is used as the lithium alloy, it is preferable to mix particulate Li—Si and the amorphous silicon oxide fine powder at a mass ratio of 95: 5 or more, and a mass ratio of about 99: 1. Is most preferred. When the amount of amorphous silicon oxide increases, the lithium ion conductive film of the final product increases as in the case of the lithium foil, leading to an increase in the internal resistance of the battery. Moreover, these mixtures are mixed with a planetary ball meal and used for production of an electrode plate.

真空蒸着法を用いる場合には、誘導加熱源や電子ビーム熱蒸発源などを使用する。この場合には、非晶質酸化ケイ素の膜厚を1μm以下に制御することができる。なお、RFスパッター法を用いることができる。以上の場合には、後続作製プロセスで電解液を下地のリチウムと接触させる必要があるので、多孔性非晶質酸化ケイ素膜の生成が望ましい。   When using a vacuum evaporation method, an induction heating source, an electron beam thermal evaporation source, or the like is used. In this case, the film thickness of the amorphous silicon oxide can be controlled to 1 μm or less. Note that an RF sputtering method can be used. In the above case, since it is necessary to bring the electrolytic solution into contact with the underlying lithium in the subsequent manufacturing process, it is desirable to form a porous amorphous silicon oxide film.

負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されると、リチウム金属または充電状態にあるリチウム合金中のリチウムは電解液との接触が遮断される。その結果、充放電サイクルにおいて、電池内のリチウムの副反応による容量の損失が避けられる。したがって、充放電サイクルを繰り返しても容量低下の少ない、エネルギー密度が高く、充放電サイクル性能に優れた非水電解質二次電池を得ることができる。   When a lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is formed on the negative electrode surface, the lithium metal or lithium in the lithium alloy in a charged state is blocked from contact with the electrolyte. As a result, capacity loss due to side reaction of lithium in the battery is avoided in the charge / discharge cycle. Accordingly, it is possible to obtain a non-aqueous electrolyte secondary battery that has little capacity reduction even when the charge / discharge cycle is repeated, has a high energy density, and is excellent in charge / discharge cycle performance.

本発明の非水電解質二次電池において、正極活物質について特に限定する必要はなく、LiCoO、LiNiO、MnO2、LiMn24等の組成式LixMO2またはLiy24(ただし、Mは遷移金属、0≦x≦1、0≦y≦1)で表される複合酸化物やトンネル状の孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。また、V、LiFePOやLiNiMn2−xも使用できる。さらに、硫黄、ジスルフィドなどの有機硫黄も使用できる。 In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is not particularly limited, and the composition formula Li x MO 2 or Li y M 2 O 4 such as LiCoO 2 , LiNiO 2 , MnO 2 , LiMn 2 O 4 is not necessary. (Wherein M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), a composite oxide, an oxide having a tunnel-like hole, a metal chalcogenide having a layered structure, or the like can be used. Also, V 2 O 5, LiFePO 4 or LiNi x Mn 2-x O 4 can be used. Furthermore, organic sulfur such as sulfur and disulfide can also be used.

硫黄以外の正極活物質を用いた場合、つぎのようにして正極板を作製した。結着剤としてのポリフッ化ビニリデン(PVdF)をN−メチルピロリドン(NMP)に溶解して、濃度が2.5重量%の溶液を調製した。この溶液に、PVdFとアセチレンブラックとの重量比が3:2となるようにアセチレンブラックを加え、スラリーを調製した。   When a positive electrode active material other than sulfur was used, a positive electrode plate was produced as follows. Polyvinylidene fluoride (PVdF) as a binder was dissolved in N-methylpyrrolidone (NMP) to prepare a solution having a concentration of 2.5% by weight. To this solution, acetylene black was added so that the weight ratio of PVdF to acetylene black was 3: 2, to prepare a slurry.

このスラリーに、LiCoOなどの正極活物質を、PVdFとアセチレンブラックとの合計と、正極活物質との重量比が10:90となるように加え、攪拌してペースト状の正極用合剤を調製した。この正極用合剤の所定量を厚さ20μmのアルミニウム箔からなる集電体に均一に塗布し、乾燥後、プレスを行い、さらに140℃で真空乾燥した。このようにして、正極活物質を含む正極合剤層を備えた帯状の正極シートを作製した。この正極シートの一端部に、厚さ100μmのアルミニウム片からなる正極リードを溶接した。 To this slurry, a positive electrode active material such as LiCoO 2 is added so that the weight ratio of the total of PVdF and acetylene black to the positive electrode active material is 10:90, and stirred to obtain a paste-like positive electrode mixture. Prepared. A predetermined amount of this positive electrode mixture was uniformly applied to a current collector made of an aluminum foil having a thickness of 20 μm, dried, pressed, and vacuum dried at 140 ° C. In this way, a belt-like positive electrode sheet provided with a positive electrode mixture layer containing a positive electrode active material was produced. A positive electrode lead made of an aluminum piece having a thickness of 100 μm was welded to one end of the positive electrode sheet.

正極活物質に硫黄を用いた場合、硫黄自体は絶縁体であるため、多量の導電剤が必要である。そして、硫黄は均一に導電剤中に分散されているのが好ましい。また、導電ネットワークを保つために、導電剤をしっかりと集電体上に結着させた方が望ましい。   When sulfur is used as the positive electrode active material, a large amount of a conductive agent is required because sulfur itself is an insulator. And it is preferable that sulfur is uniformly disperse | distributed in a electrically conductive agent. In order to maintain the conductive network, it is desirable that the conductive agent is firmly bound on the current collector.

正極に用いる導電剤としては、粒径200nm以上、20μm以下の炭素粒子またはTi、Al、Ag、Cu、Niなどの金属微粒子、金属繊維、炭素繊維およびこれらの混合物を使用することができる。また、活物質と導電剤とは、結着剤としてのPVdF、PTFE、PVdF−HFPなどフッ素樹脂によって、しっかりとアルミニウム箔、ニッケル箔、ステンレス箔などの正極集電体上に結着されていることが好ましい。   As the conductive agent used for the positive electrode, carbon particles having a particle size of 200 nm or more and 20 μm or less, metal fine particles such as Ti, Al, Ag, Cu, and Ni, metal fibers, carbon fibers, and a mixture thereof can be used. Further, the active material and the conductive agent are firmly bound onto a positive electrode current collector such as an aluminum foil, a nickel foil, or a stainless steel foil by a fluororesin such as PVdF, PTFE, PVdF-HFP as a binder. It is preferable.

負極活物質にリチウム合金を用いる場合、平均粒径60μmのLi−Al合金と平均粒径60μmのLi−Si合金を用いた。これらの合金粒子と非晶質酸化ケイ素を99:1の質量比となるように、Ar循環グローブボックス内(水分および酸素<1ppm)内で計量し、ポートに入れ、ネジで閉めた。続いて遊星型ボールミールを入れ、300rpmの速度で7分混合、1分休止の総時間13時間12分で処理した。   When using a lithium alloy for the negative electrode active material, a Li—Al alloy having an average particle diameter of 60 μm and a Li—Si alloy having an average particle diameter of 60 μm were used. These alloy particles and amorphous silicon oxide were weighed in an Ar circulating glove box (moisture and oxygen <1 ppm) to a mass ratio of 99: 1, placed in a port, and closed with a screw. Subsequently, a planetary ball meal was added, mixed at a speed of 300 rpm for 7 minutes, and processed for a total time of 13 hours and 12 minutes for 1 minute.

さらに、これらの混合物を再度グローブボックス内に入れ、混合物とアセチレンブラックとPVdFとを85:5:10の質量比となるように計量し、混合してペーストとし、このペーストをニッケル集電体上に塗布し、120℃、5時間真空乾燥した。このようにしてガラス電解質形成前の極板を得られた。   Further, these mixtures are put again in the glove box, and the mixture, acetylene black and PVdF are weighed so as to have a mass ratio of 85: 5: 10, mixed to form a paste, and this paste is placed on the nickel current collector. And dried in vacuum at 120 ° C. for 5 hours. In this way, an electrode plate before glass electrolyte formation was obtained.

負極活物質として金属リチウムを用いる場合、集電体としては、リチウムと合金化しにくく、かつ多硫化物アニオンによって腐蝕されにくい、厚さ16μmのニッケル箔またはステンレス箔を用いた。金属リチウムの厚みは50μmであり、50kg/cmの圧力で集電体上に接合した。 When using metallic lithium as the negative electrode active material, a nickel foil or stainless steel foil having a thickness of 16 μm, which is difficult to alloy with lithium and hardly corroded by polysulfide anions, was used as a current collector. The thickness of the metallic lithium was 50 μm, and was bonded onto the current collector at a pressure of 50 kg / cm 2 .

本発明の非水電解質二次電池において、正極活物質の種類によって、電解液の溶媒を変更した。正極活物質に酸化物を用いた場合、例えばエチレンカーボネートとメチルエチルカーボネートとの混合溶媒あるいはエチレンカーボネートとジメチルカーボネートとの混合溶媒を用いることができる。これらの混合溶媒に、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、2−メチル−γ−ブチルラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルイソプロピルカーボネート、ジブチルカーボネート等を単独でまたは二種以上用いてこれを混合して使用しても良い。   In the nonaqueous electrolyte secondary battery of the present invention, the solvent of the electrolytic solution was changed depending on the type of the positive electrode active material. When an oxide is used for the positive electrode active material, for example, a mixed solvent of ethylene carbonate and methyl ethyl carbonate or a mixed solvent of ethylene carbonate and dimethyl carbonate can be used. These mixed solvents include propylene carbonate, butylene carbonate, vinylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, 2-methyl-γ-butyllactone, acetyl-γ-butyrolactone, γ-valerolactone, sulfolane, 1,2- Dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, methyl ethyl Carbonate, dipropyl carbonate, methylpropyl carbonate, ethyl isopropyl carbonate, dibutyl carbonate, etc. may be used alone or in combination of two or more. .

正極活物質に硫黄を用いた場合、非水電解液の溶媒としてはエーテル系溶媒を使用するのが望ましい。エーテル系有機溶媒はリチウムイオンと溶媒和し、多硫アニオンと分離させる一方、導電率の高い電解質を得ることができる。特に、これらの溶媒は、金属リチウムと反応してその表面にオリゴマーSEIやポリマーSEI層(SEI=Solid Electrolyte Interface)が形成され、金属リチウムと過剰反応しないという利点がある。   When sulfur is used as the positive electrode active material, it is desirable to use an ether solvent as the solvent for the non-aqueous electrolyte. The ether organic solvent can be solvated with lithium ions and separated from the polysulfur anion, while obtaining an electrolyte having high conductivity. In particular, these solvents have an advantage that they react with metallic lithium to form oligomer SEI or polymer SEI layer (SEI = Solid Electrolyte Interface) on the surface thereof and do not excessively react with metallic lithium.

