JP2004068877A - Rolling bearing and bearing device - Google Patents

Rolling bearing and bearing device Download PDF

Info

Publication number
JP2004068877A
JP2004068877A JP2002226999A JP2002226999A JP2004068877A JP 2004068877 A JP2004068877 A JP 2004068877A JP 2002226999 A JP2002226999 A JP 2002226999A JP 2002226999 A JP2002226999 A JP 2002226999A JP 2004068877 A JP2004068877 A JP 2004068877A
Authority
JP
Japan
Prior art keywords
race
rolling bearing
rolling
raceway
undulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226999A
Other languages
Japanese (ja)
Other versions
JP4203843B2 (en
Inventor
Tatsunobu Momono
桃野 達信
Yoshihiro Sato
佐藤 佳宏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002226999A priority Critical patent/JP4203843B2/en
Publication of JP2004068877A publication Critical patent/JP2004068877A/en
Application granted granted Critical
Publication of JP4203843B2 publication Critical patent/JP4203843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide rolling bearing capable of generating smooth application of the load to its rolling elements in the load area by suppressing the shape error (waviness) of the inner raceway and the outer raceway, thereby suppressing generation of vibrations and noises, and suppressing a drop in the lifetime of the rolling elements originating from steep application of the load. <P>SOLUTION: The rolling bearing equipped with an even number of rolling elements (Z pieces) can suppress vibrations effectively by configuring so that about at least one of its raceway rings, the single side amplitude of the waviness having the number of apices (Z(2n-1)/2) per circumference of the raceway, where n is a positive integer being at least one, is made smaller than the maximum value of the single side amplitude of the waviness having the number of apices no less than (Z(2n-1)/2+1) per circumference of the raceway and no more than (Z(2n+1)/2). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大きなロータを有するモータや、ベルト駆動される回転軸を有する回転機械や、自動車用エンジンのタイミングベルトや補機駆動用のベルト等を回転自在に支持するプーリ等に装着され、ラジアル荷重が負荷される転がり軸受及び軸受装置に関するものである。
【0002】
【従来の技術】
ラジアル荷重を負荷した状態で転がり軸受を動作させると、いわゆる転動体通過振動と呼ばれる振動が発生する。転動体通過振動は、負荷域にある各転動体の位置によって荷重の分担が変化し、回転軸の変位量と変位の方向とが微小に変化することにより発生するものである。転動体通過振動は、通常振幅が小さいため、問題とされるケースは稀であり、万が一問題となった場合でも、転がり軸受のラジアル隙間を小さくしたり、予圧を与えることで対処できると考えられていた。
【0003】
【発明が解決しようとする課題】
ところが、本発明者らの研究によれば、転動体通過振動が問題となり、しかも転がり軸受のラジアル隙間を小さくしたり、予圧を与えるだけでは十分に対処を行えない場合があることが判明した。かかる現象について説明する。
【0004】
転がり軸受の内輪や外輪の軌道面には、加工機械の特性により、微小なうねりが形成されることが多い。軌道輪を剛体としてとらえ、軌道輪と転動体の接触を線形ばねとしてとらえた場合、軌道面のうねりに起因して、所定の振動が発生する。このようなうねりに起因した振動は、例えば特許第3047764号に開示された技術で低減することができる。
【0005】
しかるに、本発明者らの研究によれば、軌道面のうねりにより、転動体通過振動が増幅されることが判明した。図1は、うねりの有無による軌道輪と転動体との関係を示す図であり、図2は、転動体の負荷状態を示す図である。図1において、軌道面にうねりがなければ、点線で示すように転動体1と外輪2の軌道面との間には一様な隙間が生じるが、最下方点で内径が最小になるうねりがあれば、転動体1を内輪3側に押し付けたと仮定して、実線で示すように転動体1と外輪2の軌道面との間の隙間は、うねりに応じて一様でなくなる。極端な場合、内輪3にラジアル荷重を負荷したとしても、最下点から角度θだけずれた位置(内径が最大となる位置)の転動体1には、ゼロ以上の隙間Δが発生することもありえる。
【0006】
図2に示すように、内輪3に下方に向かうラジアル加重Frを付与した場合、うねりがなければ、図で点線で示すような荷重が転動体1に付与される。すなわち、水平線から下側を通過する転動体1には、水平線から離れるにつれ徐々に荷重が負荷され、最下点(転動体最大荷重位置ともいう)で最大荷重が負荷され、その後徐々に荷重が減少するようになっている。この場合の負荷領域は、水平線から下方の範囲になり、無負荷域は、水平線から上方の範囲になる。一方、図1に示すようなうねりがある場合、例えば最下点から角度θだけずれた位置までは、転動体1は無負荷であり、それから最下点まで至る間に急激に荷重が増大することとなる。このため、転動体通過振動が増幅され、場合によっては軌道面の剥離等の問題を引き起こす恐れがある。この場合の負荷領域は、最下点を挟んで角度2θの狭い範囲であり、無負荷領域は、それ以外の範囲になる。
【0007】
又、図1に示すように極端なうねりでなくても、転動体1の負荷が、図2の点線に示すように、なめらかに漸減もしくは漸増しないような場合、1公転の間に大小の負荷を繰り返し受けることとなる。すなわち、実際は転がり軸受に弾性変形があるので、これを考慮すると、変形を誇張して示す図3に示すように、軌道面と転動体との接触部が大きい所と小さい所とが生じる。具体的にはa>a、a(a:最下点の転動体におけるヘルツの弾性接触時の半径、a,a:最下点から角度θだけずれた位置の転動体におけるヘルツの弾性接触時の半径)、δ>δ、δ(δ:最下点の転動体におけるヘルツの弾性変形量、δ,δ:最下点から角度θだけずれた位置の転動体におけるヘルツの弾性変形量)となり、うねりが大きくなるほど、当たりの大きな転動体は転動体荷重が大きく、当たりの小さな転動体は転動体荷重が小さくなる。この場合のトルクは、各々転動体と軌道面とが接触する転動体荷重に比例し、トルク変動を引き起こす恐れがある。また、転動体の半径方向の中心位置は、うねりが0の場合の中心位置に対し、最下点から角度θだけずれた位置の転動体については、Δ、Δだけ外側に、最下点の転動体についてはΔだけ内側に移動する。即ち、この量だけ半径方向に移動しながら回転している。
【0008】
このように、転動体1の負荷が変化すると、最大転動体荷重の増大による寿命低下を招き、1公転する間に転動体荷重の変動によるトルク変動を招き、更に転動体が1公転する間に、その中心が転がり軸受の中心から離れたり接近したりすることによって振動や騒音を発生させる恐れがある。
【0009】
本発明は、かかる問題点に鑑みてなされたものであり、急激な負荷の立ち上がりに起因した転動体の振動や騒音の発生を抑え、長寿命を図ることができる転がり軸受及び軸受装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
第1の本発明の転がり軸受は、第1の軌道を有する第1の軌道輪と、第2の軌道を有する第2の軌道輪と、前記第1の軌道と前記第2の軌道との間に転動自在に設けられた偶数個(Z)の転動体と、を備え、前記各軌道に微小なうねりが存在する転がり軸受において、
前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、正の整数であるnが少なくとも1のときに、前記軌道の1円周当たり(Z(2n−1)/2)の山数を有する前記うねりの片振幅が、前記軌道の1円周当たり((Z(2n−1)/2)+1)以上、(Z(2n+1)/2)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなることを特徴とする。
【0011】
