JP2004069443A - 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置 - Google Patents

超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置 Download PDF

Info

Publication number
JP2004069443A
JP2004069443A JP2002228134A JP2002228134A JP2004069443A JP 2004069443 A JP2004069443 A JP 2004069443A JP 2002228134 A JP2002228134 A JP 2002228134A JP 2002228134 A JP2002228134 A JP 2002228134A JP 2004069443 A JP2004069443 A JP 2004069443A
Authority
JP
Japan
Prior art keywords
magnetic field
insulated wire
squid
voltage insulated
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002228134A
Other languages
English (en)
Other versions
JP2004069443A5 (ja
Inventor
Satoru Nakayama
中山 哲
Atsushi Nagata
永田 篤士
Mitsugi Nagano
永野 貢
Kazuyuki Izawa
井澤 和幸
Kazutoshi Nagaoka
長岡 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Seiko Instruments Inc
Original Assignee
Tohoku Electric Power Co Inc
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Seiko Instruments Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2002228134A priority Critical patent/JP2004069443A/ja
Publication of JP2004069443A publication Critical patent/JP2004069443A/ja
Publication of JP2004069443A5 publication Critical patent/JP2004069443A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】本発明の課題は、上記の電線を流れる負荷電流値の変動、導体の偏心と絶縁層の厚みのバラツキ等による影響、環境磁場や近傍電線に流れる電流による磁場の影響を受けず、高圧絶縁電線の欠陥を精度よく検出する検査方法及び検査装置を提供することである。
【解決手段】本発明の配電線の非破壊検査は、欠陥に起因する電界の乱れを磁気的に検出する高圧絶縁電線の欠陥を検査する技術であって、磁気検出器として高感度のSQUIDを使用し、高圧絶縁電線を流れる負荷電流値の変動や導体の偏心又は絶縁層の厚みのバラツキ等による影響を受けない、高圧絶縁電線断面に対して法線方向の磁界の微小変化を検出するように構成した。更に、センサとして磁場検出用コイルを用いSQUIDには当該磁場検出用コイルと結合する構成を採用し、感度の良い高圧絶縁電線検査装置を提供する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、高圧絶縁電線の欠陥や劣化を検知する検査方法及び検査装置に関し、活線状態で断線、傷、不導体化、ならびに応力腐食割れ等といった欠陥を検出する検査方法及びそれを実行する検査装置に関する。
【0002】
【従来の技術】
高圧絶縁電線の断線、傷、不導体化、ならびに応力腐食割れ等といった欠陥を検査する方法の一つとしては、実際に流されている負荷電流が欠陥部分で流れの乱れを生じ、それによって発生する磁場の変化を検出する方法が知られている。図7のAに示したものは従来の磁気検出法による検出形態を模式的に示したものであって、1は中心部の導体11と絶縁層12とからなる被検査体である高圧絶縁電線であり、Cがセンサの検出コイルである。この導体11に負荷電流が流れると右ネジの法則に従い高圧絶縁電線1の断面を囲うような同心円状の磁場が発生する。磁力線の方向は電線断面に対して接線方向であり、その向きは電流の方向が紙面表から裏方向の場合時計方向となり、電流の方向が紙面裏から表方向の場合は反時計方向となる。その発生磁場を測定するための検出コイルCは、高圧絶縁電線1の側部において当該コイルの断面が高圧絶縁電線1の軸方向に一致すると共に線心を通る向きに配置される。この位置関係により発生する磁力線は検出コイルCの中を通過することから、電流によって発生する接線方向を主成分とする磁場変化の検出が可能となる。