ここで、使用可能な溶媒としては、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)、ジメトキシエタン(DME)、ジグリム、トリグリム、クラウンエーテル、ジオキソラン(DOL)、テトラヒドロピラン(THP)などが挙げられる。これらの溶媒はドナー性とアクセプター性を両方もっているため、リチウムイオンの溶媒和を促進する。またこれらの溶媒と上記エステル系溶媒との混合溶媒を使用することができる。   Here, usable solvents include tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), dimethoxyethane (DME), diglyme, triglyme, crown ether, dioxolane (DOL), tetrahydropyran (THP), and the like. Can be mentioned. Since these solvents have both a donor property and an acceptor property, solvation of lithium ions is promoted. Moreover, the mixed solvent of these solvents and the said ester solvent can be used.

非水電解液の溶質としての電解質塩は、正極活物質と関係なく、例えばLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(CFSO、LiN(CSO等を単独でまたは二種以上を混合して使用することができる。電解質塩としては中でもLiPFを用いるのが好ましい。 The electrolyte salt as the solute of the non-aqueous electrolyte is, for example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 regardless of the positive electrode active material. SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or the like can be used alone or in admixture of two or more. Among them, it is preferable to use LiPF 6 as the electrolyte salt.

本発明において、セパレータとしては、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜など、従来の非水電解質二次電池に使用されたものを用いることができる。   In the present invention, as the separator, those used in conventional non-aqueous electrolyte secondary batteries such as polyethylene and polypropylene microporous membranes, or polyolefin microporous membranes such as microporous membranes combining these can be used. it can.

ポリマー電解質としては、ポリマーとリチウム塩とを混合したポリマー電解質を用いることができる。ポリマーとしては、化学式(CHCHRX)(ただし、Rはメチル基またはエチル基であり、XはS、O、N元素である)で表示され、分子量100,000以上、4,000,000以下のものを使用することが好ましい。ポリマーの具体例としては、ポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO)を含む、単独あるいは混合系や架橋したもの、あるいは共重合体や誘導体を用いてもよい。 As the polymer electrolyte, a polymer electrolyte obtained by mixing a polymer and a lithium salt can be used. The polymer is represented by the chemical formula (CH 2 CHR 1 X) n (where R 1 is a methyl group or an ethyl group, X is an element of S, O, or N), and has a molecular weight of 100,000 or more, 4, It is preferable to use one having a value of less than 000,000. As specific examples of the polymer, polyethylene oxide (PEO) or polypropylene oxide (PPO) may be used alone, in a mixed system or crosslinked, or a copolymer or derivative.

ポリマーに混合するリチウム塩としては、例えばLiBF、LiAsF、LiN(CFSO、LiN(SO(LiBETI)等を単独または2種以上混合して使用することができる。これらの支持電解質はイオン導電率が高く、リチウムの溶解析出クーロン効率の向上にも有利である。 As the lithium salt mixed with the polymer, for example, LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (SO 2 C 2 F 5 ) 2 (LiBETI) or the like is used alone or in combination of two or more. be able to. These supporting electrolytes have high ionic conductivity, and are advantageous in improving the efficiency of lithium dissolution / deposition Coulomb.

これらのポリマー電解質は膜として使用してもよく、正極活物質の表面に被覆してもよいい。また、非晶質酸化ケイ素の表面に存在させると、無機/有機複合電解質相ができ、柔軟な保護膜が得られ、負極保護膜の機械強度を向上するのに効果的である。   These polymer electrolytes may be used as a film, or may be coated on the surface of the positive electrode active material. When present on the surface of amorphous silicon oxide, an inorganic / organic composite electrolyte phase is formed, a flexible protective film is obtained, and it is effective for improving the mechanical strength of the negative electrode protective film.

以下に、本発明の好適な実施例を示すが、本発明はこれに限定されるものではない。   Hereinafter, preferred examples of the present invention will be shown, but the present invention is not limited thereto.

[電池の構成部品]
実施例および比較例の電池では、つぎのような正極板、負極板、電解液を使用した。
[Battery components]
In the batteries of Examples and Comparative Examples, the following positive electrode plate, negative electrode plate, and electrolytic solution were used.

[正極板]
活物質としてコバルト酸リチウム(LiCoO)を用いた正極板は、次のようにして作製した。N−メチル−2−ピロリドン(NMP)にポリフッ化ビニリデン(PVdF)を溶解して、PVdF濃度が2.5重量%の結着剤溶液を作製した。この結着剤溶液にアセチレンブラックを加え、スラリーを作製した。このスラリーにおけるPVdFとアセチレンブラックの重量比は3:2とした。このスラリーにLiCoOを加え、攪拌して正極合剤ペーストを作製した。正極合剤ペーストにおいて、LiCoOとPVdFとアセチレンブラックとの重量比は90:6:4とした。
[Positive electrode plate]
A positive electrode plate using lithium cobaltate (LiCoO 2 ) as an active material was produced as follows. Polyvinylidene fluoride (PVdF) was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a binder solution having a PVdF concentration of 2.5% by weight. Acetylene black was added to this binder solution to prepare a slurry. The weight ratio of PVdF to acetylene black in this slurry was 3: 2. LiCoO 2 was added to this slurry and stirred to prepare a positive electrode mixture paste. In the positive electrode mixture paste, the weight ratio of LiCoO 2 , PVdF, and acetylene black was 90: 6: 4.

正極合剤ペーストの所定量を、厚さ20μmのアルミニウム箔からなる集電体の片面に均一に塗布し、乾燥後、多孔度28%となるようにプレスを行い、さらに140℃で真空乾燥した。得られた正極板において、LiCoOの担持量は24mg/cmであった。このようにして、LiCoOを含む正極合剤層を備えた帯状の正極シートを作製した。これを2.5cm×2.5cmの試験片に切り出し、この正極シートの一端部に、厚さ100μmのアルミニウム片からなる正極リードを超音波溶接した。これを正極板P1とした。なお、正極板P1に含まれる正極活物質はLiCoOであるので、この正極板P1は放電状態にある。 A predetermined amount of the positive electrode mixture paste was uniformly applied to one side of a current collector made of an aluminum foil having a thickness of 20 μm, dried, pressed to a porosity of 28%, and further vacuum dried at 140 ° C. . In the obtained positive electrode plate, the supported amount of LiCoO 2 was 24 mg / cm 2 . In this way, a belt-like positive electrode sheet provided with a positive electrode mixture layer containing LiCoO 2 was produced. This was cut into a 2.5 cm × 2.5 cm test piece, and a positive electrode lead made of an aluminum piece having a thickness of 100 μm was ultrasonically welded to one end of the positive electrode sheet. This was designated as a positive electrode plate P1. Since the positive electrode active material contained in the positive electrode plate P1 is LiCoO 2 , the positive electrode plate P1 is in a discharged state.

活物質として硫黄(S)を用いた正極は、次のようにして作製した。硫黄(S)と導電剤としての黒鉛微粉末(比表面積270m/g)を重量比15:7で混合し、ボールミールによって均一に分散させ、硫黄(S)と黒鉛微粉末(GC)の混合物(S−GC混合物)を得た。つぎにNMP100mlにPVdF10gを溶解して、結着剤溶液を作製した。この結着剤溶液に、上記S−GC混合物を、S:GC:PVdF=60:28:12(重量比)となるように添加し、攪拌して正極合剤ペーストを得た。この正極合剤ペーストをアルミニウム箔の片面に均一に塗布し、乾燥し、プレスした後、80℃で6時間乾燥した。得られた正極板において、硫黄の担持量は4.8mg/cmにした。このようにして、硫黄を含む正極合剤層を備えた帯状の正極シートを作製した。これを2.5cm×2.5cmの試験片に切り出し、この正極シートの一端部に、厚さ100μmのアルミニウム片からなる正極リードを超音波溶接した。これを正極板P2とした。 A positive electrode using sulfur (S) as an active material was produced as follows. Sulfur (S) and graphite fine powder (specific surface area of 270 m 2 / g) as a conductive agent are mixed at a weight ratio of 15: 7 and uniformly dispersed by ball meal, and sulfur (S) and graphite fine powder (GC) are mixed. A mixture (S-GC mixture) was obtained. Next, 10 g of PVdF was dissolved in 100 ml of NMP to prepare a binder solution. The S-GC mixture was added to the binder solution so that S: GC: PVdF = 60: 28: 12 (weight ratio) and stirred to obtain a positive electrode mixture paste. This positive electrode mixture paste was uniformly applied to one side of an aluminum foil, dried, pressed, and then dried at 80 ° C. for 6 hours. In the obtained positive electrode plate, the supported amount of sulfur was 4.8 mg / cm 2 . In this way, a belt-like positive electrode sheet provided with a positive electrode mixture layer containing sulfur was produced. This was cut into a 2.5 cm × 2.5 cm test piece, and a positive electrode lead made of an aluminum piece having a thickness of 100 μm was ultrasonically welded to one end of the positive electrode sheet. This was designated as a positive electrode plate P2.

正極板P1において、正極合剤中に、LiCoOの質量100に対し、硫黄を3質量%添加した極板を作製し、これを正極板P3とした。 In the positive electrode plate P1, an electrode plate in which 3% by mass of sulfur was added to the mass of LiCoO 2 in the positive electrode mixture was produced, and this was used as the positive electrode plate P3.

[負極板]
金属リチウム負極をつぎのようにして作製した。厚さ50μmの金属リチウムを、手動ロールプレス機を用いて50kg/cmの線圧でプレスし、集電体としてのSUS316の片面に貼り付けた。これを2.5cm×2.5cmに切り出し、リードとしてのニッケル製リボンを、SUS316集電体の耳部に熔接し、リチウムを有しないSUS316の面にカプトンテープを貼り付けた。これを計量し、質量をmとした。これを負極板N1とした。
[Negative electrode plate]
A metallic lithium negative electrode was produced as follows. Metal lithium having a thickness of 50 μm was pressed with a linear pressure of 50 kg / cm 2 using a manual roll press machine, and attached to one side of SUS316 as a current collector. This was cut into 2.5 cm × 2.5 cm, a nickel ribbon as a lead was welded to the ear of the SUS316 current collector, and Kapton tape was attached to the surface of SUS316 that did not contain lithium. This was weighed and the mass was m 1 . This was designated as a negative electrode plate N1.