第2の本発明の転がり軸受は、第1の軌道を有する第1の軌道輪と、第2の軌道を有する第2の軌道輪と、前記第1の軌道と前記第2の軌道との間に転動自在に設けられた奇数個(Z)の転動体と、を備え、前記各軌道に微小なうねりが存在する転がり軸受において、
前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、正の整数であるnが少なくとも1のとき、前記軌道の1円周当たり((Z(2n−1)−1)/2)の山数を有する前記うねりの片振幅と、((Z(2n−1)+1)/2)の山数を有する前記うねりの片振幅と、のいずれもが、
前記軌道の1円周当たり((Z(2n−1)+1)/2+1)以上、((Z(2n+1)−1)/2−1)以下の山数を有する前記うねりの片振幅の最大値よりも小さいことを特徴とする。
【0012】
【作用】
本発明者らは、更に鋭意研究の結果、うねりに起因して転動体通過振動が増幅されるのは、うねりによる形状誤差により、転動体数との関係で、内外輪の軌道面と転動体との隙間が周期的に変化することが主要因であることを突き止めたのである。すなわち、転動体の数と、うねりの山数とを調整することで振動を抑制できることを見いだしたのである。より具体的には、本発明者らの更なる研究により、偶数個(Z)の転動体を備えた転がり軸受において、少なくとも一つの軌道輪に関し、正の整数であるnが少なくとも1のときに、前記軌道の1円周当たり(Z(2n−1)/2)の山数を有する前記うねりの片振幅が、前記軌道の1円周当たり((Z(2n−1)/2)+1)以上、(Z(2n+1)/2)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなるようにすることで、振動を効果的に抑制できることが判明した。
【0013】
更に、前記転がり軸受における前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、少なくとも前記整数nが1のときに、前記軌道の1円周当たり(Z(2n−1)/2±1)の山数を有する前記うねりの片振幅が、前記軌道の1円周当たり(Z(2n−3)/2)以上(但しn=1の場合は2以上とする)、(Z(2n−1)/2)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなるようにすることで、振動をより効果的に抑制できることが判明した。前記軌道の1円周当たり(Z(2n−1)/2)の山数のうねりより寄与度は低いが、前記軌道の1円周当たり(Z(2n−1)/2±1)の山数のうねりも、振動に寄与するためである。
【0014】
一方、奇数個(Z)の転動体を備えた転がり軸受の場合には、前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、正の整数であるnが少なくとも1のとき、前記軌道の1円周当たり((Z(2n−1)−1)/2)の山数を有する前記うねりの片振幅と、((Z(2n−1)+1)/2)の山数を有する前記うねりの片振幅と、のいずれもが、前記軌道の1円周当たり((Z(2n−1)+1)/2+1)以上、((Z(2n+1)−1)/2−1)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなるようにすることで、振動を効果的に抑制できることが判明した。転動体数が奇数の場合、第1の発明で規定した山数が整数にならないが、その場合には、規定した山数に近い山数のうねりが振動に寄与すると考えられる。そこで、以上のように取り扱うこととしたのである。
【0015】
更に、前記うねりの山数は前記軌道の1円周当たり20以下であると好ましい。
【0016】
又、前記第1の軌道輪または前記第2の軌道輪の少なくとも一方は、前記転がり軸受を収納するハウジングまたは前記転がり軸受を支持する軸に締まり嵌めで取り付けられていると好ましい。
【0017】
更に、前記第1の軌道輪または前記第2の軌道輪の少なくとも一方は、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼、炭素鋼又は構造用鋼から形成され、前記ハウジングまたは前記軸が、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼から形成されていると好ましい。
【0018】
転がり軸受の動作中に温度が上昇し、軸受と軸、或いは軸受とハウジングの線膨張係数が異なると、その嵌め合い応力が変化する。このため、せっかく組み立て状態で形状誤差の影響を小さく抑えても、温度上昇により形状誤差が変化することがあるが、前記第1の軌道輪または前記第2の軌道輪の少なくとも一方が線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼から形成され、前記ハウジングまたは前記軸が線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼から形成されていれば、転がり軸受の軌道輪と軸、或いは転がり軸受の軌道輪とハウジングの線膨張係数が同じであることから、組み立て時の形状がそのまま保持されるので望ましいといえる。ただし、通常、軸及びハウジングは軸受軌道輪と異なる材質が使用されることが多いが、このような場合も軸及びハウジングはできるだけ軌道輪に近い材質を用いることが望ましい。
【0019】
具体的には、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の範囲の素材としては、線膨張係数が10.1×10−6(m/℃)のマルテンサイト系ステンレス鋼、12.5×10−6(m/℃)の軸受鋼SUJ2、13.5×10−6(m/℃)のオーステナイトステンレス鋼がある。又、通常用いられるSCr40等の肌焼鋼もこの線膨張係数の範囲のものなら適用できる。呼び番号6206(内径:30mm、外径:62mm、幅:16mm)の深溝玉軸受に動定格荷重の約25%の5000Nが負荷した場合の最大転動体荷重位置での弾性変形量(図3のΔ)は約36μmである。これに対し、温度上昇による外輪とハウジングの温度差を10℃とすると、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の範囲での寸法変化は(13.5−10.1)×10−6×0.062×10≒2.1×10−6(2.1μm)であり、弾性変形量に比べ十分小さな値であることから、形状誤差の変化に影響を及ぼさないと考えられる。尚、ハウジングや軸の材質としては、上記軸受用鋼、S20C等の構造用鋼や、その他の炭素鋼を用いることが可能である。
【0020】
更に、前記転がり軸受において、前記第1の軌道輪が内輪であり、前記第2の軌道輪が外輪であり、前記内輪が回転するようになっており、前記各軌道輪の線膨張係数は、前記ハウジングの線膨張係数以下であると好ましい。かかる場合は、内輪が回転し内輪と軸が締まり嵌めで、もう一方の外輪とハウジングは温度上昇により、締まり嵌めの場合は締め代が小さく、隙間が大きくなる方向に寸法変化することとなるので、少なくとも締め代がきつくなり外輪の形状変化に影響することがない組み合わせである。
【0021】
又、前記転がり軸受において、前記第1の軌道輪が内輪であり、前記第2の軌道輪が外輪であり、前記外輪が回転するようになっており、前記各軌道輪の線膨張係数は、前記軸の線膨張係数以上であると好ましい。かかる場合は、外輪が回転し外輪とハウジングが締まり嵌めで、もう一方の内輪と軸は温度上昇により、締まり嵌めの場合は締め代が小さく、隙間が大きくなる方向に寸法変化することとなるので、少なくとも締め代がきつくなり内輪の形状変化に影響することがない組み合わせである。
【0022】
更に、主にラジアル方向に荷重がかかる前記転がり軸受において、前記転動体に荷重がかかる負荷域及び前記転動体に荷重がかからない非負荷域が存在すると好ましい。特に、本発明は、軸受の動定格荷重に対して、転動体数が少ない場合に有効である。即ち、転動体の径が小さく、多くの転動体を有する転がり軸受と転動体の径が大きく、数の少ない転動体を有する転がり軸受がともに同じ動定格荷重の場合、本発明は後者により効果がある。
【0023】
【発明の実施の形態】
以下、本発明による実施の形態について図面を用いて説明する。図4は本発明の実施の形態による転がり軸受の断面図である。
【0024】
図4(a)に示す一例において、自動車用エンジン等に用いられるアイドラプーリ5は、その中心孔5aに、外輪2と内輪3と両輪2,3間に転動自在に配置された複数の転動体1とを有する転がり軸受4を嵌合させている。更に、転がり軸受4の内輪3は固定軸6に嵌合している。アイドラプーリ5は、外周面5bに無端ベルト(不図示)を掛け渡してテンションを与え、補機の回転軸やカムシャフトを回転駆動する。かかる転がり軸受4は、主にラジアルの荷重を受ける内輪固定、外輪回転の例である。転がり軸受4の両輪2,3の線膨張係数は10.1×10−6〜13.5×10−6(m/℃)であると好ましく、アイドラプーリ5,固定軸6の線膨張係数は10.1×10−6〜13.5×10−6(m/℃)と好ましいが、少なくとも両輪2,3の線膨張係数は、固定軸6の線膨張係数以上であることが望ましい。
【0025】
図4(b)に示す別な例において、ハウジング5’に対して、ロータ6a’を中央に取り付けた回転軸6’の両端を、一対の転がり軸受4’により回転自在に支持している。転がり軸受4’は、外輪2’と内輪3’と両輪2’,3’間に転動自在に配置された複数の転動体1’とを有する。かかる転がり軸受4’は、主にラジアルの荷重を受ける内輪回転、外輪固定の例である。転がり軸受4’の両輪2’,3’の線膨張係数は10.1×10−6〜13.5×10−6(m/℃)であると好ましく、ハウジング5’,回転軸6’の線膨張係数は10.1×10−6〜13.5×10−6(m/℃)と好ましいが、少なくとも両輪2’,3’の線膨張係数は、ハウジング5’の線膨張係数以下であることが望ましい。
【0026】
次に図1、2に示すように、ある転動体が負荷域の中央にきた場合を考える。その時、両隣の転動体において、軌道面との隙間が最も大きくなるうねりの山数は、Z(2n−1)/2である。ここで、Zは周回する転動体の数、nは自然数であり、例えば転動体の数が6個であるとき、転動体と軌道面との隙間が最も大きくなるうねりの山数は、3山、9山、15山、・・・である。
【0027】
この山数のうねりが大きいと、転動体は負荷域である位置においても荷重が負荷されない状態が生じ易く、急激な荷重が転動体にかかることが起こり得る。