【0003】
この検出コイルCによって検出される接線方向の磁力信号の強度は被検査体である高圧絶縁電線1に流される交流電流iに対応したものとなる。高圧絶縁電線1に沿って当該検出コイルCを走査しながら、図7のBにあるように欠陥部分Dの近傍に来ると検出信号が変化する。この例では高圧絶縁電線1の検出コイルCと対峙する部分の欠陥によって交流電流の一部の電流経路が乱れ、欠陥を迂回して流れた場合を想定しており、簡単に説明するとコイル中心と導電体11との距離が正常部ではaであるところ、その部分ではbとなる。この結果高圧絶縁電線1に流れる電流をi、透磁率をμとすると、検出コイルCの両端に誘起される電圧値はμi/2πaからμi/2πbへと変化する。この原理に基づいて検査がなされるのであるが、以下に示す3つの問題がある。
▲1▼ 欠陥が無い部分でも高圧絶縁電線を流れる交流電流iが変化すると検出信号はその影響を、出力変動を生じる。
▲2▼ 導体11の偏心や絶縁層12の厚みのバラツキ等によってセンサと導体との距離が変動けた場合の影響が大きい。
▲3▼ 環境磁場や近傍電線に流れる電流による磁場の影響を受けることから検出値が変化する。
以上から高圧絶縁電線の検査装置として使用するには限界があった。
【0004】
図8のAに示した例は上記の▲1▼の問題、すなわち負荷電流の変動による影響がないように構成した、例えば特開平10−73631に記載の従来の磁気検出方による検出形態を模式的に示したものであって、1は中心部分の導体11と絶縁層12とから成る被検査体である高圧絶縁電線であり、Cがセンサの検出コイルである点と一方の検出コイルCの高圧絶縁電線1に対する位置関係は先のものと同等であるが、検出コイルCが被検査体である高圧絶縁電線1を挟んで反対側にも配置されている点がこの例の特徴である。この導体11に電流が流れると右ネジの法則に従い高圧絶縁電線1の断面を囲うように同心円状の磁場を発生させるが、その磁場を2つの検出コイルCでそれぞれ検出する。この検出コイルCによって検出される磁力信号は被検査体である高圧絶縁電線1に流される交流電流iに対応する。この2つの検出コイルCを差動的に接続することによりこの検出値が同じであればキャンセルされてゼロとなる。しかし、図8のBにあるように電線1に欠陥部分Dがあるとすると、高圧絶縁電線1に沿って当該検出コイルCを走査してその近傍に来ると一方の(この場合図の上部側)検出信号が変化する。この例では高圧絶縁電線1の検出コイルCと対峙する部分の欠陥によって交流電流の一部の電流経路が乱れ、欠陥を迂回して流れた場合、両方の検出コイル中心と導電体11との距離が正常部ではaであるところ、その欠陥部分では片方の(この場合図の上部側)の距離はbとなる。簡単に説明すると、高圧絶縁電線1に流れる電流がi、透磁率がμとして、検出コイルCに誘起される電圧値はμi/2πaからμi/2πbに変化する。従って、この欠陥部分で2つの検出コイルCを差動的に接続した端子にはμi/2πa−μi/2πbなる検出値が出力される。この原理に基づいて検査がなされるのであるが、その際に高圧絶縁電線1を流れる負荷電流iが変化した場合の検出信号は、正常部分において当該電流変動による変化分は両コイルとも等しく影響を受けるためその分はキャンセルされ、欠陥部分では導電体への距離の差があるため上記の出力が検出される。この信号の大きさには電流変動分が影響するものの欠陥部分と正常部分で定性的な出力差が生じるため欠陥検出は可能である。しかしながら、この従来例では上記の▲1▼の問題を回避出来るものの▲2▼の導体11の偏心や絶縁層12の厚みのバラツキ等によってセンサと導体との距離が変動した場合の影響は回避出来ないとともに、▲3▼の環境磁場に関しても両コイルの位置関係において差が無いようなときはキャンセルされる場合があるが、近傍電線に流れる電流による磁場など位置関係において差があるものについてはその影響を避けられず、その分検出値が変化してしまうといった問題が残る。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記の電線を流れる負荷電流値の変動、導体の偏心と絶縁層の厚みのバラツキ等による影響、環境磁場や近傍電線に流れる電流による磁場の影響を受けず、高圧絶縁電線の欠陥を精度よく検出する検査方法及び検査装置を提供することである。
【0006】
【問題を解決するための手段】
本発明の配電線の非破壊検査は、欠陥に起因する電界の乱れを磁気的に検出する高圧絶縁電線の欠陥を検査する技術であって、磁気検出器として高感度のSQUIDを使用し、高圧絶縁電線を流れる負荷電流値の変動や導体2の偏心又は絶縁層12の厚みのバラツキ等による影響を受けない、高圧絶縁電線断面に対して法線方向の磁界の微小変化を検出するように構成した。