負極活物質としてリチウム−珪素合金(以下「Li−Si合金」とする)を含む負極をつぎのようにして作製した。平均粒径70μmのLi−Si合金と、導電剤としてのアセチレンブラックと、バインダーとしてのPVdFとを、重量比85:5:10で混合し、NMPを加え、負極合剤ペーストとした。この負極合剤ペーストを、ニッケル箔集電体上に塗布し、120℃、5時間真空乾燥した。これを負極板N2とした。   A negative electrode containing a lithium-silicon alloy (hereinafter referred to as “Li-Si alloy”) as a negative electrode active material was produced as follows. A Li—Si alloy having an average particle size of 70 μm, acetylene black as a conductive agent, and PVdF as a binder were mixed at a weight ratio of 85: 5: 10, and NMP was added to obtain a negative electrode mixture paste. This negative electrode mixture paste was applied onto a nickel foil current collector and vacuum dried at 120 ° C. for 5 hours. This was designated as a negative electrode plate N2.

リチウムと合金を形成する金属としてアルミニウムを用いた負極板をつぎのようにして作製した。平均粒径60μmのアルミニウム粉末と、導電剤としてのアセチレンブラックと、バインダーとしてのPVdFとを、重量比85:5:10で混合し、NMPを加え、負極合剤ペーストとした。この負極合剤ペーストを、ニッケル箔集電体上に塗布し、120℃、5時間真空乾燥した。これを負極板N3とした。   A negative electrode plate using aluminum as a metal forming an alloy with lithium was produced as follows. Aluminum powder having an average particle diameter of 60 μm, acetylene black as a conductive agent, and PVdF as a binder were mixed at a weight ratio of 85: 5: 10, and NMP was added to obtain a negative electrode mixture paste. This negative electrode mixture paste was applied onto a nickel foil current collector and vacuum dried at 120 ° C. for 5 hours. This was designated as a negative electrode plate N3.

リチウム表面に非晶質酸化ケイ素を形成した負極板をつぎのようにして作製した。負極板N1の表面に、粒径約0.8μmの非晶質酸化ケイ素微粉末をドライルーム内で噴霧メッキし、裏面に付着していた非晶質酸化ケイ素を拭き取り、減量法で非晶質酸化ケイ素の量を調整した。さらに、20kg/cmの圧力でプレスした後、再度極板を計量し、質量をmとした。この時のリチウム表面に担持した非晶質酸化ケイ素の量が(m−m)/6.25=0.5mg/cmになるように噴霧メッキ量を調整した。このように得られた負極板をN11とした。 A negative electrode plate having amorphous silicon oxide formed on the lithium surface was prepared as follows. The surface of the negative electrode plate N1 is spray-plated with an amorphous silicon oxide fine powder having a particle size of about 0.8 μm in a dry room, and the amorphous silicon oxide adhering to the back surface is wiped off. The amount of silicon oxide was adjusted. Furthermore, after pressing at a pressure of 20 kg / cm 2 , the electrode plate was weighed again to make the mass m 2 . The amount of spray plating was adjusted so that the amount of amorphous silicon oxide supported on the lithium surface at this time was (m 2 −m 1 ) /6.25=0.5 mg / cm 2 . The negative electrode plate thus obtained was designated as N11.

ドライルーム内に設置してあるRFスパッタ装置を用いて、負極板N1の表面に非晶質酸化ケイ素薄膜を形成した。使用したターゲットはSiOであり、プラズマ源はArプラズマとした。出力を200Wとしたが、金属リチウムの融点が低いので、基板を加熱しなかった。最初に、同様の条件で、2分間逆スパッタを行い、金属リチウム表面の不純物被膜を除去し、つぎにスパッタ時間を変えることにより、非晶質酸化ケイ素薄膜の膜厚を制御した。非晶質酸化ケイ素薄膜の膜厚が0.2μmのものを負極板N111、0.5μmのものを負極板N112、1μmのものを負極板N113、2μmのものを負極板N114とした。   An amorphous silicon oxide thin film was formed on the surface of the negative electrode plate N1 using an RF sputtering apparatus installed in the dry room. The target used was SiO, and the plasma source was Ar plasma. The output was 200 W, but the substrate was not heated because the melting point of metallic lithium was low. First, reverse sputtering was performed for 2 minutes under the same conditions to remove the impurity film on the surface of the lithium metal, and then the sputtering time was changed to control the film thickness of the amorphous silicon oxide thin film. An amorphous silicon oxide thin film having a thickness of 0.2 μm was designated as a negative electrode plate N111, a 0.5 μm thick negative electrode plate N112, a 1 μm negative electrode plate N113, and a 2 μm negative electrode plate N114.

リチウム−珪素合金(以下「Li−Si合金」とする)の表面に非晶質酸化ケイ素を形成した活物質を含む負極をつぎのようにして作製した。平均粒径70μmのLi−Si合金と平均粒径0.8μmの非晶質SiOとを、重量比99:1でAr循環グローブボックス内(水分および酸素<1ppm)で計量し、ポートに入れ、ネジで閉めた。続いてポートを遊星型ボールミールに設置し、300rpmの速度で7分間混合−1分間休止の繰り返しを合計13時間12分間処理した。得られた混合物を再度グローブボックス内で計量し、この混合物と、導電剤としてのアセチレンブラックと、バインダーとしてのPVdFとを、重量比85:5:10で混合し、NMPを加え、負極合剤ペーストとした。この負極合剤ペーストを、ニッケル箔集電体上に塗布し、120℃、5時間真空乾燥した。これを負極板N21とした。   A negative electrode including an active material in which amorphous silicon oxide was formed on the surface of a lithium-silicon alloy (hereinafter referred to as “Li-Si alloy”) was produced as follows. An Li—Si alloy with an average particle size of 70 μm and amorphous SiO with an average particle size of 0.8 μm were weighed in an Ar circulating glove box (moisture and oxygen <1 ppm) at a weight ratio of 99: 1, put into a port, Closed with screws. Subsequently, the port was installed in a planetary ball meal, and the mixing of 7 minutes at a speed of 300 rpm for 1 minute was repeated for a total of 13 hours and 12 minutes. The obtained mixture was weighed again in the glove box, this mixture, acetylene black as a conductive agent and PVdF as a binder were mixed at a weight ratio of 85: 5: 10, NMP was added, and a negative electrode mixture A paste was used. This negative electrode mixture paste was applied onto a nickel foil current collector and vacuum dried at 120 ° C. for 5 hours. This was designated as a negative electrode plate N21.

アルミニウム粉末の表面に非晶質酸化ケイ素を形成したものを含む負極をつぎのようにして作製した。平均粒径60μmのアルミニウム粉末と平均粒径0.8μmの非晶質SiOとを、重量比99:1でAr循環グローブボックス内(水分および酸素<1ppm)で計量し、ポートに入れ、ネジで閉めた。続いてポートを遊星型ボールミールに設置し、300rpmの速度で7分間混合−1分間休止の繰り返しを合計13時間12分間処理した。得られた混合物を再度グローブボックス内で計量し、この混合物と、導電剤としてのアセチレンブラックと、バインダーとしてのPVdFとを、重量比85:5:10で混合し、NMPを加え、負極合剤ペーストとした。この負極合剤ペーストを、ニッケル箔集電体上に塗布し、120℃、5時間真空乾燥した。これを負極板N3とした。   A negative electrode including an aluminum powder formed with amorphous silicon oxide on the surface was prepared as follows. Aluminum powder with an average particle size of 60 μm and amorphous SiO with an average particle size of 0.8 μm are weighed in an Ar circulating glove box (water and oxygen <1 ppm) at a weight ratio of 99: 1, put in a port, and screwed Closed. Subsequently, the port was installed in a planetary ball meal, and the mixing of 7 minutes at a speed of 300 rpm for 1 minute was repeated for a total of 13 hours and 12 minutes. The obtained mixture was weighed again in the glove box, this mixture, acetylene black as a conductive agent and PVdF as a binder were mixed at a weight ratio of 85: 5: 10, NMP was added, and a negative electrode mixture A paste was used. This negative electrode mixture paste was applied onto a nickel foil current collector and vacuum dried at 120 ° C. for 5 hours. This was designated as a negative electrode plate N3.

つぎに、3Aモラキューラシーブで水分を取り除いたテトラヒドロフラン(THF)に、リチウムと硫黄とを過剰に入れ、12時間還流させて、多硫化物アニオンであるLi n−が溶解した濃い赤色溶液を作製した。そしてこの溶液から、未反応のリチウムおよび硫黄を濾過して除去し、溶液X1を作製した。 Next, an excess amount of lithium and sulfur is added to tetrahydrofuran (THF) from which water has been removed by 3A molecular sieve, and the mixture is refluxed for 12 hours to dissolve the polysulfide anion Li x S y n-. A red solution was made. And from this solution, unreacted lithium and sulfur were removed by filtration to prepare a solution X1.

この溶液X1中に、負極板N11、N111〜N114およびN21を5時間浸漬した後、これらの負極板をTHFで3回洗浄し、自然乾燥することにより、負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成された負極板を作製した。負極板N11から作製した負極板をN12、負極板N111から作製した負極板をN121、負極板N112から作製した負極板をN122、負極板N113から作製した負極板をN123、負極板N114から作製した負極板をN124、負極板N21から作製した負極板をN22とした。   After immersing the negative electrode plates N11, N111 to N114 and N21 in this solution X1 for 5 hours, these negative electrode plates were washed three times with THF and air-dried to thereby form silicon oxide, silicon sulfide on the surface of the negative electrode active material. Then, a negative electrode plate on which a lithium ion conductive film containing lithium oxide and lithium sulfide was formed was produced. The negative electrode plate produced from the negative electrode plate N11 was produced from N12, the negative electrode plate produced from the negative electrode plate N111 was produced from N121, the negative electrode plate produced from the negative electrode plate N112 was produced from N122, the negative electrode plate produced from the negative electrode plate N113 was produced from N123, and the negative electrode plate N114. The negative electrode plate produced from N124 and the negative electrode plate N21 was designated as N22.

[電解液]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比2:1混合溶媒に、0.5mol/lのLiN(SO(以下「LiBETI」と略す)を溶解した溶液を作製し、これを電解液Y1とした。
[Electrolyte]
A solution prepared by dissolving 0.5 mol / l LiN (SO 2 C 2 F 5 ) 2 (hereinafter abbreviated as “LiBETI”) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 2: 1. This was prepared as electrolyte Y1.