【0028】
上述のうねりの山数Z(2n−1)/2は、転動体の数Zが奇数の時は存在することがない。この場合、転動体の数Zの値に近い山数のうねりが転動体等に影響すると考えられる。即ち(Z(2n−1)−1)/2と(Z(2n−1)+1)/2とで表される山数のうねりが影響すると考えられる。
【0029】
より具体的に、うねりの山数とその片振幅の関係を図5を用いて説明する。図5は、軌道面のうねりの山数と片振幅の一般的な関係を示す曲線の例を示した図である。本実施の形態では、偶数(Z個)の転動体を使用する際、転動体軌道の1円周当たり(Z(2n−1)/2)個のうねりの片振幅が(Z(2n−1)/2+1)以上、(Z(2n+1)/2)以下である山数のうねり片振幅の最大値よりも小さくなるようにしている。
【0030】
図5の曲線Cで示すように、一般的には、うねり片振幅は山数が多くなるに従って小さくなる傾向がある。かかる傾向に従えば、転動体軌道の1円周当たりZ(2n−1)/2山の片振幅Aは、それ以上の山数の中で最大の片振幅になるはずである。これに対し、本実施の形態においては、上記傾向に逆らって、上記片振幅Aを、(Z(2n−1)/2+1)以上、(Z(2n+1)/2)以下の山数のうねりの内(Xで示す範囲内)で最大とならないように(すなわちA<B(最大片振幅)となるように)、うねりを管理することで、振動を効果的に抑えるものである。このような管理は、部品を測定した上で、測定結果に基づき組み合わせを行うことで達成できる。
【0031】
次に、図6を参照して、別な例につき、うねりの山数と片振幅の関係について説明する。図6は、軌道面のうねりの山数と片振幅の一般的な関係を示す曲線の別な例を示した図である。本実施の形態では、奇数(Z個)の転動体を使用する際、転動体軌道の1円周当たり((Z(2n−1)−1)/2)山及び((Z(2n−1)+1)/2)山のうねりの片振幅の少なくとも一方が、((Z(2n−1)+1)/2+1)山以上、((Z(2n+1)−1)/2−1)山以下である山数のうねり片振幅の最大値よりも小さくなるようにしている。
【0032】
図6の曲線Cで示すように、一般的には、うねり片振幅は山数が多くなるに従って小さくなる傾向がある。かかる傾向に従えば、転動体軌道の1円周当たり((Z(2n−1)−1)/2)山の片振幅A1及び((Z(2n−1)+1)/2)山の片振幅A2は、それ以上の山数の中で最大の片振幅になるはずである。これに対し、本実施の形態においては、上記傾向に逆らって、上記片振幅(ここではA2)を((Z(2n−1)+1)/2+1)山以上、((Z(2n+1)−1)/2−1)山以下の山数のうねりの内(Xで示す範囲内)で最大とならないように(すなわちA2<B(最大片振幅)となるように)、うねりを管理することで、振動を効果的に抑えるものである。
【0033】
図7を参照して、更に別な例につき、うねりの山数と片振幅の関係について説明する。図7は、軌道面のうねりの山数と片振幅の一般的な関係を示す曲線の更に別な例を示した図である。本実施の形態では、偶数(Z個)の転動体を使用する際、転動体軌道の1円周当たり(Z(2n−1)/2−1)山の片振幅A3及び(Z(2n−1)/2+1)山のうねりの片振幅A4が、((Z(2n−3)/2)山以上、(Z(2n−1)/2−1)山以下である山数のうねり片振幅の最大値よりも小さくなるようにしている。
【0034】
図7の曲線Cで示すように、一般的には、うねり片振幅は山数が多くなるに従って小さくなる傾向がある。図5,6に示す例では、この傾向に逆らうようにして、うねりの片振幅を決めたが、一方で、かかる傾向に沿うことで、振動抑制効果をより高められることを本発明者らは見いだしたのである。より具体的には、上記片振幅A3,A4をZ(2n−3)/2山以上、Z(2n−1)/2−1山未満の山数のうねりの内(Xで示す範囲内)で最大とならないように(すなわちA3,A3<B(最大片振幅)となるように)、うねりを管理することで、かかる効果を達成するのである。
【0035】
転動体数が多い(例えば10個)場合、図8に示すように、ラジアル荷重方向の転動体(1)が荷重を支持し、その両隣の転動体(2)、(10)が荷重を分担しないときは、更にその両隣の転動体(3)、(9)と軌道面との間隔が詰まるため、転動体と軌道面との衝突が起こりにくくなるから、振動や異音などが発生しにくくなる。従って、転動体数が10個以上の場合、上述した厳格な管理は必要なく、図7に示す例のごとく、偶数(Z個)の転動体を使用する際、転動体軌道の1円周当たり(Z(2n−1)/2−1)山の片振幅A3及び(Z(2n−1)/2+1)山のうねりの片振幅A4が、((Z(2n−3)/2)山以上、(Z(2n−1)/2−1)山以下である山数のうねり片振幅の最大値よりも小さくすれば足りる。又、嵌め合い後の軸受部の残留隙間を小さくすることが望ましい。このために、ころがり軸受のラジアル隙間を詰めるとよい。
【0036】
更に、20山以上のうねりは問題になることが少ないので20山以下のうねりについて考えればよい。例えばZ=6とすると、問題となるうねりの山数は3山、9山、15山であり、3山のうねりの振幅は山数が4山以上9山以下であるうねりの中で振幅が最大にならないようにし、9山のうねりの振幅も山数が10山以上15山以下のうねりの中で振幅が最大にならないようにし、15山のうねりについても同様であれば、上述の問題を抑える効果が顕著に期待できる。
【0037】
さらに、通常うねりの振幅は山数が多くなるに従い小さくなるので、一番問題となる山数nは1の場合であり、n=1の場合について対策を行うことが有効である。
【0038】
また、うねりの大きさの管理方法としては、全てのうねりの大きさ中で最大値よりも小さくすることも考えられる。大きさの範囲としては最大値の半分程度であれば有効と考えられる。
【0039】
また、うねりの振幅を管理し、さらに軸受内部の隙間を小さくするとより一層の効果が期待できる。
【0040】
以上のように本発明を実施の形態により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、転がり軸受は軸受装置に組み込まれていても良い。
【0041】
【発明の効果】
本発明の転がり軸受によれば、内輪軌道面及び外輪軌道面の形状誤差(うねり)を抑えることによって、転動体が負荷域で受ける荷重のかかり方がスムーズになり、振動や騒音の発生を抑え、急激な負荷がかかることによる転動体の寿命低下を抑えることができる。
【図面の簡単な説明】
【図1】うねりの有無による軌道輪と転動体との関係を示す図である。
【図2】転動体の負荷状態を示す図である。
【図3】軌道面のうねりとラジアル荷重を受けた転動体の変形の関係を示す図である。
【図4】アイドラプーリに組み込まれた転がり軸受の断面図である。
【図5】軌道面のうねりの山数と片振幅の一般的な関係を示す図である。
【図6】軌道面のうねりの山数と片振幅の一般的な関係を示す図である。
【図7】軌道面のうねりの山数と片振幅の一般的な関係を示す図である。
【図8】転がり軸受に外輪に上方からラジアル荷重を加えた例を示す図である。
【符号の説明】
1、1’ 玉(転動体)
2、2’ 外輪
3、3’ 内輪
4、4’ 転がり軸受
5 アイドラプーリ
5’ ハウジング
6 固定軸
6’ 回転軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a motor having a large rotor, a rotating machine having a rotating shaft driven by a belt, a pulley rotatably supporting a timing belt of an automobile engine, a belt for driving auxiliary equipment, and the like, and a radial motor. The present invention relates to a rolling bearing and a bearing device to which a load is applied.
[0002]
[Prior art]
When the rolling bearing is operated while a radial load is applied, vibration called so-called rolling element passing vibration is generated. The rolling element passing vibration is generated when the load distribution changes according to the position of each rolling element in the load area, and the displacement amount and the direction of the displacement of the rotating shaft slightly change. Normally, the amplitude of the rolling element passing vibration is small, so it is rarely a problem.In the event that a problem occurs, it is thought that it can be dealt with by reducing the radial clearance of the rolling bearing or applying a preload. I was
[0003]
[Problems to be solved by the invention]
However, according to the study of the present inventors, it has been found that the rolling element passing vibration becomes a problem, and that sufficient measures cannot be taken by merely reducing the radial clearance of the rolling bearing or applying a preload. This phenomenon will be described.