また、この非破壊検査法を実行する高圧絶縁電線検査装置としては、交流電流が流される高圧絶縁電線の断面に対して法線方向の磁場を検出する向きとなるように設置されるSQUID、前記SQUIDを冷却する手段、前記SQUIDを駆動する回路、ならびに前記SQUID駆動回路の出力を得てデータ処理する手段を備え、電線の欠陥に起因する磁場検出を実行するようにした。
更に、センサとして磁場検出用コイルを用いSQUIDには当該磁場検出用コイルと結合する構成を採用し、感度の良い高圧絶縁電線検査装置を提供する。
【0007】
【発明の実施の形態】
本発明の検査方法は、一般にはセンサ部を走行体に搭載し被検査体である高圧絶縁電線上を走行させながら位置情報と対応させて検出情報を取得する検査形態が採られ、活線状態で実際に流されている負荷電流が欠陥部分で流れの乱れを生じ、それによって発生する磁場の変化を検出する方法に属するものであるが、前述したように従来のこの種の磁気検出法では電流の変動や絶縁層の厚みの偏りと偏心に起因するセンサの位置ズレが検出誤差の原因となる問題をもっていたことに鑑み、高圧絶縁電線を流れる電流が作る主たる磁場の変化をモニタするのではなく、欠陥部分で電流が部分的に乱れて主たる磁場とは異なる方向の磁場成分をモニタすることに想到したものである。すなわち、高圧絶縁電線を流れる電流が作る主たる磁場は所謂右ネジの法則に従い、電線の断面に対しては接線方向となるが、断線、傷、不導体化ならびに応力腐食割れなどのよる高圧絶縁電線欠陥部は電流経路の不良個所となり、そこでは電流は乱れや迂回現象を起こし、正常部におけるような軸方向では無い電流の流れを示す。本発明はこの軸方向とは異なる電流の流れが生じることに着目して、接線方向の磁場ではなく、この部分で生じる法線方向の磁場変化を検出・モニタするようにしたものである。この法線方向の磁場は正常部においては発生しない信号であるため、原理的には従来技術で問題となって板点が改善され、負荷電流が変動してもノイズとなることはなく、電線とコイル中心の位置がズレても発生することは無い。ただし、この法線方向の磁場は電流の迂回現象による局部的なものであるため極めて微小な値となる。100V,100Aを通電した絶縁被覆電線(単線 CVφ325)表面に電磁力計のピックアップコイルを接触させて予備的な試験を行ったところ,発生する磁場の大きさは,一般に従来技術で検出している接線方向では,代表値として450マイクロテスラであるのに対し,本願で着目した法線方向では100分の1程度の5マイクロテスラと地磁気成分と同レベルに小さく,この電磁力計の保証感度以下であった。
本願で着目する法線方向の磁場が電線の損傷に対してどのように変化するのかを,種々のケースで体系的,かつ定量的に評価することは,技術的に非常に困難であると言わざるを得ない。しかしながら,上記の予備的な測定から,おおよそ,従来技術で着目した接線方向と比較して,本願で着目した法線方向では,1%程度の強度のきわめて微弱な磁場信号を扱う必要があり,その信号の検出にあたっては,磁場分解能が高い高感度磁気センサを必要とすることが予測された。
この推量は,次に示す測定データからも裏付けられた。磁気センサとして,特開平10−73631記載のホール素子を用いて,応力腐食割れ配電線のヘアクラック(目視で確認できる最小レベルの髪毛ほどの細い亀裂で検出が困難なもの)が検出できるかを試験した。
図9にホール素子による電流の迂回現象による磁場の測定例を示す。このように,発生する信号が微弱である為,ホール素子のような一般的な磁気センサでは検出が困難であることがわかる。そこで,本発明では超電導現象を応用した高感度な磁気センサであるSQUID磁束計をこの配電線の検査用センサとして用いることに想到した。なお,特開平10−73631は,主として接線方向の磁場を検出する記載は開示されているが,検出する磁場の向きに関し,一部明示されておらず,あいまいな部分がある。しかし,本願で着目している法線方向の磁場変化は,特開平10−73631で用いたホール素子では到底測定できない微弱なものであることは前記の測定から自明であり,本願は特開平10−73631から導出されない。
【0008】
SQUIDとは、Superconducting Quantum Interference Device(超電導量子干渉素子)の頭文字を取った略称で、超電導現象の一つであるジョセフソン効果を応用した非常に感度の高い磁気センサとして知られ、現在は、基礎物性計測、生体磁気計測、産業用計測などの分野で、微小磁場計測手段として活用されているところである。
本発明は、高圧絶縁電線に交流電流を流したときに欠陥部分で発生する高圧絶縁電線断面に対して法線方向の磁場を、このSQUIDを用いて検出し、高圧絶縁電線の検査を実行しようとするものである。図2に本発明の検査システムにおける欠陥検出系統のブロック図を示し、図1に被検査体である配電線に対するSQUID磁束計の配置関係を示す。まず、本発明の検査システムにおける欠陥検出系統の構成であるが、高圧絶縁電線表面に対峙させ高圧絶縁電線断面に対して法線方向の磁場を検出できる位置に適正姿勢でSQUIDを配置する。その際、SQUIDの検出面を高圧絶縁電線表面の接線方向にして直接磁場を検出させる。SQUIDは素子自体で磁場を検出することも可能であるが、素子と超電導接続された検出コイルを用いることも可能である。いずれの場合においても磁場の検出面は図1に示されるように電線断面に対して接線方向に向けられて法線方向の磁場を検出する。このSQUIDはクライオスタットと呼ばれる低温容器に収納され、その中でこのSQUIDが動作するに十分な極低温状態に維持されている。一般には液体ヘリウムや液体窒素の寒剤が充填されるが、クライオスタットの代わりに冷凍機などの冷却機構で冷却する形態でもよい。