ECとDECの体積比2:1混合溶媒に、0.3mol/lのLiBETIを溶解した溶液を作製し、これを電解液Y2とした。   A solution in which 0.3 mol / l LiBETI was dissolved in a mixed solvent of EC and DEC in a volume ratio of 2: 1 was prepared, and this was used as an electrolytic solution Y2.

テトラヒドロフラン(THF)中に0.5mol/lのLiBETIを溶解した溶液を作製し、これを電解液Y3とした。   A solution in which 0.5 mol / l LiBETI was dissolved in tetrahydrofuran (THF) was prepared, and this was used as an electrolyte Y3.

[試験電池の作製]
まず、厚さ25μmで大きさ30mm×30mmのポリプロピレン/ポリエチレン/ポリプロピレン(PP/PE/PP)3層セパレータ1枚を介して正極板1枚と負極板1枚とを、正極/セパレータ/負極の順に積層した発電要素を作製した。つぎにこの発電要素を、ポリオレフィン層の間にアルミニウム層を挟んだ、アルミニウム樹脂ラミネートケースに収納した。続いて、電解液を減圧注液し、封口することにより、試験電池を得た。
[Production of test battery]
First, one positive electrode plate and one negative electrode plate are passed through one polypropylene / polyethylene / polypropylene (PP / PE / PP) three-layer separator having a thickness of 25 μm and a size of 30 mm × 30 mm. The power generation elements were sequentially stacked. Next, this power generation element was housed in an aluminum resin laminate case in which an aluminum layer was sandwiched between polyolefin layers. Subsequently, a test battery was obtained by pouring the electrolyte under reduced pressure and sealing.

試験電池の断面を図1に示す。図1において、1は正極板、2は負極板、3はセパレータ、4は正極端子、5は負極端子、6は負極活物質表面に形成された酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含む被膜である。   A cross section of the test battery is shown in FIG. In FIG. 1, 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is a separator, 4 is a positive electrode terminal, 5 is a negative electrode terminal, 6 is silicon oxide, silicon sulfide, lithium oxide and lithium sulfide formed on the surface of the negative electrode active material. It is a coating containing.

[試験条件]
正極板にP1を用いた電池の場合には、電池を作製後10時間以上放置し、その後、室温、3.2mA定電流で4.3Vまで充電、3.2mA定電流で3.0Vまで放電という充放電を繰り返した。2サイクル目の放電容量を初期放電容量とした。放電容量はサイクル数が増加するにしたがって減少するため、放電容量が初期容量の50%まで低下したサイクル数を「サイクル寿命」とした。
[Test conditions]
In the case of a battery using P1 for the positive electrode plate, the battery is allowed to stand for 10 hours or more after being manufactured, and then charged to 4.3 V at a constant current of 3.2 mA and discharged to 3.0 V at a constant current of 3.2 mA. The charging / discharging was repeated. The discharge capacity at the second cycle was defined as the initial discharge capacity. Since the discharge capacity decreases as the number of cycles increases, the number of cycles in which the discharge capacity is reduced to 50% of the initial capacity is defined as “cycle life”.

正極板にP2を用いた電池の場合には、電池を0.5mA定電流で1.5Vまで放電し、0.5mA定電流で3.0Vまで、さらに3.0V定電圧で、合計50時間充電するという充放電を繰り返した。1サイクル目の放電容量を初期容量とした。また、各サイクルの充電終了時および放電終了時の開回路状態において、周波数20kHzから10mHzまでの間での交流インピーダンス測定を行った。   In the case of a battery using P2 for the positive electrode plate, the battery is discharged to 0.5 V at a constant current of 0.5 mA, to 3.0 V at a constant current of 0.5 mA, and further to a constant voltage of 3.0 V for a total of 50 hours. Charging / discharging of charging was repeated. The discharge capacity at the first cycle was set as the initial capacity. In addition, in the open circuit state at the end of charging and at the end of discharging in each cycle, AC impedance measurement was performed at a frequency from 20 kHz to 10 mHz.

正極板にP3を用いた電池の場合には、まず、室温、3.2mA定電流で1.8Vまで放電した。その後、3.2mA定電流で4.3Vまで充電、3.2mA定電流で3.0Vまで放電という充放電を繰り返し、2サイクル目の放電容量を初期放電容量とした。   In the case of a battery using P3 for the positive electrode plate, first, the battery was discharged to 1.8 V at a constant current of 3.2 mA at room temperature. Thereafter, charging / discharging of charging up to 4.3 V at a constant current of 3.2 mA and discharging up to 3.0 V at a constant current of 3.2 mA was repeated, and the discharge capacity at the second cycle was defined as the initial discharge capacity.

[実施例1〜3および比較例1〜4]
[実施例1]
正極板としてP1、負極板としてN12、電解液としてY1を0.2ml使用して、実施例1の電池A1を作製した。
[Examples 1-3 and Comparative Examples 1-4]
[Example 1]
A battery A1 of Example 1 was produced using P1 as the positive electrode plate, N12 as the negative electrode plate, and 0.2 ml of Y1 as the electrolyte.

[実施例2]
負極板としてN121を用いた以外は実施例1と同様にして、実施例2の電池A2を作製した。
[Example 2]
A battery A2 of Example 2 was made in the same manner as Example 1 except that N121 was used as the negative electrode plate.

[実施例3]
負極板としてN22を用いた以外は実施例1と同様にして、実施例3の電池A3を作製した。
[Example 3]
A battery A3 of Example 3 was made in the same manner as Example 1 except that N22 was used as the negative electrode plate.

[比較例1]
負極板としてN1を用いた以外は実施例1と同様にして、比較例1の電池B1を作製した。
[Comparative Example 1]
A battery B1 of Comparative Example 1 was produced in the same manner as in Example 1 except that N1 was used as the negative electrode plate.

[比較例2]
負極板としてN11を用いた以外は実施例1と同様にして、比較例2の電池B2を作製した。
[Comparative Example 2]
A battery B2 of Comparative Example 2 was produced in the same manner as in Example 1 except that N11 was used as the negative electrode plate.

[比較例3]
負極板としてN2を用いた以外は実施例1と同様にして、比較例3の電池B3を作製した。
[Comparative Example 3]
A battery B3 of Comparative Example 3 was produced in the same manner as in Example 1 except that N2 was used as the negative electrode plate.

[比較例4]
負極板としてN21を用いた以外は実施例1と同様にして、比較例4の電池B4を作製した。
[Comparative Example 4]
A battery B4 of Comparative Example 4 was produced in the same manner as in Example 1 except that N21 was used as the negative electrode plate.

作製した実施例1〜3および比較例1〜4の電池の内容を表1に示した。なお、表1において、負極表面被膜の「a−SiO」は非晶質酸化ケイ素を表す。   The contents of the produced batteries of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1. In Table 1, “a-SiO” in the negative electrode surface coating represents amorphous silicon oxide.

Figure 2005063731
Figure 2005063731

実施例1〜3および比較例1〜4の電池についての試験結果を表2に示した。   The test results for the batteries of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 2.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例1〜3の電池A1〜A3に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていることがわかった。しかし、比較例1の電池B1および比較例3の電池B3では、負極表面には酸化ケイ素、硫化ケイ素および硫化リチウムが存在せず、また比較例2の電池B2および比較例4の電池B4では、負極表面には硫化ケイ素および硫化リチウムが存在しないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, it was found that a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surface used in batteries A1 to A3 of Examples 1 to 3. However, in the battery B1 of the comparative example 1 and the battery B3 of the comparative example 3, there is no silicon oxide, silicon sulfide, and lithium sulfide on the negative electrode surface, and in the battery B2 of the comparative example 2 and the battery B4 of the comparative example 4, It was found that silicon sulfide and lithium sulfide were not present on the negative electrode surface.

表1および表2の結果から、つぎのようなことが明らかとなった。すべての電池の初期放電容量はほとんど変わらなかったが、リチウム負極表面またはリチウム−ケイ素合金負極表面に、非晶質酸化ケイ素(a−SiO)の層を備え、多硫化物アニオンを含む非水溶液と接触させた負極を用いた、実施例1〜3の電池A1〜A3のサイクル寿命は、比較例1〜4の電池B1〜B4より優れていることがわかった。すなわち、実施例1〜3の電池A1〜A3に用いた負極では、負極表面に存在していた非晶質酸化ケイ素が、非水溶液中の多硫化物アニオンと反応し、表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオ伝導性被膜が形成されたことにより、リチウム負極やリチウム−ケイ系素合金負極と電解液との副反応が抑えられ、さらにリチウム−ケイ系素合金負極の場合には合金相の膨脹収縮を緩和する機能も備えていると考えられ、サイクル寿命が改善されたものと考えられる。   From the results of Tables 1 and 2, the following became clear. Although the initial discharge capacities of all the batteries were almost the same, a non-aqueous solution containing a layer of amorphous silicon oxide (a-SiO) on the surface of the lithium negative electrode or the lithium-silicon alloy negative electrode and containing a polysulfide anion was used. It was found that the cycle life of the batteries A1 to A3 of Examples 1 to 3 using the contacted negative electrode was superior to the batteries B1 to B4 of Comparative Examples 1 to 4. That is, in the negative electrodes used in the batteries A1 to A3 of Examples 1 to 3, the amorphous silicon oxide present on the negative electrode surface reacts with the polysulfide anion in the non-aqueous solution, and the surface is oxidized with silicon oxide and sulfide. By forming a lithium-ion conductive film containing silicon, lithium oxide and lithium sulfide, side reactions between the lithium negative electrode and the lithium-siliceous elemental alloy negative electrode and the electrolyte are suppressed, and further, the lithium-siliceous elemental alloy negative electrode In this case, it is considered that a function of relaxing expansion and contraction of the alloy phase is provided, and the cycle life is considered to be improved.

一方、比較例1および比較例3の電池では、負極表面には元々非晶質酸化ケイ素が存在せず、また、比較例2および比較例4の電池では、負極表面には非晶質酸化ケイ素が存在するが、負極を多硫化物アニオンを含む非水溶液中に浸漬していないため、硫黄源がなく、負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含む被膜が形成されず、負極活物質と電解液との副反応のため、また、負極活物質がリチウム−ケイ系素合金負極の場合には合金相の膨脹収縮に起因した集電不良により、サイクル寿命が短かくなったものであると考えられる。   On the other hand, in the batteries of Comparative Example 1 and Comparative Example 3, the amorphous silicon oxide was not originally present on the negative electrode surface, and in the batteries of Comparative Examples 2 and 4, the amorphous silicon oxide was not present on the negative electrode surface. However, since the negative electrode is not immersed in a non-aqueous solution containing a polysulfide anion, there is no sulfur source, and a film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is not formed on the negative electrode surface. Due to side reaction between the negative electrode active material and the electrolytic solution, and when the negative electrode active material is a lithium-silica-based elementary alloy negative electrode, the cycle life is shortened due to poor current collection due to expansion and contraction of the alloy phase. It is thought to be a thing.