[0004]
A minute undulation is often formed on the raceway surfaces of the inner and outer races of the rolling bearing due to the characteristics of the processing machine. When the race is regarded as a rigid body and the contact between the race and the rolling element is regarded as a linear spring, a predetermined vibration is generated due to the undulation of the raceway surface. Vibration caused by such undulation can be reduced by the technique disclosed in, for example, Japanese Patent No. 3046764.
[0005]
However, according to the research of the present inventors, it has been found that the rolling element passing vibration is amplified by the undulation of the raceway surface. FIG. 1 is a diagram illustrating a relationship between a raceway ring and a rolling element according to the presence or absence of undulation, and FIG. 2 is a diagram illustrating a load state of the rolling element. In FIG. 1, if there is no undulation on the raceway surface, there is a uniform gap between the rolling element 1 and the raceway surface of the outer race 2 as shown by a dotted line, but the undulation with the smallest inner diameter at the lowest point is shown. If so, assuming that the rolling element 1 is pressed against the inner ring 3, the gap between the rolling element 1 and the raceway surface of the outer ring 2 becomes uneven according to the undulation as shown by the solid line. In an extreme case, even if a radial load is applied to the inner ring 3, a gap Δ of zero or more may be generated in the rolling element 1 at a position shifted from the lowest point by an angle θ (a position where the inner diameter is maximized). It is possible.
[0006]
As shown in FIG. 2, when a downward radial load Fr is applied to the inner race 3, if there is no undulation, a load indicated by a dotted line in the figure is applied to the rolling element 1. That is, a load is gradually applied to the rolling element 1 passing below the horizontal line as the distance from the horizontal line increases, and a maximum load is applied at the lowest point (also referred to as a rolling element maximum load position). It is decreasing. The load region in this case is a range below the horizontal line, and the no-load region is a range above the horizontal line. On the other hand, when there is a swell as shown in FIG. 1, for example, the rolling element 1 has no load up to a position shifted by an angle θ from the lowest point, and the load rapidly increases from that point to the lowest point. It will be. For this reason, the rolling element passing vibration is amplified, and in some cases, a problem such as separation of the raceway surface may be caused. In this case, the load region is a narrow range with an angle 2θ across the lowest point, and the no-load region is another range.
[0007]
Even if the load of the rolling element 1 does not gradually decrease or increase smoothly as shown by a dotted line in FIG. 2, even if it is not an extreme swell as shown in FIG. Will be repeatedly received. That is, since the rolling bearing actually undergoes elastic deformation, when this is taken into consideration, as shown in FIG. 3, which shows the deformation in an exaggerated manner, there are large and small contact portions between the raceway surface and the rolling element. Specifically, a 2 > a 1 , a 3 (a 2 : the radius of the lowest rolling element at the time of Hertz elastic contact, a 1 , a 3 : the rolling element at a position shifted from the lowest point by an angle θ. , Δ 2 > δ 1 , δ 32 : the amount of elastic deformation of the Hertz in the rolling element at the lowest point, δ 1 , δ 3 : shifted from the lowest point by an angle θ (The amount of Hertz elastic deformation of the rolling element at the position), and the larger the undulation, the larger the rolling element load of the rolling element having a large hit and the smaller the rolling element load of the rolling element having a small hit. The torque in this case is proportional to the rolling element load in which the rolling element and the raceway contact each other, and may cause torque fluctuation. The center position in the radial direction of the rolling element with respect to the center position when waviness is zero, for the rolling elements of the position shifted by an angle θ from the lowest point, delta 1, outward by delta 3, the lowermost the rolling elements of the point moved inward by delta 2. That is, it rotates while moving in the radial direction by this amount.