【0009】
図2に示すようにSQUIDにはSQUIDコントローラとロックインアンプが接続され、FLL(Flux Locked Loop)方式の磁束検出法を採用するのが好ましい。SQUIDは、その磁束電圧特性が非線形であるため、SQUIDに鎖交する信号磁束と同じ量の磁束を逆向きSQUIDに印加させることで、SQUIDに鎖交しようとする磁束量を常に一定とし、磁束電圧特性のある部分に磁束を固定させる方法である。被検査体には、この被検査体に交流電流を流すための交流電流源が接続され、この被検査体に流れる電流に同期した交流電流源からの信号出力がロックインアンプに入力され、ロックインアンプはSQUIDコントローラの出力をこの交流電流源に同期させ、A/Dコンバータに出力する。ディジタル信号となった検出情報は計測制御用のコンピュータに送信され当該コンピュータによって画像形態やグラフ形態、表形態など必要に応じて信号処理され表示されると共に、記録蓄積することが出来るように構成されている。
SQUIDを駆動する回路として今FLL方式を示したが、これに限られるものではなく、オフセット積分法(Direct Offset Integration Technique:DOIT)を採用してもよい。これはフィードバックにより、SQUIDの出力電圧が基準電圧と一致するような磁束にロックがかかるもので、それに伝達係数∂V/∂Φを改善する加算正帰還(Additive Positive Feedback :APF )方式と磁場感度の改善をはかるマルチループ方式が組合されるなど、生体磁場計測等において用いられている適宜の駆動回路が採用され得る。
【0010】
SQUIDの検出感度を高めるために磁場濃縮板を使用したり、SQUIDだけで直接磁場を検出せず、超電導体で作製された検出コイルを採用することもできる。図3に示されるように検出コイルは磁場検出コイルと超電導接続形態で直列接続された入力コイルとからなり、磁場検出コイルで検出された信号磁束は入力コイルからトランス結合でSQUIDへ伝達される。なお、磁場検出コイルとSQUIDとの結合は直接超亀導形態で接続することも可能である。
SQUIDの磁場検出コイルは、目的に応じて様々なものが考えられている。第4図に磁場検出コイルの例を示す。(a)に示すマグネットメータ型検出コイルは、主に磁場の絶対値を検出する目的で使用される。(b)に示す1次微分型検出コイルは、検出する磁場の方向と同じ方向の1次勾配を検出する目的、或は、検出する磁場の方向と同じ方向の変化が一様な外乱磁場の影響を抑える目的等で使用される。(c)に示す2次微分型検出コイルは、検出する磁場の方向と同じ方向の2次勾配を検出する目的、或は、検出する磁場の方向と同じ方向の1次勾配までの外乱磁場の影響を抑える目的等で使用される。(e)に示す平面型2次微分検出コイルは、検出する磁場と直交する面内でコイルの中心を結ぶ方向の2次勾配を検出する目的、或は、検出する磁場と直交する面内でコイルの中心を結ぶ方向の1次勾配までの外乱磁場の影響を抑える目的等で使用される。(d)に示す同心円型2次微分検出コイルは、巻き線方向が互いに逆巻きである2つのコイルが同心円状に形成され、直列接続されている。外側のコイルと内側のコイルの直径と巻き数は、その検出面積が等しくなるように決定される。(d)の例では、外側のコイルは1巻きであり、内側のコイルの直径は外側のコイルの直径の半分であり、内側のコイルは4巻である。この磁場検出コイルは検出する磁場と直交する面内でコイルの径方向の2次勾配を検出する目的、或は、検出する磁場と直交する面内でコイルの径方向の1次勾配までの外乱磁場の影響を抑える目的等で使用される。
【0011】
本発明の高圧絶縁電線欠陥検査装置の磁場検出コイルとして(d)に示す同心円型2次微分検出コイルを採用し、被検査体である高圧絶縁電線1に沿ってSQUIDを変位させ、順次検出されるSQUIDの出力信号をグラフ表示させたものを図5に示す。このグラフにおいて横軸は高圧絶様電線上の位置をmm単位で示しており、縦軸はSQUIDの検出電圧をmV単位で示したものである。このグラフから、矢印で示したように電線上の基準点から25mm手前の部分に欠陥があることが見て取れる。なお、絶縁被覆を取り除き矢印の位置にヘアクラックがあることを目視で確認した。SQUIDは電線断面に対して法線方向の磁場変動を検出しており、高圧絶縁電線1に流れている負荷電流に変動があってもそれは電線断面に対して接線方向の磁場の変動となるからこの検出値には影響を及ぼすことはない。また、高圧絶縁電線1の絶縁層の厚み変動等に起因して導体部分と磁場検出コイル或はSQUIDとの距離が少々変化しても、それは同じく接線方向の磁場の変動となることから誤差となるような変化は生じない。そして、微分型の検出コイルの場合、局部領域で一定とみなせる環境磁場についてはキャンセルされその影響を受けることはない。また、近傍の電線を流れる電流によって発生する磁場変動は、本発明の検出コイルに鎖交するため、検出信号に影響を及ぼす可能性があるが、微分型の検出コイルを用いることにより、その影響を抑えることができる。
【0012】
本発明ではSQUIDを用い、FLL (Flux Locked Loop)方式の磁場検出法を採用するが、このSQUIDは超電導状態で使用するものであるから、前述したように液体ヘリウムや液体窒素か他の冷却手段を必要とする。図6は本発明におけるFLL方式の磁場検出部の構成と、冷却手段による冷却を必要とする構成部分を示す図である。図6に示すように被検査体である電線1には、この被検査体に交流電流を流すための交流電流源(一般には商用電源)が接続され、この被検査体に流れる電流に同期した交流電流源からの信号出力がロックインアンプに入力され、ロックインアンプはSQUIDコントローラの出力をこの交流電流源に同期させ、A/Dコンバータに出力する。この図6においてSQUIDや磁場検出コイル等破線で囲んだ部分はクライオスタット3内に収納され、冷却手段によって冷却される。また、図6のSQUIDとFLL回路の間に、タンク回路やトランスを便ったマッチング回路を設ける場合もある。その場合、タンク回路やマッチング回路は、冷却を必要とする構成部分に含む場合と含まない場合のどちらも可能である。
なお、図6に示した実施例ではSQUIDの数を1個としたが、例えば、測定時間の短縮のため、あるいは大口径の電線に対応するために、必要に応じて当該SQUIDを複数個配置させた多チャンネル化をさせることも可能である。
【0013】
【発明の効果】
本発明の高圧絶縁電線検査方法は、交流電流を流し、或は、活線状態での負荷電流を利用し、欠陥に起因する電界の乱れを磁気的に検出する高圧絶縁電線の欠陥検査方法であって、磁場検出器としてSQUIDを使用し、欠陥部分において生じる電流の乱れや迂回現象に起因する高圧絶縁電線断面に対して法線方向の磁場変化から欠陥を検出するものであるから、従来の高圧絶縁電線断面に対して接線方向の磁場変化を検出・モニタする場合と比較して、高圧絶縁電線に流れている負荷電流に変動があってもそれが検出信号に影響を及ぼすことが無い。また、導体の偏心や絶縁層12の厚みのバラツキ等によってセンサと導体との距離が若干変動したような場合でも、その変位は法線方向となるため誤差となるような変化は生じない。そして、電流の迂回現象に起因する高圧絶縁電線断面に対して法線方向の磁場変化は、極めて微弱な物理量であるが、高感度のSQUID磁束計をセンサとして採用したことにより、精度よくこれを検出することができる。
また、本発明では交流電流として、活線状態の高圧絶縁電線の負荷電流を利用するようにしたので、検査のために送電を停止すること無く活線状態のままで検査を実行することが出来る。
【0014】
本発明の高圧絶縁電線検査装置は、交流電流が流される絶縁層付き電線の断面に対して法線方向の磁場を検出する向きとなるように設置されるSQUID、前記SQUIDを冷却する手段、前記SQUIDを駆動する回路、ならびに前記SQUID駆動回路の出力を得てデータ処理する手段を備え、電線の欠陥に起因する磁場検出を実行するようにしたので、安定した精度の良い高圧絶縁電線検査が実現される。
また、電線の断面に対して法線方向の磁場を検出する向きとなるように設置された磁場検出用コイルを用い、前記磁場検出用コイルとSQUIDとをトランス結合させる構成を採用することで、SQUIDをセンサとして直接使用するものに比べ高感度の計測が可能となる。
【図面の簡単な説明】
【図1】本発明において、被検査体である配電線に対するSQUID磁束計の配置関係を示す図である。
【図2】本発明の検査システムにおける欠陥検出系統のブロック図を示図である。
【図3】SQUIDと検出コイルとの超電導磁束トランスの結合を示す図である。
【図4】SQUID磁束計に用いられる磁場検出コイルの基本構造を示す図である。
【図5】本発明の検査装置による検査結果を電線位置に対応させてグラフ表示させた例である。
【図6】本発明におけるFLL方式の磁場検出部の構成と、冷却手段による冷却を必要とする構成部分を示す図である。
【図7】従来の磁気検出法による配電線欠陥検出形態例を模式的に示した図である。
【図8】従来の磁気検出法による配電線欠陥検出形態の異なる例を示した図である。
【図9】ホール素子による電流の迂回現象による磁場の測定例を示した図である。
【符号の説明】
1 被検体である配電線 4 SQUID用コントローラ
11 導体        6 駆動モータ
12 絶縁層       7 モータ用コントローラ
2 車輪        C 検出コイル
3 SQUIDを収納したクライオスタット    D 欠陥

Claims (4)

  1. 欠陥に起因する電界の乱れを磁気的に検出する高圧絶縁電線の欠陥検査方法であって、前記高圧絶縁電線に交流電流を流し、磁場検出器としてSQUIDを使用し、欠陥部において生じる前記交流電流の変化に起因し、且つ前記高圧絶縁電線断面に対して法線方向を主成分とする磁場変化から欠陥を検出することを特徴とした高圧絶縁電線検査方法。
  2. 交流電流として、活線状態の高圧絶縁電線の負荷電流を利用することを特徴とした請求項1記載の高圧絶縁電線検査方法。
  3. 交流電流が流される高圧絶縁電線の断面に対して法線方向の磁場を検出する向きとなるように設置されるSQUID、前記SQUIDを冷却する手段、前記SQUIDを駆動する回路、ならびに前記SQUID駆動回路の出力を得てデータ処理する手段を備え、電線の欠陥に起因する磁場検出を実行することを特徴とした高圧絶縁電線検査装置。
  4. 交流電流が流される高圧絶縁電線の断面に対して法線方向の磁場を検出する向きとなるように設置された磁場検出用コイルと、前記磁場検出用コイルと超電導状態で結合されたSQUID、前記SQUIDと磁場検出用コイルとを冷却する手段、前記SQUIDを駆動する回路、ならびに前記SQUID駆動回路の出力を得てデータ処理する手段を備え、電線の欠陥に起因する磁場検出を実行することを特徴とした高圧絶縁電線検査装置。
JP2002228134A 2002-08-06 2002-08-06 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置 Pending JP2004069443A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228134A JP2004069443A (ja) 2002-08-06 2002-08-06 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228134A JP2004069443A (ja) 2002-08-06 2002-08-06 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置