[実施例4〜6]
[実施例4]
負極板としてN122を用いた以外は実施例1と同様にして、実施例4の電池A4を作製した。
[Examples 4 to 6]
[Example 4]
A battery A4 of Example 4 was made in the same manner as Example 1 except that N122 was used as the negative electrode plate.

[実施例5]
負極板としてN123を用いた以外は実施例1と同様にして、実施例5の電池A5を作製した。
[Example 5]
A battery A5 of Example 5 was made in the same manner as Example 1 except that N123 was used as the negative electrode plate.

[実施例6]
負極板としてN124を用いた以外は実施例1と同様にして、実施例6の電池A6を作製した。
[Example 6]
A battery A6 of Example 6 was made in the same manner as Example 1 except that N124 was used as the negative electrode plate.

作製した実施例4〜6の電池の内容および試験結果を表3に示した。なお、表3には、実施例2の電池の結果も示した。   Table 3 shows the contents and test results of the fabricated batteries of Examples 4 to 6. Table 3 also shows the results of the battery of Example 2.

Figure 2005063731
Figure 2005063731

表3の結果から、多硫化物を含む非水溶液と接触させた負極を用いた実施例2、4〜6の電池の場合も、初期放電容量はほぼ同じであったが、負極表面にあらかじめ形成する非晶質酸化ケイ素層の厚みが大きくなるにしたがって、サイクル寿命はよくなることがわかった。   From the results of Table 3, the initial discharge capacities were almost the same in the batteries of Examples 2 and 4 to 6 using the negative electrode brought into contact with the non-aqueous solution containing polysulfide. It has been found that the cycle life improves as the thickness of the amorphous silicon oxide layer increases.

[実施例7〜9および比較例5〜8]
[実施例7]
負極板としてN11を用い、負極と多硫化物アニオンを含む非水溶液とを接触させず、電解液として0.05mlのX1と、0.2mlのY2との混合溶液を用いた以外は実施例1と同様にして、実施例7の電池A7を作製した。
[Examples 7 to 9 and Comparative Examples 5 to 8]
[Example 7]
Example 1 except that N11 was used as the negative electrode plate, the negative electrode was not brought into contact with the non-aqueous solution containing the polysulfide anion, and a mixed solution of 0.05 ml of X1 and 0.2 ml of Y2 was used as the electrolytic solution. In the same manner as described above, a battery A7 of Example 7 was produced.

[実施例8]
負極板としてN111を用いた以外は実施例7と同様にして、実施例8の電池A8を作製した。
[Example 8]
A battery A8 of Example 8 was made in the same manner as Example 7 except that N111 was used as the negative electrode plate.

[実施例9]
負極板としてN21を用いた以外は実施例7と同様にして、実施例9の電池A9を作製した。
[Example 9]
A battery A9 of Example 9 was made in the same manner as Example 7 except that N21 was used as the negative electrode plate.

[比較例5]
負極板としてN1を用い、負極と多硫化物を含む非水溶液とを接触させず、電解液として0.05mlのX1と、0.2mlのY2との混合溶液を用いた以外は実施例7と同様にして、比較例5の電池B5を作製した。
[Comparative Example 5]
Example 7 except that N1 was used as the negative electrode plate, the negative electrode was not brought into contact with the non-aqueous solution containing polysulfide, and a mixed solution of 0.05 ml of X1 and 0.2 ml of Y2 was used as the electrolyte. Similarly, a battery B5 of Comparative Example 5 was produced.

[比較例6]
負極板としてN2を用いた以外は比較例5と同様にして、比較例6の電池B6を作製した。
[Comparative Example 6]
A battery B6 of Comparative Example 6 was produced in the same manner as in Comparative Example 5, except that N2 was used as the negative electrode plate.

[比較例7]
負極板としてN11を用い、負極と多硫化物を含む非水溶液とを接触させず、電解液として0.2mlのY2を用いた以外は実施例1と同様にして、比較例7の電池B7を作製した。
[Comparative Example 7]
A battery B7 of Comparative Example 7 was prepared in the same manner as in Example 1 except that N11 was used as the negative electrode plate, the negative electrode was not brought into contact with the nonaqueous solution containing polysulfide, and 0.2 ml of Y2 was used as the electrolyte. Produced.

[比較例8]
負極板としてN21を用いた以外は比較例7と同様にして、比較例8の電池B8を作製した。
[Comparative Example 8]
A battery B8 of Comparative Example 8 was produced in the same manner as in Comparative Example 7, except that N21 was used as the negative electrode plate.

作製した実施例7〜9および比較例5〜8の電池の内容を表4に示した。   The contents of the batteries of Examples 7 to 9 and Comparative Examples 5 to 8 produced are shown in Table 4.

Figure 2005063731
Figure 2005063731

実施例7〜9および比較例5〜8の電池についての試験結果を表5に示した。   The test results for the batteries of Examples 7 to 9 and Comparative Examples 5 to 8 are shown in Table 5.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例7〜9の電池A7〜A9に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていることがわかった。しかし、比較例5の電池B5および比較例6の電池B6では、負極表面には酸化ケイ素、硫化ケイ素および硫化リチウムが存在せず、また比較例7の電池B7および比較例8の電池B8では、負極表面には硫化ケイ素および硫化リチウムが存在しないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, it was found that a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surfaces used in the batteries A7 to A9 of Examples 7 to 9. However, in the battery B5 of the comparative example 5 and the battery B6 of the comparative example 6, there is no silicon oxide, silicon sulfide and lithium sulfide on the negative electrode surface, and in the battery B7 of the comparative example 7 and the battery B8 of the comparative example 8, It was found that silicon sulfide and lithium sulfide were not present on the negative electrode surface.

表4および表5の結果から、つぎのようなことが明らかとなった。すべての電池の初期放電容量はほとんど変わらなかったが、リチウム負極表面またはリチウム−ケイ素合金負極表面に非晶質酸化ケイ素(a−SiO)の層を備え、電池を組立てた後、多硫化物アニオンを含む非水溶液X1と電解液Y2との混合溶液からなる非水電解液を注液した実施例7〜9の電池A7〜A9では、優れたサイクル寿命を示した。   From the results of Tables 4 and 5, the following became clear. The initial discharge capacities of all the batteries were almost the same, but after the batteries were assembled with a layer of amorphous silicon oxide (a-SiO) on the lithium negative electrode surface or lithium-silicon alloy negative electrode surface, polysulfide anions The batteries A7 to A9 of Examples 7 to 9 into which a non-aqueous electrolyte composed of a mixed solution of the non-aqueous solution X1 containing and the electrolyte Y2 was injected showed excellent cycle life.

すなわち、実施例7〜9の電池A7〜A9で用いた負極では、負極表面に存在していた非晶質酸化ケイ素が、非水電解液中の多硫化物アニオンと反応し、表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されたことにより、リチウム負極やリチウム−系素合金負極と電解液との副反応が抑えられ、サイクル寿命が改善されたものと考えられる。   That is, in the negative electrodes used in the batteries A7 to A9 of Examples 7 to 9, the amorphous silicon oxide present on the surface of the negative electrode reacts with the polysulfide anion in the nonaqueous electrolytic solution, and the surface is oxidized with silicon oxide. The lithium ion conductive film containing silicon sulfide, lithium oxide and lithium sulfide is formed, so that side reactions between the lithium negative electrode and lithium-based elementary alloy negative electrode and the electrolyte are suppressed, and the cycle life is improved. it is conceivable that.

一方、比較例5の電池B5および比較例6の電池B6では、負極表面には元々非晶質酸化ケイ素が存在しないため、負極が非水電解液中の多硫化物アニオンと接触しても、負極表面には酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されず、また、比較例7の電池B7および比較例8の電池B8では、負極表面には非晶質酸化ケイ素が存在するが、非水電解液としてはY2のみを用いたため、非水電解液中には多硫化物アニオンが存在しないため、負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されない。したがって、比較例5〜8の電池B5〜B8では、負極活物質と電解液との副反応のために、サイクル寿命が短かくなったものである。   On the other hand, in the battery B5 of Comparative Example 5 and the battery B6 of Comparative Example 6, since the amorphous silicon oxide originally does not exist on the negative electrode surface, even when the negative electrode is in contact with the polysulfide anion in the non-aqueous electrolyte, A lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is not formed on the negative electrode surface. In addition, in the battery B7 of Comparative Example 7 and the battery B8 of Comparative Example 8, the negative electrode surface is amorphous. Although silicon oxide is present, since only Y2 is used as the non-aqueous electrolyte, there is no polysulfide anion in the non-aqueous electrolyte. Therefore, silicon oxide, silicon sulfide, lithium oxide and lithium sulfide are present on the negative electrode surface. Lithium ion conductive film containing is not formed. Therefore, in batteries B5 to B8 of Comparative Examples 5 to 8, the cycle life is shortened due to the side reaction between the negative electrode active material and the electrolytic solution.

また、実施例1と7、実施例2と8、実施例3と9の比較では、電池を組立てる前に、負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を形成した実施例1〜3の電池よりも、電池を組立た後、電解液を注液して、その場で負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を形成した実施例7〜9の電池のほうが、優れたサイクル寿命を示した。   Further, in the comparison between Examples 1 and 7, Examples 2 and 8, and Examples 3 and 9, lithium ion conduction including silicon oxide, silicon sulfide, lithium oxide, and lithium sulfide on the negative electrode active material surface before assembling the battery. In comparison with the batteries of Examples 1 to 3 in which the conductive film was formed, the battery was assembled, and then the electrolyte solution was injected, and the surface of the negative electrode active material contained silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the spot. The batteries of Examples 7 to 9 on which the lithium ion conductive coating was formed showed excellent cycle life.