[0008]
As described above, when the load of the rolling element 1 changes, the life is shortened due to the increase in the maximum rolling element load, and the torque changes due to the fluctuation of the rolling element load during one revolution, and further, while the rolling element rotates one revolution. When the center moves away from or approaches the center of the rolling bearing, vibration or noise may be generated.
[0009]
The present invention has been made in view of such a problem, and provides a rolling bearing and a bearing device that can suppress the generation of vibration and noise of a rolling element due to a sudden rise of a load and can achieve a long life. The purpose is to:
[0010]
[Means for Solving the Problems]
A rolling bearing according to a first aspect of the present invention includes a first race having a first race, a second race having a second race, and a first race between the first race and the second race. An even number (Z) of rolling elements provided so as to be freely rotatable in the rolling bearing, wherein each track has a minute undulation.
With respect to at least one of the first and second races, when n, which is a positive integer, is at least 1, per circumference of the raceway (Z (2n-1) / 2) The one-sided amplitude of the undulation having the number of peaks is not less than ((Z (2n-1) / 2) +1) and not more than (Z (2n + 1) / 2) per circumference of the orbit. It is characterized in that it is smaller than the maximum value of the one-sided amplitude of the undulation.
[0011]
According to a second aspect of the present invention, there is provided a rolling bearing having a first raceway having a first raceway, a second raceway having a second raceway, and the first raceway and the second raceway. An odd number (Z) of rolling elements provided rotatably on the rolling bearing, wherein each track has a minute undulation.
Regarding at least one of the first and second races, when n, which is a positive integer, is at least 1, per circumference of the raceway ((Z (2n-1)- Both the one-sided amplitude of the undulation having the number of peaks of 1) / 2) and the one-sided amplitude of the undulation having the number of peaks of ((Z (2n-1) +1) / 2) are:
The maximum value of the one-sided amplitude of the undulation having the number of peaks not less than ((Z (2n-1) +1) / 2 + 1) and not more than ((Z (2n + 1) -1) / 2-1) per circumference of the orbit. It is characterized by being smaller than.
[0012]
[Action]
The present inventors have further conducted intensive research and found that the rolling element passing vibration is amplified due to the undulation because of the shape error due to the undulation and the relationship between the number of rolling elements and the raceway surface of the inner and outer rings and the rolling element. It was found that the main factor was that the gap between the two changed periodically. That is, it has been found that the vibration can be suppressed by adjusting the number of rolling elements and the number of undulations. More specifically, the present inventors have further studied that, in a rolling bearing provided with an even number (Z) of rolling elements, when at least one of the races has a positive integer n of at least 1, , The one-sided amplitude of the waviness having the number of peaks of (Z (2n-1) / 2) per circumference of the track is ((Z (2n-1) / 2) +1) per circumference of the track. As described above, it has been found that the vibration can be effectively suppressed by making the value smaller than the maximum value of the one-sided amplitude of the undulation having the number of peaks equal to or less than (Z (2n + 1) / 2).
[0013]
Further, with respect to at least one of the first and second races in the rolling bearing, when at least the integer n is 1, per one circumference of the raceway (Z (2n− The one-sided amplitude of the undulation having the number of peaks of 1) / 2 ± 1) is equal to or more than (Z (2n−3) / 2) per circumference of the orbit (however, in the case of n = 1, it is equal to or more than 2). , (Z (2n-1) / 2), it was found that the vibration can be more effectively suppressed by making it smaller than the maximum value of the one-sided amplitude of the undulation having the number of peaks equal to or less than (Z (2n-1) / 2). The degree of contribution is lower than the swell of (Z (2n-1) / 2) peaks per circumference of the track, but (Z (2n-1) / 2 ± 1) peaks per circumference of the track. This is because the swell of numbers also contributes to vibration.
[0014]
On the other hand, in the case of a rolling bearing provided with an odd number (Z) of rolling elements, at least one of the first or second races has a positive integer n of at least one. When 1, the one-sided amplitude of the undulation having ((Z (2n-1) -1) / 2) peaks per circumference of the orbit, and ((Z (2n-1) +1) / 2) Is one or more ((Z (2n-1) +1) / 2 + 1) or more than ((Z (2n + 1) -1) / 2) per circumference of the trajectory. -1) It has been found that vibration can be effectively suppressed by making the amplitude smaller than the maximum value of the one-sided amplitude of the undulation having the following number of peaks. When the number of rolling elements is an odd number, the number of peaks specified in the first invention does not become an integer. In this case, it is considered that the undulation of the number of peaks close to the specified number of peaks contributes to the vibration. Therefore, it was decided to handle as described above.
[0015]
Further, it is preferable that the number of peaks of the undulation is 20 or less per circumference of the track.
[0016]
In addition, it is preferable that at least one of the first race and the second race is attached to a housing that accommodates the rolling bearing or a shaft that supports the rolling bearing by interference fit.
[0017]
Further, at least one of the first race and the second race is a bearing steel or a carbon steel having a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.). Alternatively, it is preferable that the housing or the shaft is made of structural steel, and the housing or the shaft is made of bearing steel having a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.).
[0018]
If the temperature rises during the operation of the rolling bearing and the coefficient of linear expansion between the bearing and the shaft or between the bearing and the housing is different, the fitting stress changes. For this reason, even if the influence of the shape error is kept small in the assembling state, the shape error may change due to the temperature rise, but at least one of the first orbital ring and the second orbital ring has a linear expansion coefficient. 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.) is formed from bearing steel, and the housing or the shaft has a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10. If the bearing is made of -6 (m / ° C) bearing steel, the linear expansion coefficient of the rolling bearing race and the shaft or the rolling bearing race and the housing is the same. It can be said that it is desirable because it is held as it is. However, in general, the shaft and the housing are often made of a material different from that of the bearing race, but in such a case, it is desirable that the shaft and the housing be made of a material as close to the race as possible.
[0019]
Specifically, as a material having a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.), a linear expansion coefficient of 10.1 × 10 −6 (m / ° C.) ) Martensitic stainless steel, 12.5 × 10 −6 (m / ° C.) bearing steel SUJ2, and 13.5 × 10 −6 (m / ° C.) austenitic stainless steel. Further, a case hardening steel such as SCr40 which is usually used can be applied as long as it has a linear expansion coefficient. The amount of elastic deformation at the maximum rolling element load position when approximately 25% of the dynamic rated load is applied to 5000N of a deep groove ball bearing having a nominal number of 6206 (inner diameter: 30 mm, outer diameter: 62 mm, width: 16 mm) (see FIG. Δ 2 ) is about 36 μm. On the other hand, assuming that the temperature difference between the outer ring and the housing due to the temperature rise is 10 ° C., the dimensional change in the linear expansion coefficient range of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.) is ( 13.5-10.1) × 10 −6 × 0.062 × 10 ≒ 2.1 × 10 −6 (2.1 μm), which is a sufficiently small value compared to the elastic deformation amount. It is not expected to affect change. As the material of the housing and the shaft, it is possible to use the bearing steel, structural steel such as S20C, and other carbon steel.