Publications (2)

Publication Number Publication Date
JP2004069443A true JP2004069443A (ja) 2004-03-04
JP2004069443A5 JP2004069443A5 (ja) 2005-10-20

Family

ID=32014897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228134A Pending JP2004069443A (ja) 2002-08-06 2002-08-06 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置

Country Status (1)

Country Link
JP (1) JP2004069443A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249679A (ja) * 2004-03-05 2005-09-15 Uchihashi Estec Co Ltd 電線の導体欠陥検知用センサ
JP2005249677A (ja) * 2004-03-05 2005-09-15 Uchihashi Estec Co Ltd 電線の導体欠陥検知用センサ
JP2005257593A (ja) * 2004-03-15 2005-09-22 Uchihashi Estec Co Ltd 電線の導体欠陥箇所検知方法及び電線の導体欠陥箇所検知用センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249679A (ja) * 2004-03-05 2005-09-15 Uchihashi Estec Co Ltd 電線の導体欠陥検知用センサ
JP2005249677A (ja) * 2004-03-05 2005-09-15 Uchihashi Estec Co Ltd 電線の導体欠陥検知用センサ
JP4698958B2 (ja) * 2004-03-05 2011-06-08 東北電力株式会社 電線の導体欠陥検知用センサ
JP4698959B2 (ja) * 2004-03-05 2011-06-08 東北電力株式会社 電線の導体欠陥検知用センサ
JP2005257593A (ja) * 2004-03-15 2005-09-22 Uchihashi Estec Co Ltd 電線の導体欠陥箇所検知方法及び電線の導体欠陥箇所検知用センサ
JP4520188B2 (ja) * 2004-03-15 2010-08-04 内橋エステック株式会社 電線の導体欠陥箇所検知方法

Similar Documents

Publication Publication Date Title
US5854492A (en) Superconducting quantum interference device fluxmeter and nondestructive inspection apparatus
US6150809A (en) Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
US5589772A (en) Non-destructive eddy current sensor having a squid magnetic sensor and selectively positionable magnets
Ramos et al. Present and future impact of magnetic sensors in NDE
PL183725B1 (pl) Urządzenie do określania zawartości analitu w próbce, zwłaszcza biologicznej, za pomocą pola magnetycznego
JPH06324021A (ja) 非破壊検査装置
JP2009294062A (ja) 磁気信号計測方法及び磁気信号計測装置
Tsukada et al. Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation
JP2004184303A (ja) 外乱除去機能を備えた電線検査方法及び検査装置
US5331278A (en) Apparatus for inspecting degradation/damage of a material using an AC magnet, a superconducting DC magnet and a SQUID sensor
Wang et al. A novel AC-MFL probe based on the parallel cables magnetizing technique
Uesaka et al. Micro eddy current testing by micro magnetic sensor array
Tsukamoto et al. Eddy current testing system using HTS-SQUID with external pickup coil made of HTS wire
Chomsuwan et al. Application of eddy-current testing technique for high-density double-Layer printed circuit board inspection
JP2004069443A (ja) 超電導量子干渉素子(squid)を用いた高圧絶縁電線検査方法及び検査装置
Hirata et al. Development of a highly sensitive magnetic field detector with a wide frequency range for nondestructive testing using an HTS coil with magnetic sensors
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
US20020027437A1 (en) Device for performing non-destructive inspection by eddy currents
KR20050010433A (ko) 와이어로프의 비파괴검사장치
JP6826739B2 (ja) 渦電流探傷法及び渦電流探傷装置
Rathod et al. Low field methods (GMR, Hall Probes, etc.)
Sakai et al. Compact rotating-sample magnetometer for relaxation phenomenon measurement using HTS-SQUID
JPH04218764A (ja) 金属材料の劣化損傷検出装置
Carr et al. Electronic gradiometry for NDE in an unshielded environment with stationary and moving HTS SQUIDs
Alzayed et al. Deep nondestructive testing using a bulk high T/sub c/RF-SQUID

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819