これは、実施例1〜3の電池の場合には、電池を組立てる前に、負極活物質表面に形成された酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が、ドライルーム内の微量水分と反応し、有害なHSを生成し、被膜の組成変化をもたらすなどの悪影響が生じるものと推定される。したがって、負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜を形成する方法としては、電池を組立てる前に負極表面に被膜を形成する方法よりも、電池を組立てた後、多硫化物イオンを含む電解液を注液して、その場で被膜を形成する方法のほうが望ましい。 In the case of the batteries of Examples 1 to 3, the lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide formed on the surface of the negative electrode active material was dried before the battery was assembled. It is presumed that adverse effects such as reaction with trace moisture in the room, generation of harmful H 2 S, and change in the composition of the coating will occur. Therefore, as a method of forming a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the surface of the negative electrode active material, the battery is more suitable than a method of forming a film on the negative electrode surface before assembling the battery. After assembly, a method of injecting an electrolytic solution containing polysulfide ions and forming a film in situ is preferable.

[実施例10〜12および比較例9〜12]
[実施例10]
正極板としてP2を用いた以外は実施例7と同様にして、実施例10の電池A10を作製した。
[Examples 10-12 and Comparative Examples 9-12]
[Example 10]
A battery A10 of Example 10 was made in the same manner as Example 7 except that P2 was used as the positive electrode plate.

[実施例11]
正極板としてP2を用いた以外は実施例8と同様にして、実施例11の電池A11を作製した。
[Example 11]
A battery A11 of Example 11 was made in the same manner as Example 8 except that P2 was used as the positive electrode plate.

[実施例12]
正極板としてP2を用いた以外は実施例9と同様にして、実施例12の電池A12を作製した。
[Example 12]
A battery A12 of Example 12 was made in the same manner as Example 9 except that P2 was used as the positive electrode plate.

[比較例9]
正極板としてP2を用いた以外は比較例5と同様にして、比較例9の電池B9を作製した。
[Comparative Example 9]
A battery B9 of Comparative Example 9 was produced in the same manner as in Comparative Example 5, except that P2 was used as the positive electrode plate.

[比較例10]
正極板としてP2を用いた以外は比較例6と同様にして、比較例10の電池B10を作製した。
[Comparative Example 10]
A battery B10 of Comparative Example 10 was produced in the same manner as in Comparative Example 6, except that P2 was used as the positive electrode plate.

[比較例11]
正極板としてP2を用いた以外は比較例7と同様にして、比較例11の電池B11を作製した。
[Comparative Example 11]
A battery B11 of Comparative Example 11 was produced in the same manner as in Comparative Example 7, except that P2 was used as the positive electrode plate.

[比較例12]
正極板としてP2を用いた以外は比較例8と同様にして、比較例12の電池B12を作製した。
[Comparative Example 12]
A battery B12 of Comparative Example 12 was produced in the same manner as in Comparative Example 8, except that P2 was used as the positive electrode plate.

作製した実施例10〜12および比較例9〜12の電池の内容を表6に示した。   Table 6 shows the contents of the batteries of Examples 10-12 and Comparative Examples 9-12.

Figure 2005063731
Figure 2005063731

実施例10〜12および比較例9〜12の電池についての試験結果を表9に示した。   Table 9 shows the test results of the batteries of Examples 10 to 12 and Comparative Examples 9 to 12.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例10〜12の電池A10〜A12に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていることがわかった。しかし、比較例9の電池B9および比較例10の電池B10では、負極表面には酸化ケイ素、硫化ケイ素および硫化リチウムが存在せず、また比較例11の電池B11および比較例12の電池B12では、負極表面には硫化ケイ素および硫化リチウムが存在しないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, it was found that a lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surface used in batteries A10 to A12 of Examples 10-12. However, in the battery B9 of the comparative example 9 and the battery B10 of the comparative example 10, there is no silicon oxide, silicon sulfide and lithium sulfide on the negative electrode surface, and in the battery B11 of the comparative example 11 and the battery B12 of the comparative example 12, It was found that silicon sulfide and lithium sulfide were not present on the negative electrode surface.

表6および表7の結果から、正極活物質に硫黄を用いた場合も、初期放電容量の値は異なるが、サイクル寿命に関しては、正極活物質にLiCoOを用いた実施例7〜9および比較例5〜8と同様の傾向が示されることが明らかとなった。 From the results of Tables 6 and 7, when sulfur is used as the positive electrode active material, the value of the initial discharge capacity is different, but regarding the cycle life, Examples 7 to 9 using LiCoO 2 as the positive electrode active material and comparison It became clear that the same tendency as Examples 5-8 was shown.

[実施例13〜18および比較例13、14]
[実施例13]
正極板としてP2、負極板としてN11を用い、負極と多硫化物を含む非水溶液とを接触させず、電池を組立てた後、電解液としてY3を0.2ml注液し、電池を10時間以上放置し、その後、室温で、0.5mA定電流で1.5Vまで放電し、0.5mA定電流で3.0Vまで充電するという充放電を3回繰り返し、これを実施例13の電池A13とした。
[Examples 13 to 18 and Comparative Examples 13 and 14]
[Example 13]
After assembling the battery using P2 as the positive electrode plate and N11 as the negative electrode plate without bringing the negative electrode into contact with the non-aqueous solution containing polysulfide, 0.2 ml of Y3 was injected as an electrolyte, and the battery was kept for 10 hours or more. Then, charging and discharging were repeated three times at room temperature, discharging to 1.5 V at a constant current of 0.5 mA, and charging to 3.0 V at a constant current of 0.5 mA. did.

[実施例14]
負極板としてN111を用いた以外は実施例13と同様にして、実施例14の電池A14を作製した。
[Example 14]
A battery A14 of Example 14 was made in the same manner as Example 13 except that N111 was used as the negative electrode plate.

[実施例15]
負極板としてN21を用いた以外は実施例13と同様にして、実施例15の電池A15を作製した。
[Example 15]
A battery A15 of Example 15 was made in the same manner as Example 13 except that N21 was used as the negative electrode plate.

[実施例16]
正極板としてP3を用いた以外は実施例13と同様にして、実施例16の電池A16を作製した。
[Example 16]
A battery A16 of Example 16 was made in the same manner as Example 13 except that P3 was used as the positive electrode plate.

[実施例17]
負極板としてN111を用いた以外は実施例16と同様にして、実施例17の電池A17を作製した。
[Example 17]
A battery A17 of Example 17 was made in the same manner as Example 16 except that N111 was used as the negative electrode plate.

[実施例18]
負極板としてN21を用いた以外は実施例16と同様にして、実施例18の電池A18を作製した。
[Example 18]
A battery A18 of Example 18 was made in the same manner as Example 16 except that N21 was used as the negative electrode plate.

[比較例13]
負極板としてN1を用いた以外は実施例13と同様にして、比較例13の電池B13を作製した。
[Comparative Example 13]
A battery B13 of Comparative Example 13 was produced in the same manner as in Example 13, except that N1 was used as the negative electrode plate.

[比較例14]
負極板としてN2を用いた以外は実施例13と同様にして、比較例14の電池B14を作製した。
[Comparative Example 14]
A battery B14 of Comparative Example 14 was made in the same manner as Example 13 except that N2 was used as the negative electrode plate.

作製した実施例13〜18および比較例13、14の電池の内容を表8に示した。   Table 8 shows the contents of the batteries of Examples 13 to 18 and Comparative Examples 13 and 14 produced.

Figure 2005063731
Figure 2005063731

実施例13〜18および比較例13、14についての試験結果を表9に示した。   The test results for Examples 13 to 18 and Comparative Examples 13 and 14 are shown in Table 9.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例13〜18の電池A13〜A18に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていることがわかった。しかし、比較例13の電池B13および比較例14電池B14は、負極表面には酸化ケイ素が存在しないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, it was found that a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surfaces used in the batteries A13 to A18 of Examples 13 to 18. However, it was found that the battery B13 of Comparative Example 13 and the battery of Comparative Example 14 Battery B14 did not have silicon oxide on the negative electrode surface.

表8よび表9の結果から、つぎのようなことが明らかとなった。正極にP2を用いた実施例13〜15の電池と、正極にP3を用いた実施例16〜18の電池とでは、初期放電容量は異なっているが、これは正極P2の活物質は硫黄であり、正極P3の活物質は主にLiCoOで、硫黄がわずかに含まれているに過ぎないからである。 From the results of Table 8 and Table 9, the following became clear. The batteries of Examples 13 to 15 using P2 as the positive electrode and the batteries of Examples 16 to 18 using P3 as the positive electrode have different initial discharge capacities, but this is because the active material of the positive electrode P2 is sulfur. This is because the active material of the positive electrode P3 is mainly LiCoO 2 and contains only a small amount of sulfur.

実施例13〜15の電池A13〜A15では、正極活物質が硫黄であり、リチウム負極表面またはリチウム−ケイ素合金負極表面に非晶質酸化ケイ素(a−SiO)の層を備え、電池を組立てた後、非水電解液Y3を注液し、電池を放置した後、充放電を行ったものである。充放電により、正極活物質の硫黄が電解液中に溶解し、電解液中のLiBETIと反応して多硫化物アニオンが生成し、この多硫化物アニオンが負極表面の非晶質酸化ケイ素と反応し、負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されたことにより、リチウム負極やリチウム−系素合金負極と電解液との副反応が抑えられ、サイクル寿命が改善されたものと考えられる。   In batteries A13 to A15 of Examples 13 to 15, the positive electrode active material was sulfur, an amorphous silicon oxide (a-SiO) layer was provided on the surface of the lithium negative electrode or the lithium-silicon alloy negative electrode, and the battery was assembled. Thereafter, the non-aqueous electrolyte Y3 was injected, the battery was allowed to stand, and then charged and discharged. By charging and discharging, sulfur of the positive electrode active material is dissolved in the electrolytic solution, and reacts with LiBETI in the electrolytic solution to produce a polysulfide anion, which reacts with amorphous silicon oxide on the negative electrode surface. In addition, by forming a lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the negative electrode surface, side reactions between the lithium negative electrode and the lithium-based elementary alloy negative electrode and the electrolyte are suppressed, The cycle life is considered to be improved.

一方、比較例13の電池B13および比較例14の電池B14では、負極表面には元々非晶質酸化ケイ素が存在しないため、正極活物質が硫黄であり、電解液を注液した後、充放電によって正極活物質である硫黄が電解液中に溶解し、電解液中のLiBETIと反応して多硫化物アニオンが生成し、この多硫化物アニオンが負極表面に移動し、負極が非水電解液中の多硫化物アニオンと接触しても、負極表面には酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されない。したがって、比較例13の電池B13および比較例14の電池B14では、負極活物質と電解液との副反応のために、サイクル寿命が短くなったものである。   On the other hand, in the battery B13 of the comparative example 13 and the battery B14 of the comparative example 14, since the amorphous silicon oxide originally does not exist on the negative electrode surface, the positive electrode active material is sulfur, and after charging the electrolytic solution, charging and discharging As a result, sulfur as the positive electrode active material is dissolved in the electrolytic solution, and reacts with LiBETI in the electrolytic solution to produce a polysulfide anion. This polysulfide anion moves to the negative electrode surface, and the negative electrode is a nonaqueous electrolytic solution. Even when contacting with the polysulfide anion therein, a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is not formed on the negative electrode surface. Therefore, in the battery B13 of the comparative example 13 and the battery B14 of the comparative example 14, the cycle life is shortened due to the side reaction between the negative electrode active material and the electrolytic solution.