[0020]
Further, in the rolling bearing, the first race is an inner race, the second race is an outer race, the inner race is configured to rotate, the coefficient of linear expansion of each race is: Preferably, the coefficient of linear expansion of the housing is equal to or less than the coefficient of linear expansion. In such a case, the inner ring rotates and the inner ring and the shaft are tightly fitted, and the other outer ring and the housing increase in temperature, and in the case of the tight fit, the interference is small, and the dimension changes in a direction to increase the gap. This is a combination in which at least the interference is tight and does not affect the shape change of the outer ring.
[0021]
Further, in the rolling bearing, the first race is an inner race, the second race is an outer race, the outer race is configured to rotate, the coefficient of linear expansion of each race is: It is preferable that the linear expansion coefficient be equal to or greater than the linear expansion coefficient of the shaft. In such a case, since the outer ring rotates and the outer ring and the housing are tightly fitted, and the other inner ring and the shaft increase in temperature, in the case of the tight fit, the interference is small, and the dimension changes in a direction to increase the gap. This is a combination in which at least the interference is tight and does not affect the shape change of the inner ring.
[0022]
Further, in the rolling bearing in which a load is mainly applied in the radial direction, it is preferable that a load region in which a load is applied to the rolling element and a non-load region in which a load is not applied to the rolling element exist. In particular, the present invention is effective when the number of rolling elements is small with respect to the dynamic load rating of the bearing. That is, when the diameter of the rolling element is small, the rolling bearing having many rolling elements and the diameter of the rolling element are large, and the rolling bearings having a small number of rolling elements have the same dynamic load rating, the present invention is more effective than the latter. is there.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view of the rolling bearing according to the embodiment of the present invention.
[0024]
In the example shown in FIG. 4 (a), an idler pulley 5 used for an automobile engine or the like has a plurality of rolling rollers rotatably arranged between an outer wheel 2, an inner wheel 3 and both wheels 2, 3 in a center hole 5a thereof. The rolling bearing 4 having the moving body 1 is fitted. Further, the inner ring 3 of the rolling bearing 4 is fitted on the fixed shaft 6. The idler pulley 5 applies tension by wrapping an endless belt (not shown) around the outer peripheral surface 5b, and rotationally drives a rotation shaft and a camshaft of the auxiliary machine. The rolling bearing 4 is an example in which the inner ring is fixed and the outer ring rotates, mainly receiving a radial load. The coefficient of linear expansion of the two wheels 2 and 3 of the rolling bearing 4 is preferably 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.), and the coefficient of linear expansion of the idler pulley 5 and the fixed shaft 6 is Although it is preferably 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.), it is desirable that at least the linear expansion coefficients of the two wheels 2 and 3 be equal to or higher than the linear expansion coefficient of the fixed shaft 6.
[0025]
In another example shown in FIG. 4B, both ends of a rotating shaft 6 'having a rotor 6a' mounted at the center thereof are rotatably supported by a pair of rolling bearings 4 'with respect to a housing 5'. The rolling bearing 4 'has an outer ring 2', an inner ring 3 ', and a plurality of rolling elements 1' rotatably arranged between the two wheels 2 ', 3'. The rolling bearing 4 ′ is an example of inner ring rotation and outer ring fixing mainly receiving a radial load. It is preferable that the linear expansion coefficient of the two wheels 2 ', 3' of the rolling bearing 4 'is 10.1 × 10 -6 to 13.5 × 10 -6 (m / ° C.). The coefficient of linear expansion is preferably 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.), but the coefficient of linear expansion of at least both wheels 2 ′ and 3 ′ is not more than the coefficient of linear expansion of the housing 5 ′. Desirably.
[0026]
Next, as shown in FIGS. 1 and 2, consider a case where a certain rolling element comes to the center of the load area. At that time, in the rolling elements on both sides, the number of peaks of the undulation with the largest gap with the raceway surface is Z (2n-1) / 2. Here, Z is the number of rolling elements orbiting, and n is a natural number. For example, when the number of rolling elements is six, the number of undulation peaks at which the gap between the rolling elements and the raceway surface is the largest is three. , 9 mountains, 15 mountains, ...
[0027]
If the number of peaks is large, the rolling element is likely to receive no load even at a position that is a load area, and a sudden load may be applied to the rolling element.
[0028]
The number of undulations Z (2n-1) / 2 described above does not exist when the number Z of rolling elements is an odd number. In this case, it is considered that the undulation of the number of peaks close to the value of the number Z of the rolling elements affects the rolling elements and the like. That is, it is considered that the undulation of the number of peaks represented by (Z (2n-1) -1) / 2 and (Z (2n-1) +1) / 2 influences.
[0029]
More specifically, the relationship between the number of undulations and the one-sided amplitude will be described with reference to FIG. FIG. 5 is a diagram showing an example of a curve indicating a general relationship between the number of peaks of undulation on the track surface and the one-sided amplitude. In this embodiment, when an even number (Z) of rolling elements are used, the one-sided amplitude of (Z (2n-1) / 2) undulations per circumference of the rolling element trajectory is (Z (2n-1). ) / 2 + 1) or more and (Z (2n + 1) / 2) or less, so as to be smaller than the maximum value of the undulation piece amplitude of the number of peaks.
[0030]
As shown by the curve C in FIG. 5, generally, the undulation piece amplitude tends to decrease as the number of peaks increases. According to this tendency, the half amplitude A of Z (2n-1) / 2 peaks per circumference of the rolling element trajectory should be the largest half amplitude among the number of peaks larger than that. On the other hand, in the present embodiment, contrary to the above tendency, the one-sided amplitude A is set to be equal to or larger than (Z (2n-1) / 2 + 1) and equal to or smaller than (Z (2n + 1) / 2). The vibration is effectively suppressed by managing the swell so that the maximum does not occur within the range (within the range indicated by X) (that is, A <B (maximum half amplitude)). Such management can be achieved by measuring components and combining them based on the measurement results.
[0031]
Next, with reference to FIG. 6, the relationship between the number of undulations and the half amplitude will be described for another example. FIG. 6 is a diagram illustrating another example of a curve indicating a general relationship between the number of undulations on the track surface and the one-sided amplitude. In this embodiment, when an odd number (Z) of rolling elements are used, ((Z (2n-1) -1) / 2) peaks and ((Z (2n-1)) per circumference of the rolling element orbit. ) +1) / 2) At least one of the peak amplitudes is not less than ((Z (2n-1) +1) / 2 + 1) and not more than ((Z (2n + 1) -1) / 2-1). It is set to be smaller than the maximum value of the undulation piece amplitude of a certain number of peaks.
[0032]
As shown by the curve C in FIG. 6, generally, the undulation piece amplitude tends to decrease as the number of peaks increases. According to this tendency, ((Z (2n-1) -1) / 2) peak amplitude A1 and ((Z (2n-1) +1) / 2) peak amplitude per circumference of the rolling element orbit. The amplitude A2 should be the largest one-sided amplitude in the number of peaks higher than that. On the other hand, in the present embodiment, contrary to the above tendency, the one-sided amplitude (here, A2) is set to be equal to or more than ((Z (2n-1) +1) / 2 + 1) peaks and ((Z (2n + 1) -1) ) / 2-1) By managing the swell so that it does not become the maximum among the swells of the number of hills below the peak (within the range indicated by X) (ie, so that A2 <B (maximum half amplitude)). , Which effectively suppresses vibration.