ここで、一例として、実施例16の電池A16と、比較例13の電池B13の初回放電特性を図2に示す。図2において、記号●は電池A16の特性、■は電池B13の放電特性を示す。また、充放電サイクルに伴う交流インピーダンスの変化を、電池A16の場合を図3に、電池B13の場合を図4に示す。図3および図4において、記号▲は初期充電状態、●は1サイクル目の完全充電状態、■は10サイクル目の完全充電状態を示す。   Here, as an example, the initial discharge characteristics of the battery A16 of Example 16 and the battery B13 of Comparative Example 13 are shown in FIG. In FIG. 2, the symbol ● represents the characteristics of the battery A16, and the ▪ represents the discharge characteristics of the battery B13. Moreover, the change of the alternating current impedance accompanying a charging / discharging cycle is shown in FIG. 3 in the case of battery A16, and in FIG. 4 in the case of battery B13. 3 and 4, the symbol ▲ indicates the initial charge state, ● indicates the first cycle full charge state, and ■ indicates the tenth cycle full charge state.

図2の初回放電容量には差はほとんど見られなかったが、図3に示した、負極表面には酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されている実施例16の電池では、図4に示した、負極表面にリチウムイオン伝導性被膜が形成されていない電池B13に比べて、分極が小さく、充放電サイクルに伴うインピーダンスも安定していることが明らかとなった。このように、電池を組立てた後、電池内で、負極表面にその場で形成した、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜は安定であり、サイクル性能向上に非常に効果的であることが明白となった。   Although there was almost no difference in the initial discharge capacity of FIG. 2, a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surface shown in FIG. In the battery of Example 16, it is clear that the polarization is small and the impedance accompanying the charge / discharge cycle is stable as compared with the battery B13 shown in FIG. 4 in which the lithium ion conductive film is not formed on the negative electrode surface. It became. Thus, after the battery is assembled, the lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide formed in situ on the negative electrode surface in the battery is stable and improves cycle performance. It became clear that it was very effective.

[実施例19および比較例15、16]
[実施例19]
正極板としてP1、負極板としてN31を用い、負極と多硫化物アニオンを含む非水溶液とを接触させず、電解液として0.05mlのX1と、0.2mlのY2との混合溶液を注液した後、電池を10時間以上放置し、その後、室温で、3.2mA定電流で4.3Vまで充電し、3.2mA定電流で3.0Vまで放電するという充放電を3回繰り返し、これを実施例19の電池A19とした。
[Example 19 and Comparative Examples 15 and 16]
[Example 19]
P1 was used as the positive electrode plate, N31 was used as the negative electrode plate, and the negative electrode and the non-aqueous solution containing the polysulfide anion were not brought into contact with each other, and a mixed solution of 0.05 ml of X1 and 0.2 ml of Y2 was injected as the electrolyte. After that, the battery is allowed to stand for 10 hours or longer, and then charged and discharged three times at room temperature to 3.2 V with a constant current of 3.2 mA and discharged to 3.0 V with a constant current of 3.2 mA. Was designated as Battery A19 of Example 19.

[比較例15]
負極板としてN3を用いた以外は実施例19と同様にして、比較例15の電池B15を作製した。
[Comparative Example 15]
A battery B15 of Comparative Example 15 was produced in the same manner as in Example 19 except that N3 was used as the negative electrode plate.

[比較例16]
電解液として0.2mlのY1を用いた以外は実施例19と同様にして、比較例16の電池B16を作製した。
[Comparative Example 16]
A battery B16 of Comparative Example 16 was produced in the same manner as in Example 19, except that 0.2 ml of Y1 was used as the electrolytic solution.

[比較例17]
作製した実施例19および比較例15、16の電池の内容を表10に示した。
[Comparative Example 17]
The contents of the produced batteries of Example 19 and Comparative Examples 15 and 16 are shown in Table 10.

Figure 2005063731
Figure 2005063731

実施例19および比較例15、16の電池についての試験結果を表11に示した。   The test results for the batteries of Example 19 and Comparative Examples 15 and 16 are shown in Table 11.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例19の電池A19に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていたが、比較例15、16に用いた負極表面には被膜が形成されていないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surface used in battery A19 of Example 19, but this was used in Comparative Examples 15 and 16. It was found that no coating was formed on the negative electrode surface.

表10および表11の結果から、つぎのようなことが明らかとなった。リチウムと合金を形成する金属であるアルミニウムの表面に非晶質酸化ケイ素を形成した負極N31と、放電状態のリチウム複合酸化物を含む正極P1とを用いて電池を組立てた後、多硫化物アニオンを含む非水電解液X1+Y2を注液し、充放電した実施例19の電池A19のサイクル寿命特性は優れていたが、アルミニウムの表面に非晶質酸化ケイ素を形成しない負極N3を用いた比較例15の電池B15、多硫化物アニオンを含まない電解液Y1を用いた比較例16の電池B16の場合には、サイクル寿命特性はきわめて短いことがわかった。   From the results of Table 10 and Table 11, the following became clear. After assembling the battery using the negative electrode N31 having amorphous silicon oxide formed on the surface of aluminum, which is a metal that forms an alloy with lithium, and the positive electrode P1 containing a lithium composite oxide in a discharged state, a polysulfide anion Comparative Example Using Negative Electrode N3 That Was Supplied with Non-Aqueous Electrolyte Solution X1 + Y2 Containing and Charged and Discharged, but Battery A19 of Example 19 was Excellent, but Does Not Form Amorphous Silicon Oxide on Aluminum Surface In the case of the battery B15 of No. 15 and the battery B16 of Comparative Example 16 using the electrolyte Y1 not containing polysulfide anion, it was found that the cycle life characteristics were extremely short.

実施例19の電池A19では、初期の充電により、正極中のリチウムが負極に移動し、負極でリチウム−アルミニウム合金を形成し、電解液中の多硫化物アニオンがアルミニウム表面の非晶質酸化ケイ素と反応し、負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されたことにより、リチウム負極やリチウム−系素合金負極と電解液との副反応が抑えられ、サイクル寿命が改善されたものと考えられる。   In the battery A19 of Example 19, the lithium in the positive electrode moved to the negative electrode by the initial charge, and a lithium-aluminum alloy was formed in the negative electrode. The polysulfide anion in the electrolyte was amorphous silicon oxide on the aluminum surface. The lithium ion conductive coating containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the negative electrode surface, thereby suppressing side reactions between the lithium negative electrode or lithium-based alloy negative electrode and the electrolyte. It is considered that the cycle life is improved.

[実施例20および比較例18、19]
[実施例20]
正極板としてP3、負極板としてN31を用い、負極と多硫化物を含む非水溶液とを接触させず、電解液として0.2mlのY1を注液した後、電池を10時間以上放置し、その後、室温で、3.2mA定電流で4.3Vまで充電し、3.2mA定電流で3.0Vまで放電するという充放電を3回繰り返し、これを実施例20の電池A20とした。
[Example 20 and Comparative Examples 18 and 19]
[Example 20]
Using P3 as the positive electrode plate and N31 as the negative electrode plate, without bringing the negative electrode into contact with the non-aqueous solution containing polysulfide, after injecting 0.2 ml of Y1 as the electrolyte, the battery was allowed to stand for 10 hours or more. The battery A20 of Example 20 was repeatedly charged and discharged three times at room temperature with a constant current of 3.2 mA up to 4.3 V and a discharge of 3.0 mA with a constant current of 3.2 mA.

[比較例18]
負極板としてN3を用いた以外は実施例20と同様にして、比較例18の電池B18を作製した。
[Comparative Example 18]
A battery B18 of Comparative Example 18 was produced in the same manner as in Example 20 except that N3 was used as the negative electrode plate.

[比較例19]
電池を放置後、充放電を行わなかった以外は実施例20と同様にして、比較例19の電池B19を作製した。
[Comparative Example 19]
A battery B19 of Comparative Example 19 was produced in the same manner as in Example 20, except that charging and discharging were not performed after leaving the battery.

作製した実施例20および比較例18、19の電池の内容を表12に示した。   Table 12 shows the contents of the fabricated batteries of Example 20 and Comparative Examples 18 and 19.

Figure 2005063731
Figure 2005063731

実施例20および比較例18、19の電池についての試験結果を表13に示した。   The test results for the batteries of Example 20 and Comparative Examples 18 and 19 are shown in Table 13.

Figure 2005063731
Figure 2005063731

充放電サイクル試験後の各電池を解体し、負極のXRD(CuKα)およびXPS分析をおこなった。その結果、実施例20の電池A20に用いた負極表面には、酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されていたが、比較例18、19に用いた負極表面には被膜が形成されていないことがわかった。   Each battery after the charge / discharge cycle test was disassembled and subjected to XRD (CuKα) and XPS analysis of the negative electrode. As a result, a lithium ion conductive film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide was formed on the surface of the negative electrode used in battery A20 of Example 20, but this was used in Comparative Examples 18 and 19. It was found that no coating was formed on the negative electrode surface.

表12および表13の結果から、つぎのようなことが明らかとなった。リチウムと合金を形成する金属であるアルミニウムの表面に非晶質酸化ケイ素を形成した負極N31と、放電状態のリチウム複合酸化物と硫黄とを含む正極P3とを用いて電池を組立てた後、非水電解液Y1を注液し、充放電した実施例20の電池A20のサイクル寿命特性は優れていたが、アルミニウムの表面に非晶質酸化ケイ素を形成しない負極N3を用いた比較例18の電池B18、および、注液後の充放電を行わなかった比較例19の電池B19の場合には、サイクル寿命特性はきわめて短いことがわかった。   From the results of Table 12 and Table 13, the following became clear. After assembling the battery using a negative electrode N31 in which amorphous silicon oxide is formed on the surface of aluminum, which is a metal that forms an alloy with lithium, and a positive electrode P3 containing a lithium composite oxide and sulfur in a discharged state, The battery A20 of Example 20 charged with water electrolyte Y1 and charged / discharged had excellent cycle life characteristics, but the battery of Comparative Example 18 using the negative electrode N3 that did not form amorphous silicon oxide on the aluminum surface. In the case of B18 and the battery B19 of Comparative Example 19 in which charging / discharging after injection was not performed, it was found that the cycle life characteristics were extremely short.

実施例20の電池A20では、初期の充電により、正極中のリチウムが負極に移動し、負極でリチウム−アルミニウム合金を形成し、同時に、正極活物質の硫黄が電解液中に溶解し、電解液中のLiBETIと反応して多硫化物アニオンが生成し、この多硫化物アニオンがアルミニウム表面の非晶質酸化ケイ素と反応し、負極表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含むリチウムイオン伝導性被膜が形成されたことにより、リチウム負極やリチウム−系素合金負極と電解液との副反応が抑えられ、サイクル寿命が改善されたものと考えられる。   In the battery A20 of Example 20, lithium in the positive electrode moves to the negative electrode due to initial charging, and a lithium-aluminum alloy is formed in the negative electrode. At the same time, sulfur of the positive electrode active material is dissolved in the electrolytic solution. Reacts with LiBETI in the solution to produce a polysulfide anion, which reacts with amorphous silicon oxide on the aluminum surface, and lithium containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide on the negative electrode surface By forming the ion conductive film, it is considered that the side reaction between the lithium negative electrode or the lithium-based elementary alloy negative electrode and the electrolytic solution is suppressed, and the cycle life is improved.

本発明になる電池の断面構造を示す図。The figure which shows the cross-section of the battery which becomes this invention. 本発明になる実施例16の電池と比較例13の電池の、初回放電曲線を比較した図。The figure which compared the first time discharge curve of the battery of Example 16 which becomes this invention, and the battery of the comparative example 13. FIG. 本発明になる実施例16の電池、各サイクルの満充電状態における交流インピーダンスを示す図。The battery of Example 16 which becomes this invention, The figure which shows the alternating current impedance in the full charge state of each cycle. 本発明になる比較例13の電池の、各サイクルの満充電状態における交流インピーダンスを示す図。The figure which shows the alternating current impedance in the full charge state of each cycle of the battery of the comparative example 13 which becomes this invention.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレータ
4 正極端子
5 負極端子
6 負極活物質表面に形成された被膜
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode terminal 5 Negative electrode terminal 6 Film formed in the negative electrode active material surface

Claims (6)

正極と、リチウムまたはリチウム合金を含む負極と、非水電解質とを備えた非水電解質二次電池において、前記負極活物質表面に酸化ケイ素、硫化ケイ素、酸化リチウムおよび硫化リチウムを含む被膜が形成されていることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte, a film containing silicon oxide, silicon sulfide, lithium oxide and lithium sulfide is formed on the surface of the negative electrode active material. A non-aqueous electrolyte secondary battery characterized by comprising: 表面に非晶質酸化ケイ素を形成したリチウムまたはリチウム合金からなる負極活物質を、多硫化物アニオンを含む非水溶液と接触させる工程を経ることを特徴とする請求項1記載の非水電解質二次電池の製造方法。 2. The nonaqueous electrolyte secondary according to claim 1, wherein the negative electrode active material comprising lithium or lithium alloy having amorphous silicon oxide formed on the surface thereof is contacted with a nonaqueous solution containing a polysulfide anion. Battery manufacturing method. リチウムまたはリチウム合金からなる負極活物質の表面に、非晶質酸化ケイ素を形成した負極を用いて電池を組立てた後、多硫化物アニオンを含む非水電解液を注液することを特徴とする請求項1記載の非水電解質二次電池の製造方法。 A battery is assembled using a negative electrode in which amorphous silicon oxide is formed on the surface of a negative electrode active material made of lithium or a lithium alloy, and then a non-aqueous electrolyte containing a polysulfide anion is injected. The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1. リチウムまたはリチウム合金からなる負極活物質の表面に、非晶質酸化ケイ素を形成した負極と、硫黄を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする請求項1記載の非水電解質二次電池の製造方法。 A battery is assembled using a negative electrode with amorphous silicon oxide formed on the surface of a negative electrode active material made of lithium or a lithium alloy and a positive electrode containing sulfur, and then a nonaqueous electrolyte is injected to charge the battery. The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein discharging is performed. リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、多硫化物アニオンを含む非水電解液を注液し、電池を充放電することを特徴とする請求項1記載の非水電解質二次電池の製造方法。 After assembling a battery using a negative electrode formed with amorphous silicon oxide on the surface of a metal or metalloid that forms an alloy with lithium and a positive electrode containing a lithium composite oxide in a discharged state, the polysulfide anion is The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte solution is injected to charge and discharge the battery. リチウムと合金を形成する金属または半金属の表面に、非晶質酸化ケイ素を形成した負極と、硫黄と放電状態のリチウム複合酸化物を含む正極とを用いて電池を組立てた後、非水電解液を注液し、電池を充放電することを特徴とする請求項1記載の非水電解質二次電池の製造方法。

















After assembling the battery using a negative electrode in which amorphous silicon oxide is formed on the surface of a metal or metalloid that forms an alloy with lithium and a positive electrode containing sulfur and a lithium composite oxide in a discharged state, non-aqueous electrolysis is performed. The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein the liquid is injected to charge and discharge the battery.

















JP2003289949A 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery and its manufacturing method Pending JP2005063731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289949A JP2005063731A (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289949A JP2005063731A (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005063731A true JP2005063731A (en) 2005-03-10

Family

ID=34368117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289949A Pending JP2005063731A (en) 2003-08-08 2003-08-08 Nonaqueous electrolyte secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005063731A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083583A1 (en) * 2006-01-20 2007-07-26 Mitsui Mining & Smelting Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008135382A (en) * 2006-10-26 2008-06-12 Sony Corp Negative electrode and its manufacturing method, and secondary cell
JP2008177122A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Negative electrode active material for all solid polymer battery, its manufacturing method, and all solid polymer battery
JP2009544115A (en) * 2006-07-14 2009-12-10 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Chemical protection of metal surfaces
WO2013001739A1 (en) * 2011-06-30 2013-01-03 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery using said negative electrode
JP2016058297A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
US9484565B2 (en) 2012-04-09 2016-11-01 Gs Yuasa International Ltd. Energy storage device
JP2019057505A (en) * 2018-11-21 2019-04-11 古河機械金属株式会社 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
CN110534704A (en) * 2018-05-24 2019-12-03 通用汽车环球科技运作有限责任公司 For protective coating and its manufacturing method containing lithium electrode
WO2021075440A1 (en) * 2019-10-15 2021-04-22 Attaccato合同会社 Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same
CN114824254A (en) * 2022-04-24 2022-07-29 阳光储能技术有限公司 Lithium sulfide material modified lithium negative electrode material and preparation method and application thereof
CN114914422A (en) * 2022-05-19 2022-08-16 武汉理工大学 Composite negative electrode suitable for sulfide all-solid-state battery, preparation method and lithium battery
WO2022191297A1 (en) * 2021-03-12 2022-09-15 ソフトバンク株式会社 Material for negative electrodes, negative electrode, lithium secondary battery and method for producing material for negative electrodes
WO2023276757A1 (en) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 Lithium secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083583A1 (en) * 2006-01-20 2007-07-26 Mitsui Mining & Smelting Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009544115A (en) * 2006-07-14 2009-12-10 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Chemical protection of metal surfaces
JP2008135382A (en) * 2006-10-26 2008-06-12 Sony Corp Negative electrode and its manufacturing method, and secondary cell
JP2008177122A (en) * 2007-01-22 2008-07-31 Matsushita Electric Ind Co Ltd Negative electrode active material for all solid polymer battery, its manufacturing method, and all solid polymer battery
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
WO2013001739A1 (en) * 2011-06-30 2013-01-03 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery using said negative electrode
US9484565B2 (en) 2012-04-09 2016-11-01 Gs Yuasa International Ltd. Energy storage device
JP2016058297A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
CN110534704B (en) * 2018-05-24 2022-11-01 通用汽车环球科技运作有限责任公司 Protective coating for lithium-containing electrodes and method for producing same
CN110534704A (en) * 2018-05-24 2019-12-03 通用汽车环球科技运作有限责任公司 For protective coating and its manufacturing method containing lithium electrode
JP2019057505A (en) * 2018-11-21 2019-04-11 古河機械金属株式会社 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
WO2021075440A1 (en) * 2019-10-15 2021-04-22 Attaccato合同会社 Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same
CN114556616A (en) * 2019-10-15 2022-05-27 Attaccato合同会社 Electrode for nonaqueous electrolyte electricity storage device, and method for manufacturing same
WO2022191297A1 (en) * 2021-03-12 2022-09-15 ソフトバンク株式会社 Material for negative electrodes, negative electrode, lithium secondary battery and method for producing material for negative electrodes
WO2023276757A1 (en) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 Lithium secondary battery
CN114824254A (en) * 2022-04-24 2022-07-29 阳光储能技术有限公司 Lithium sulfide material modified lithium negative electrode material and preparation method and application thereof
CN114824254B (en) * 2022-04-24 2024-04-05 阳光储能技术有限公司 Lithium sulfide material modified lithium anode material and preparation method and application thereof
CN114914422A (en) * 2022-05-19 2022-08-16 武汉理工大学 Composite negative electrode suitable for sulfide all-solid-state battery, preparation method and lithium battery
CN114914422B (en) * 2022-05-19 2024-03-15 武汉理工大学 Composite negative electrode suitable for sulfide all-solid-state battery, preparation method and lithium battery

Similar Documents

Publication Publication Date Title
EP2262037B1 (en) Lithium secondary battery using ionic liquid
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
US9203111B2 (en) Secondary battery
EP2991138B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP5455975B2 (en) Positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5410277B2 (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
WO2013005521A1 (en) Secondary battery
EP1995817A1 (en) Lithium rechargeable battery using ionic liquid
JP6256001B2 (en) Manufacturing method of secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2004281325A (en) Electrolyte for secondary battery and the secondary battery using the same
JP2005063731A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
US6764791B2 (en) Rechargeable lithium battery
JP5445683B2 (en) Negative electrode material, lithium secondary battery, and method of manufacturing negative electrode material
JP2004253296A (en) Electrolyte for secondary battery and secondary battery using it
JP4304570B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JP2009054318A (en) Nonaqueous electrolytic solution lithium-ion secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5424052B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213