[0033]
With reference to FIG. 7, the relationship between the number of undulations and the one-sided amplitude will be described for still another example. FIG. 7 is a diagram showing still another example of a curve indicating a general relationship between the number of peaks of the undulations on the track surface and the one-sided amplitude. In the present embodiment, when an even number (Z) of rolling elements are used, the half amplitudes A3 and (Z (2n−2) of (Z (2n−1) / 2-1) peaks per circumference of the rolling element orbit. 1) / 2 + 1) One-sided undulation amplitude A4 of the ridges is equal to or more than ((Z (2n-3) / 2) peaks and equal to or less than (Z (2n-1) / 2-1) peaks). Is made smaller than the maximum value.
[0034]
As shown by a curve C in FIG. 7, generally, the undulation piece amplitude tends to decrease as the number of peaks increases. In the examples shown in FIGS. 5 and 6, the one-sided amplitude of the undulation is determined to counter this tendency. On the other hand, the inventors have found that the vibration suppression effect can be further enhanced by following this tendency. I found it. More specifically, the above-mentioned half-amplitudes A3 and A4 are undulated with the number of peaks equal to or more than Z (2n-3) / 2 and less than Z (2n-1) / 2-1 (within the range indicated by X). This effect is achieved by managing the swell so as not to be the maximum in (i.e., A3, A3 <B (maximum half amplitude)).
[0035]
When the number of rolling elements is large (for example, 10 pieces), as shown in FIG. 8, the rolling elements (1) in the radial load direction support the load, and the rolling elements (2) and (10) on both sides share the load. Otherwise, the distance between the rolling elements (3) and (9) on both sides thereof and the raceway surface is further reduced, so that the collision between the rolling elements and the raceway surface is less likely to occur. Become. Therefore, when the number of rolling elements is 10 or more, the strict management described above is not necessary, and as shown in the example in FIG. 7, when an even number (Z) of rolling elements are used, per one circumference of the rolling element trajectory is used. (Z (2n-1) / 2-1) peak half amplitude A3 and (Z (2n-1) / 2 + 1) peak undulation half amplitude A4 are equal to or more than ((Z (2n-3) / 2) peak) , (Z (2n-1) / 2-1) peaks or less should be smaller than the maximum value of the undulation piece amplitude, and it is desirable to reduce the residual gap of the bearing portion after fitting. For this purpose, the radial clearance of the rolling bearing may be reduced.
[0036]
Further, since swells of 20 or more hills rarely cause a problem, swells of 20 or less hills may be considered. For example, assuming that Z = 6, the number of undulations in question is three, nine, and fifteen. The amplitude of the undulation of three ridges is the amplitude of undulations in which the number of ridges is four or more and nine or less. If the peak of the swell of 9 peaks is not set to the maximum among the undulations of 10 peaks or more and 15 peaks or less, and the same applies to the undulation of 15 peaks, the above-mentioned problem is solved. A remarkable effect can be expected.
[0037]
Further, since the amplitude of the undulation usually decreases as the number of peaks increases, the number n of peaks, which is the most problematic, is 1, and it is effective to take a countermeasure when n = 1.
[0038]
In addition, as a method of managing the magnitude of the undulation, it is conceivable to set the undulation to a value smaller than the maximum value among all the undulations. It is considered effective if the size range is about half of the maximum value.
[0039]
Further, if the amplitude of the undulation is controlled and the gap inside the bearing is reduced, further effects can be expected.
[0040]
As described above, the present invention has been described with the embodiments, but the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention. For example, the rolling bearing may be incorporated in a bearing device.
[0041]
【The invention's effect】
According to the rolling bearing of the present invention, the shape error (undulation) of the inner ring raceway surface and the outer ring raceway surface is suppressed, so that the load applied to the rolling element in the load region becomes smooth, and the generation of vibration and noise is suppressed. In addition, it is possible to suppress a reduction in the life of the rolling element due to a sudden load.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a raceway and rolling elements according to the presence or absence of undulation.
FIG. 2 is a diagram showing a load state of a rolling element.
FIG. 3 is a diagram showing a relationship between undulation of a raceway surface and deformation of a rolling element subjected to a radial load.
FIG. 4 is a sectional view of a rolling bearing incorporated in an idler pulley.
FIG. 5 is a diagram showing a general relationship between the number of peaks of undulations on a track surface and one-sided amplitude.
FIG. 6 is a diagram illustrating a general relationship between the number of peaks of undulations on a track surface and one-sided amplitude.
FIG. 7 is a diagram illustrating a general relationship between the number of peaks of undulations on a track surface and one-sided amplitude.
FIG. 8 is a diagram illustrating an example in which a radial load is applied to the outer ring from above from applied to the rolling bearing;
[Explanation of symbols]
1, 1 'ball (rolling element)
2, 2 'Outer ring 3, 3' Inner ring 4, 4 'Rolling bearing 5 Idler pulley 5' Housing 6 Fixed shaft 6 'Rotating shaft

Claims (10)

第1の軌道を有する第1の軌道輪と、第2の軌道を有する第2の軌道輪と、前記第1の軌道と前記第2の軌道との間に転動自在に設けられた偶数個(Z)の転動体と、を備え、前記各軌道に微小なうねりが存在する転がり軸受において、
前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、正の整数であるnが少なくとも1のときに、前記軌道の1円周当たり(Z(2n−1)/2)の山数を有する前記うねりの片振幅が、前記軌道の1円周当たり((Z(2n−1)/2)+1)以上、(Z(2n+1)/2)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなることを特徴とする転がり軸受。
A first race having a first race, a second race having a second race, and an even number of rolling members provided between the first race and the second race. (Z) a rolling element, wherein each of the raceways has a minute undulation.
With respect to at least one of the first and second races, when n, which is a positive integer, is at least 1, per circumference of the raceway (Z (2n-1) / 2) The one-sided amplitude of the undulation having the number of peaks is not less than ((Z (2n-1) / 2) +1) and not more than (Z (2n + 1) / 2) per circumference of the orbit. A rolling bearing, wherein the rolling bearing has a smaller value than the maximum value of the one-sided amplitude.
前記転がり軸受における前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、少なくとも前記整数nが1のときに、前記軌道の1円周当たり(Z(2n−1)/2±1)の山数を有する前記うねりの片振幅が、前記軌道の1円周当たり(Z(2n−3)/2)以上(但しn=1の場合は2以上とする)、(Z(2n−1)/2)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなることを特徴とする請求項1に記載の転がり軸受。With respect to at least one of the first race and the second race in the rolling bearing, when at least the integer n is 1, per circumference of the race (Z (2n-1)) (1/2 (1)), the one-sided amplitude of the waviness having a peak number of (Z (2n-3) / 2) or more per circumference of the orbit (however, in the case of n = 1, 2 or more), ( The rolling bearing according to claim 1, wherein the rolling bearing has a peak number equal to or less than Z (2n−1) / 2) and is smaller than a maximum value of the one-sided amplitude of the undulation. 第1の軌道を有する第1の軌道輪と、第2の軌道を有する第2の軌道輪と、前記第1の軌道と前記第2の軌道との間に転動自在に設けられた奇数個(Z)の転動体と、を備え、前記各軌道に微小なうねりが存在する転がり軸受において、
前記第1の軌道輪または前記第2の軌道輪の少なくとも一方の前記軌道輪に関し、正の整数であるnが少なくとも1のとき、前記軌道の1円周当たり((Z(2n−1)−1)/2)の山数を有する前記うねりの片振幅と、((Z(2n−1)+1)/2)の山数を有する前記うねりの片振幅と、のいずれもが、
前記軌道の1円周当たり((Z(2n−1)+1)/2+1)以上、((Z(2n+1)−1)/2−1)以下の山数を有する前記うねりの片振幅の最大値よりも小さくなることを特徴とする転がり軸受。
A first raceway having a first raceway, a second raceway having a second raceway, and an odd number of rolling elements provided between the first raceway and the second raceway so as to be freely rotatable; (Z) a rolling element, wherein each of the raceways has a minute undulation.
Regarding at least one of the first and second races, when n, which is a positive integer, is at least 1, per circumference of the raceway ((Z (2n-1)- Both the one-sided amplitude of the undulation having the number of peaks of 1) / 2) and the one-sided amplitude of the undulation having the number of peaks of ((Z (2n-1) +1) / 2) are:
The maximum value of the one-sided amplitude of the undulation having the number of peaks not less than ((Z (2n-1) +1) / 2 + 1) and not more than ((Z (2n + 1) -1) / 2-1) per circumference of the orbit. A rolling bearing characterized in that it is smaller than the rolling bearing.
前記うねりの山数は前記軌道の1円周当たり20以下であることを特徴とする請求項1乃至3のいずれかに記載の転がり軸受。The rolling bearing according to any one of claims 1 to 3, wherein the number of peaks of the waviness is 20 or less per circumference of the track. 前記第1の軌道輪または前記第2の軌道輪の少なくとも一方は、前記転がり軸受を収納するハウジングまたは前記転がり軸受を支持する軸に締まり嵌めで取り付けられていることを特徴とする請求項1乃至4のいずれかに記載の転がり軸受。The at least one of the first bearing ring and the second bearing ring is attached to a housing that accommodates the rolling bearing or a shaft that supports the rolling bearing by an interference fit. 4. The rolling bearing according to any one of 4. 前記第1の軌道輪または前記第2の軌道輪の少なくとも一方は、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼から形成され、
前記ハウジングまたは前記軸が、線膨張係数10.1×10−6〜13.5×10−6(m/℃)の軸受用鋼、炭素鋼、又は構造用鋼から形成されていることを特徴とする請求項1乃至5のいずれかに記載の転がり軸受。
At least one of the first race and the second race is formed of bearing steel having a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.),
The housing or the shaft is made of bearing steel, carbon steel, or structural steel having a linear expansion coefficient of 10.1 × 10 −6 to 13.5 × 10 −6 (m / ° C.). The rolling bearing according to any one of claims 1 to 5, wherein
前記転がり軸受において、前記第1の軌道輪が内輪であり、前記第2の軌道輪が外輪であり、前記内輪が回転するようになっており、前記各軌道輪の線膨張係数は、前記ハウジングの線膨張係数以下であることを特徴とする請求項6に記載の転がり軸受。In the above-mentioned rolling bearing, the first race is an inner race, the second race is an outer race, and the inner race is rotated. 7. The rolling bearing according to claim 6, wherein the coefficient of linear expansion is not more than. 前記転がり軸受において、前記第1の軌道輪が内輪であり、前記第2の軌道輪が外輪であり、前記外輪が回転するようになっており、前記各軌道輪の線膨張係数は、前記軸の線膨張係数以上であることを特徴とする請求項6に記載の転がり軸受。In the rolling bearing, the first race is an inner race, the second race is an outer race, and the outer race is rotated. The linear expansion coefficient of each race is the same as that of the shaft. The rolling bearing according to claim 6, wherein the rolling bearing has a linear expansion coefficient of not less than. 主にラジアル方向に荷重がかかる前記転がり軸受において、前記転動体に荷重がかかる負荷域及び前記転動体に荷重がかからない非負荷域が存在することを特徴とする請求項1乃至8に記載の転がり軸受。The rolling bearing according to any one of claims 1 to 8, wherein the rolling bearing that mainly applies a load in the radial direction includes a load area where a load is applied to the rolling element and a non-load area where a load is not applied to the rolling element. bearing. 請求項1乃至9のいずれかに記載の転がり軸受を使用したことを特徴とする軸受装置。A bearing device using the rolling bearing according to claim 1.
JP2002226999A 2002-08-05 2002-08-05 Rolling bearing and bearing device Expired - Fee Related JP4203843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226999A JP4203843B2 (en) 2002-08-05 2002-08-05 Rolling bearing and bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226999A JP4203843B2 (en) 2002-08-05 2002-08-05 Rolling bearing and bearing device

Publications (2)

Publication Number Publication Date
JP2004068877A true JP2004068877A (en) 2004-03-04
JP4203843B2 JP4203843B2 (en) 2009-01-07

Family

ID=32014154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226999A Expired - Fee Related JP4203843B2 (en) 2002-08-05 2002-08-05 Rolling bearing and bearing device

Country Status (1)

Country Link
JP (1) JP4203843B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105273A (en) * 2004-10-05 2006-04-20 Jtekt Corp Rolling device
JP2006151321A (en) * 2004-12-01 2006-06-15 Kayaba Ind Co Ltd Power steering device
US8104968B2 (en) * 2006-03-27 2012-01-31 Ntn Corporation Rolling contact bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105273A (en) * 2004-10-05 2006-04-20 Jtekt Corp Rolling device
JP2006151321A (en) * 2004-12-01 2006-06-15 Kayaba Ind Co Ltd Power steering device
US8104968B2 (en) * 2006-03-27 2012-01-31 Ntn Corporation Rolling contact bearing

Also Published As

Publication number Publication date
JP4203843B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP2787229B1 (en) Rolling bearing with a cage
JP4581542B2 (en) Rotating support device
US20140072253A1 (en) Bearing arrangement with a back-up bearing, in particular for mounting the rapidly rotating shaft of a compressor
US9334900B2 (en) Ball bearing cage
JP3207410U (en) Rolling bearing
JPH11210766A (en) Three point contact ball bearing
JP4507915B2 (en) Split bearing
JP2008106869A (en) Ball bearing
JP2004068877A (en) Rolling bearing and bearing device
US20140064650A1 (en) Bearing arrangement with a back-up bearing, in particular for mountnig a rapidly rotating shaft
JPH10159579A (en) Rolling bearing for engine auxiliary machine
JP2008240778A (en) Automatic-aligning roller bearing
JP2006177504A (en) Direct drive motor
KR20200143967A (en) Air foil bearing
JP2003329034A (en) Rotation supporting device
JP2004116751A (en) Rotation supporting device for pulley
JP2008118813A (en) Electric motor for hybrid vehicle
JP2000350402A (en) Miniature motor for information apparatus
JP2013096554A (en) Rolling bearing device
JPH09324820A (en) Ball bearing
JPH0345258B2 (en)
JPH10246239A (en) Rolling bearing and relevant product using the same
JP2009068530A (en) Automatically aligning roller bearing
WO2015137073A1 (en) In-wheel motor drive device
JP2006105273A (en) Rolling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4203843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees