JP2008240778A - Automatic-aligning roller bearing - Google Patents

Automatic-aligning roller bearing Download PDF

Info

Publication number
JP2008240778A
JP2008240778A JP2007078741A JP2007078741A JP2008240778A JP 2008240778 A JP2008240778 A JP 2008240778A JP 2007078741 A JP2007078741 A JP 2007078741A JP 2007078741 A JP2007078741 A JP 2007078741A JP 2008240778 A JP2008240778 A JP 2008240778A
Authority
JP
Japan
Prior art keywords
outer ring
bearing
aligning roller
roller bearing
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078741A
Other languages
Japanese (ja)
Inventor
Morio Tanmachi
守男 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007078741A priority Critical patent/JP2008240778A/en
Publication of JP2008240778A publication Critical patent/JP2008240778A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of a rotational asynchronous component of vibration during rotation of a bearing so as to improve an accuracy of rotation without deteriorating the workability or increasing the assembling cost of bearing parts. <P>SOLUTION: A plurality of oil holes 22 are formed at a substantially axially central portion of an outer ring 20 of the automatic-aligning roller bearing 10. The oil holes 22 are disposed at regular intervals in the circumferential direction of the outer ring 20 and formed to extend in the radial direction. The number of rollers 50 in each row is a number obtained by multiplying the number of the oil holes 22 of the outer ring 20 by a natural number. That is, when the number of the rollers in each row, the number of the oil holes and the natural number are indicated by Z, OH, n, respectively, the relation between the number of the rollers in each row and the number of the oil holes is expressed by the following formula: Z=n×OH. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、保持器に転動自在に保持された複数の転動体を、外輪及び内輪の各軌道間に複列に、円周方向に所定の間隔をあけて設けられた自動調心ころ軸受に関し、詳しくは回転の高精度化を図るための構造に関する。   The present invention relates to a self-aligning roller bearing in which a plurality of rolling elements held by a cage in a freely rotatable manner are provided in double rows between outer races and inner races at predetermined intervals in the circumferential direction. More particularly, the present invention relates to a structure for improving the accuracy of rotation.

一般に、高速回転等の過酷な条件下で運転される自動調心ころ軸受では、循環給油法が採用されている。循環給油法は、自動調心ころ軸受の外輪における軸方向略中央に、径方向に沿う油孔を円周方向の複数箇所に穿設させ、油孔を介して給油を行う方法である。   In general, in a self-aligning roller bearing that is operated under severe conditions such as high-speed rotation, a circulating oil supply method is employed. The circulating oil supply method is a method in which oil holes along the radial direction are formed at a plurality of locations in the circumferential direction at approximately the center in the axial direction of the outer ring of the self-aligning roller bearing, and oil supply is performed through the oil holes.

従来から、循環給油法を採用した自動調心ころ軸受は知られている(例えば、特許文献1参照)。
図5は、特許文献1で開示されている自動調心ころ軸受を示す要部断面図である。
Conventionally, a self-aligning roller bearing employing a circulating oil supply method is known (see, for example, Patent Document 1).
FIG. 5 is a cross-sectional view of an essential part showing a self-aligning roller bearing disclosed in Patent Document 1. As shown in FIG.

図5を参照すると、自動調心ころ軸受100は、ハウジング101に固設された外輪102及び内輪103間に、保持器106、107により保持された2列の球面ころ104、105を配置されてなる。   Referring to FIG. 5, the self-aligning roller bearing 100 includes two rows of spherical rollers 104 and 105 held by cages 106 and 107 between an outer ring 102 and an inner ring 103 fixed to the housing 101. Become.

外輪102の軸方向中央には、潤滑油供給用の孔102aが、円周方向の所定箇所に径方向に沿って形成される。また、ハウジング101には、孔102aに対向する位置に、潤滑油供給用の孔101aが形成されており、孔101aは、給油源に連通される。
孔102aは、ハウジング101の対応する孔101aを介して供給される潤滑油の流速を増大させ、潤滑油を軸受回転による振り切り効果に抗して、保持器中央部106c及び107c間を介して軸受内部に到達させる。
At the center of the outer ring 102 in the axial direction, a lubricating oil supply hole 102a is formed along a radial direction at a predetermined location in the circumferential direction. The housing 101 has a lubricating oil supply hole 101a formed at a position facing the hole 102a, and the hole 101a communicates with an oil supply source.
The hole 102a increases the flow rate of the lubricating oil supplied through the corresponding hole 101a of the housing 101, and resists the lubricating oil against the effect of shaking off the bearing rotation, so that the bearing is interposed between the cage central portions 106c and 107c. Reach inside.

上述した従来の図5に示す自動調心ころ軸受100では、高速回転等苛酷な使用条件下にあっても、潤滑油を軸受内部に到達させることができる。ここで、特に高速回転時には、軸受振動を抑制させるため、自動調心ころ軸受100には、高い回転精度を要求される。したがって、内外輪102,103の軌道面や球面ころ104、105の形状誤差、球面ころ104、105相互の寸法差を小さくする必要がある。   In the conventional self-aligning roller bearing 100 shown in FIG. 5, the lubricating oil can reach the inside of the bearing even under severe use conditions such as high-speed rotation. Here, especially at the time of high-speed rotation, in order to suppress bearing vibration, the self-aligning roller bearing 100 is required to have high rotational accuracy. Therefore, it is necessary to reduce the raceway surface of the inner and outer rings 102 and 103, the shape error of the spherical rollers 104 and 105, and the dimensional difference between the spherical rollers 104 and 105.

しかし、内外輪102,103の軌道面や球面ころ104、105の形状誤差、球面ころ104、105相互の寸法差を小さくして、回転精度を高めるには加工コストの面から限界があり、特に回転非同期成分NRRO(Non Repeatable Run-Out)を小さくすることは困難であった。   However, there is a limit in terms of processing cost in order to increase the rotational accuracy by reducing the shape error of the raceway surfaces of the inner and outer rings 102 and 103, the spherical rollers 104 and 105, and the dimensional difference between the spherical rollers 104 and 105. It has been difficult to reduce the rotation asynchronous component NRRO (Non Repeatable Run-Out).

すなわち、外輪102には、径方向に沿う潤滑油供給用の孔102aの穿設加工に起因して、外輪102の軌道面の形状誤差山が、孔102aの数だけ生じる。このため、球面ころ数によっては、ラジアル振れの回転非同期成分NRROが現れてしまう。したがって、特に高速回転で用いられる自動調心ころ軸受では、潤滑油供給用の孔102aの加工が外輪102の軌道面の形状誤差に影響を及ぼさないように加工することが要求されていた。   That is, in the outer ring 102, due to the drilling process of the lubricating oil supply hole 102a along the radial direction, the shape error crest of the raceway surface of the outer ring 102 is generated by the number of the holes 102a. For this reason, depending on the number of spherical rollers, a radial runout rotation asynchronous component NRRO appears. Therefore, in particular, in the self-aligning roller bearing used for high-speed rotation, it is required to process the lubricating oil supply hole 102a so as not to affect the shape error of the raceway surface of the outer ring 102.

そこで、特許文献2には、軌道面に形状誤差があっても回転非同期成分NRROの現れ難い軸受スピンドルが開示されている。
図6は、特許文献2で開示されている軸受スピンドルを示す要部断面図である。
Therefore, Patent Document 2 discloses a bearing spindle in which the rotation asynchronous component NRRO hardly appears even if there is a shape error on the raceway surface.
FIG. 6 is a cross-sectional view of a main part showing a bearing spindle disclosed in Patent Document 2. As shown in FIG.

図6を参照すると、軸受スピンドルは、約数を3以上持つ数を転動体数とした転がり軸受110と、転動体数を約数を持たない11以上の素数とした転がり軸受111とを組み合わせてなる。   Referring to FIG. 6, the bearing spindle is a combination of a rolling bearing 110 having a number of divisors of 3 or more and the number of rolling elements, and a rolling bearing 111 having a number of rolling elements of 11 or more and not having a divisor. Become.

転がり軸受110の転動体数が、約数を3以上持つ数であることにより、ラジアル振れの回転非同期成分NRROが抑制される。また、転がり軸受111の転動体数が、約数を持たない11以上の素数であることにより、アキシアル振れの回転非同期成分NRROが抑制される。
特開平11−141543号公報(第2〜3頁、第2図) 特開2000−74048号公報(第4頁、第3図)
When the number of rolling elements of the rolling bearing 110 is a number having a divisor of 3 or more, the rotational asynchronous component NRRO of radial shake is suppressed. Further, when the number of rolling elements of the rolling bearing 111 is a prime number of 11 or more that does not have a divisor, the rotational asynchronous component NRRO of the axial shake is suppressed.
Japanese Patent Laid-Open No. 11-141543 (pages 2 and 3, FIG. 2) JP 2000-74048 A (page 4, FIG. 3)

上述した図5のように、自動調心ころ軸受の外輪に円周方向所定箇所に径方向に沿って、潤滑油供給用の孔102aが形成されたことにより、潤滑油供給用の孔を穿設加工することに起因して、外輪102の軌道面に孔102aの数に対応する形状誤差が生じても、ラジアル振れの回転非同期成分NRROを抑制することが要求されている。   As shown in FIG. 5 described above, the lubricating oil supply hole 102a is formed in the outer ring of the self-aligning roller bearing along the radial direction at a predetermined position in the circumferential direction. Even if a shape error corresponding to the number of holes 102a occurs on the raceway surface of the outer ring 102 due to the installation process, it is required to suppress the rotational asynchronous component NRRO of radial runout.

図5の自動調心ころ軸受は、図6に示す軸受スピンドルのように転動体が玉ではなく球面ころであること、潤滑油が軸受外輪に設けた潤滑油供給用の孔102aから供給されること等から、加工性及び組立性が図6に示す軸受スピンドルより制約され、コスト高となる。   In the self-aligning roller bearing of FIG. 5, the rolling element is not a ball but a spherical roller as in the bearing spindle shown in FIG. 6, and lubricating oil is supplied from a lubricating oil supply hole 102a provided in the bearing outer ring. For this reason, the workability and the assemblability are restricted by the bearing spindle shown in FIG.

本発明は、軸受部品の加工性や組立コストを増大させることなく、軸受回転時、振動の回転非同期成分の発生を抑制させることができ、回転の高精度化を図ることができる自動調心ころ軸受を提供することを目的としている。   The present invention is a self-aligning roller capable of suppressing the generation of a rotationally asynchronous component of vibration during rotation of the bearing and increasing the accuracy of rotation without increasing the workability and assembly cost of the bearing component. It aims to provide a bearing.

本発明の上記目的は、下記構成により達成される。   The above object of the present invention is achieved by the following configurations.

(1) 内周面に球状凹面である軌道面を有する外輪と、
外周面に複列の軌道面を有する内輪と、
外輪及び内輪の各軌道面間に複列に、円周方向に所定の間隔をあけて複数設けられ、保持器に転動自在に保持された転動体とを備える自動調心ころ軸受において、
外輪の軸方向略中央には、複数の油孔が、円周方向に等配となる所定の位置に、それぞれ径方向に沿って形成されており、かつ、
各列の転動体数が、外輪の油孔数の自然数倍であることを特徴とする自動調心ころ軸受。
(1) an outer ring having a raceway surface which is a spherical concave surface on the inner peripheral surface;
An inner ring having a double-row raceway surface on the outer peripheral surface;
In a self-aligning roller bearing provided with a plurality of rolling elements which are provided in a plurality of rows at predetermined intervals in the circumferential direction between the raceways of the outer ring and the inner ring, and which are rotatably held by a cage,
A plurality of oil holes are formed in a substantially central position in the axial direction of the outer ring at predetermined positions that are equally distributed in the circumferential direction, respectively, along the radial direction, and
A self-aligning roller bearing, wherein the number of rolling elements in each row is a natural number times the number of oil holes in the outer ring.

(2) 内周面に球状凹面である軌道面を有する外輪と、
外周面に複列の軌道面を有する内輪と、
外輪及び内輪の各軌道面間に複列に、円周方向に所定の間隔をあけて複数設けられ、保持器に転動自在に保持された転動体とを備える自動調心ころ軸受において、
外輪の軸方向略中央には、複数の油孔が、円周方向に等配となる所定の位置に、それぞれ径方向に沿って形成されており、かつ、
各列の転動体数が、約数を3以上有する数であることを特徴とする自動調心ころ軸受。
(2) an outer ring having a raceway surface which is a spherical concave surface on the inner peripheral surface;
An inner ring having a double-row raceway surface on the outer peripheral surface;
In a self-aligning roller bearing comprising a plurality of rolling elements which are provided in a plurality of rows at predetermined intervals in the circumferential direction between the raceways of the outer ring and the inner ring and which are rotatably held by a cage,
A plurality of oil holes are formed in a substantially central position in the axial direction of the outer ring at predetermined positions that are equally distributed in the circumferential direction, respectively, along the radial direction, and
A self-aligning roller bearing, wherein the number of rolling elements in each row is a number having a divisor of 3 or more.

前記(1)記載の自動調心ころ軸受では、軸受回転時、振動の回転非同期成分が現れず、回転の高精度化が図られる。これにより、軸受振動が抑制される。振動抑制効果は、軸受の高速回転時に顕著に現れる。   In the self-aligning roller bearing described in the above (1), the rotation asynchronous component of the vibration does not appear when the bearing is rotated, and the rotation is highly accurate. Thereby, bearing vibration is suppressed. The vibration suppression effect is noticeable when the bearing rotates at high speed.

前記(2)記載の自動調心ころ軸受では、軸受回転時、振動の回転非同期成分が現れず、回転の高精度化が図られる。これにより、軸受振動が抑制される。振動抑制効果は、軸受の高速回転時に顕著に現れる。   In the self-aligning roller bearing described in the above (2), the rotation asynchronous component of the vibration does not appear when the bearing is rotated, so that the rotation is highly accurate. Thereby, bearing vibration is suppressed. The vibration suppression effect is noticeable when the bearing rotates at high speed.

本発明の自動調心ころ軸受によれば、軸受部品の加工性や組立コストを増大させることなく、軸受回転時、振動の回転非同期成分の発生を抑制させることができ、回転の高精度化を図ることができる。
本発明により得られる自動調心ころ軸受は、高速回転等の過酷な使用条件で、低振動及び高耐久性を要求される場合に好適に用いられる。
According to the self-aligning roller bearing of the present invention, it is possible to suppress the generation of a rotational asynchronous component of the vibration during rotation of the bearing without increasing the workability and assembly cost of the bearing parts, thereby improving the accuracy of the rotation. Can be planned.
The self-aligning roller bearing obtained by the present invention is suitably used when low vibration and high durability are required under severe use conditions such as high-speed rotation.

以下、添付図面を参照して本発明の実施形態を説明する。
図1は、本発明の第1実施形態である自動調心ころ軸受を示す要部断面図であり、図2は、図1の自動調心ころ軸受の外輪の軌道面形状誤差山数と油孔位置の関係を示す概略図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a main part showing a self-aligning roller bearing according to a first embodiment of the present invention, and FIG. 2 shows the number of raceway shape error crests and oil of the outer ring of the self-aligning roller bearing of FIG. It is the schematic which shows the relationship of a hole position.

図1及び図2を参照すると、第1実施形態の自動調心ころ軸受10は、内周面に単一の中心を有する球状凹面からなる軌道面21を有する外輪20と、外周に複列の軌道面31を有する内輪30と、外輪20及び内輪30の各軌道面21,31間に2列に、円周方向に所定の間隔をあけて複数設けられ、保持器40に転動自在に保持された転動体(球面ころ)50とを備える。   Referring to FIGS. 1 and 2, a self-aligning roller bearing 10 according to a first embodiment includes an outer ring 20 having a raceway surface 21 having a spherical concave surface having a single center on an inner peripheral surface, and double rows on the outer periphery. A plurality of inner rings 30 having raceway surfaces 31 and raceways 21 and 31 of the outer ring 20 and the inner ring 30 are provided in two rows at predetermined intervals in the circumferential direction, and are held by the cage 40 so as to be freely rollable. The rolling element (spherical roller) 50 is provided.

外輪20の単一中心を有する軌道面21は、外輪20の内周面に断面視円弧状に形成されている。また、内輪30の複列の軌道面31は、外輪20の軌道面21に対向して、軸方向(図1中、左右方向)に連続した一対の円弧状軌道面で構成されている。更に、転動体50は、各列毎にそれぞれ保持器40により転動自在に保持されている。   A raceway surface 21 having a single center of the outer ring 20 is formed on the inner peripheral surface of the outer ring 20 in a circular arc shape in cross section. The double-row raceway surfaces 31 of the inner ring 30 are formed of a pair of arcuate raceway surfaces that face the raceway surface 21 of the outer ring 20 and that are continuous in the axial direction (left-right direction in FIG. 1). Furthermore, the rolling elements 50 are held so as to be freely rollable by the retainers 40 for each row.

各保持器40はそれぞれ、軸方向外側端部に径方向内向きに延設されたフランジ部41と、軸方向内側端部に径方向外向きに延設された中央部42とを有する。各保持器40はそれぞれ、中央部42を背中合わせの状態で、内外輪20,30間に介装されている。   Each retainer 40 includes a flange portion 41 extending radially inward at the axially outer end portion and a central portion 42 extending radially outward at the axially inner end portion. Each of the cages 40 is interposed between the inner and outer rings 20 and 30 with the central portion 42 in a back-to-back state.

外輪20の軸方向略中央には、複数(図2では6個)の油孔22が、円周方向に等配となる所定の位置(図2では60°毎)に、それぞれ径方向に沿って形成されている。
また、各列の転動体50の数は、外輪20の油孔22の数の自然数倍である。すなわち、各列の転動体数をZ、油孔数をOH、自然数をnとしたとき、Z=n×OHである。
Near the center of the outer ring 20 in the axial direction, a plurality (six in FIG. 2) of oil holes 22 are arranged along the radial direction at predetermined positions (at 60 ° in FIG. 2) that are equally distributed in the circumferential direction. Is formed.
Further, the number of rolling elements 50 in each row is a natural number times the number of oil holes 22 in the outer ring 20. That is, when the number of rolling elements in each row is Z, the number of oil holes is OH, and the natural number is n, Z = n × OH.

図示しない第2実施形態の自動調心ころ軸受では、各列の転動体数が、2〜10までの約数を3以上有する数である。
その他の構成及び作用については、上記第1実施形態と同様である。
In the self-aligning roller bearing of the second embodiment (not shown), the number of rolling elements in each row is a number having 3 or more divisors of 2 to 10.
Other configurations and operations are the same as those in the first embodiment.

図3は、転動体数Zが形状誤差山数Bの自然数n倍となっている場合において、内輪に作用する力を模式的に示す概略図であり、図4は、油孔数が6の場合における外輪軌道面に含まれる形状誤差山数と振幅との関係を示すグラフである。
また、表1は、転がり軸受の内外輪軌道面形状誤差、転動体形状誤差、転動体寸法差等を同時に入力パラメータとして、外輪形状誤差山成分及び転動体数を変えて、ラジアル方向の振れの回転非同期成分の最大値を求めた結果を示す表である。
FIG. 3 is a schematic diagram schematically showing the force acting on the inner ring when the number of rolling elements Z is a natural number n times the number B of shape errors, and FIG. It is a graph which shows the relationship between the number of shape error crests contained in the outer ring raceway surface and the amplitude in the case.
Also, Table 1 shows the radial bearing runout by changing the outer ring shape error peak component and the number of rolling elements, using the inner and outer ring raceway surface shape error, rolling element shape error, rolling element size difference, etc. of the rolling bearing as input parameters at the same time. It is a table | surface which shows the result of having calculated | required the maximum value of a rotation asynchronous component.

転がり軸受の内外輪軌道面形状誤差、転動体数をパラメータとして、内部の力の釣り合いから、転がり軸受の回転角度に伴う軸心のラジアル方向の運動を理論的に計算する理論計算式が知られている(小野右京ほか、THEORETICAL ANALYSIS OF SHAFT VIBRATION SUPPORTED BY A BALL BEARING WITH SMALL SINUSOIDAL WAVINESS, IEEE TRANSACTION ON MAGNETICS, Vol.1, No.3, MAY 1996, p1709-1714)。   A theoretical calculation formula that theoretically calculates the radial motion of the shaft center associated with the rotation angle of the rolling bearing from the balance of internal forces using the inner and outer ring raceway surface shape errors and the number of rolling elements of the rolling bearing as parameters is known. (Ono Ukyo et al., THEORETICAL ANALYSIS OF SHAFT VIBRATION SUPPORTED BY A BALL BEARING WITH SMALL SINUSOIDAL WAVINESS, IEEE TRANSACTION ON MAGNETICS, Vol.1, No.3, MAY 1996, p1709-1714).

この理論計算式を基に、内外輪軌道面形状誤差、転動体形状誤差、転動体寸法差等を同時に入力パラメータとした解析プログラムを用い、外輪形状誤差山成分(2〜10山)及び転動体数(7〜20個)を変えて、ラジアル方向の振れの回転非同期成分の最大値を求めた。すなわち、回転非同期成分の最大値は、1周当たり256点、50周分、形状誤差の全振幅は2μm、転動体の形状誤差、寸法差はなしとして算出した。
結果を表1に示す。
Based on this theoretical calculation formula, using an analysis program with the inner and outer ring raceway surface shape error, rolling element shape error, rolling element size difference, etc. as input parameters at the same time, outer ring shape error peak component (2-10 peaks) and rolling element By changing the number (7 to 20), the maximum value of the rotational asynchronous component of the radial runout was obtained. That is, the maximum value of the rotation asynchronous component was calculated as 256 points per round, 50 rounds, the total amplitude of the shape error was 2 μm, the shape error of the rolling element, and no dimensional difference.
The results are shown in Table 1.

Figure 2008240778
Figure 2008240778

ここで、振れ測定に使用されるセンサの分解能の限界は、0.001μmであることから、計算値の検証を考慮して0.001μm未満の値は0とした。また、外輪軌道面に与えた形状誤差は、A・sinBθ(A:形状誤差の片振幅(1μm)、B:誤差山数)で表される理想的なサイン波とした。なお、内輪に形状誤差を与えた場合でも、表1と同様な結果が得られる。   Here, since the limit of the resolution of the sensor used for shake measurement is 0.001 μm, the value less than 0.001 μm is set to 0 in consideration of the verification of the calculated value. The shape error given to the outer ring raceway surface was an ideal sine wave represented by A · sinBθ (A: half amplitude (1 μm) of shape error, B: number of error peaks). Even when a shape error is given to the inner ring, the same result as in Table 1 can be obtained.

表1から、転動体数Zと内外輪軌道面の形状誤差山数Bとの関係について、以下のことが理解される。
図3に示すように、転動体数Zが、形状誤差山数Bの倍数(自然数n倍)となっている場合(Z=nB)、すなわち内外輪の軌道面形状誤差の低周波山成分が有する形状誤差の山数Bを約数に持つ場合、軸受回転時、内輪には図3に示すように力が作用し、表1中の太枠で示すように、ラジアル振れの回転非同期成分NRROが現れない。
From Table 1, the following can be understood with respect to the relationship between the number of rolling elements Z and the shape error crest B of the inner and outer ring raceway surfaces.
As shown in FIG. 3, when the number of rolling elements Z is a multiple (natural number n times) of the shape error mountain number B (Z = nB), that is, the low frequency mountain component of the raceway surface shape error of the inner and outer rings is If the shape error crest B is a divisor, a force acts on the inner ring as shown in FIG. 3 when the bearing rotates, and as shown by the thick frame in Table 1, the rotational asynchronous component NRRO of radial runout Does not appear.

したがって、第1実施形態の自動調心ころ軸受10では、各列の転動体数Zが、外輪20の油孔数OHの自然数倍であるので、軸受回転時、回転非同期成分NRROが現れず、特に高速回転時における軸受振動が抑制される。   Therefore, in the self-aligning roller bearing 10 of the first embodiment, the number of rolling elements Z in each row is a natural number multiple of the number of oil holes OH in the outer ring 20, so that the rotation asynchronous component NRRO does not appear when the bearing rotates. In particular, bearing vibration during high-speed rotation is suppressed.

また、表1から下記(1)及び(2)のようなことも理解される。
(1)転動体数が7,9,11,13といった奇数であり、約数が少ない場合には、約数となる形状山数以外の誤差山数でラジアル振れの回転非同期成分NRROが現れる。
(2)転動体数が12,18の場合、つまり約数を多く持つ数に等しい個数の場合には、形状誤差山数10山までにおいて、ラジアル振れの回転非同期成分NRROが現れていない。
つまり、約数を多く持つほど、約数でない形状誤差山数であっても、ラジアル振れの回転非同期成分NRROが現れていない場合が多い。
In addition, from Table 1, the following (1) and (2) are also understood.
(1) When the number of rolling elements is an odd number such as 7, 9, 11, 13, and the divisor is small, a rotationally asynchronous component NRRO of radial shake appears with an error number other than the number of shape peaks that is a divisor.
(2) When the number of rolling elements is 12, 18, that is, when the number of rolling elements is equal to the number having many divisors, the rotationally asynchronous component NRRO of radial shake does not appear up to the shape error crest of 10 crests.
In other words, the more divisors, the more often the rotationally asynchronous component NRRO of radial shake does not appear even when the number of shape error peaks is not a divisor.

一方、内外輪軌道面の真円度を測定して得られた形状誤差データに対して、調和解析(ハーモニック解析)を行うと、図4に示すような結果が得られる。なお、図4においても、表1の場合と同様に、計算値の検証を考慮して0.001μm未満の値は0とした。
図4から理解されるように、内外輪軌道面の形状誤差の主な低周波山成分は、一般的には、2〜10山までの形状誤差山成分が主体である。
On the other hand, when harmonic analysis (harmonic analysis) is performed on the shape error data obtained by measuring the roundness of the inner and outer ring raceway surfaces, the result shown in FIG. 4 is obtained. In FIG. 4, as in the case of Table 1, the value less than 0.001 μm is set to 0 in consideration of the verification of the calculated value.
As can be understood from FIG. 4, the main low-frequency peak components of the shape error of the inner and outer ring raceway surfaces are generally mainly the shape error peak components of 2 to 10 peaks.

以上のことから、一般的には、転動体数として、2〜10までの整数を約数に多く持つ数を設定すればよいことが分かる。そして、転動体数を12又は18に設定すれば、2〜10山のいずれの形状誤差山数であっても、ラジアル方向の最大回転非同期成分値は0である。12及び18はそれぞれ、2〜10までの約数を4個持っている。すなわち、12では、2〜10までの約数が2,3,4,6の4個であり、18では、2〜10までの約数が2,3,6,9の4個である。   From the above, it is generally understood that a number having a large number of integers from 2 to 10 as divisors may be set as the number of rolling elements. If the number of rolling elements is set to 12 or 18, the maximum rotational asynchronous component value in the radial direction is 0 regardless of the number of shape error peaks of 2 to 10 peaks. 12 and 18 each have four divisors from 2 to 10. That is, in 12, the divisors from 2 to 10 are 2, 3, 4, 6, and in 18, the divisors from 2 to 10 are 4, 3, 6, and 9.

したがって、転動体数が、内外輪軌道面の形状誤差の主な低周波山成分の約数を4個以上持っていれば、ラジアル振れの回転非同期成分を小さくする上で有効であることが理解される。また、2〜10までの約数2,4,8の3個を持つ16を転動体数とする場合でも、5山以外での最大回転非同期成分値は0であり、ラジアル振れの回転非同期成分NRROを小さくすることができる。   Therefore, it is understood that if the number of rolling elements has four or more divisors of the main low frequency peak components of the shape error of the inner and outer ring raceway surfaces, it is effective in reducing the rotational asynchronous component of radial runout. Is done. Further, even when 16 having 3 of the divisors 2, 4 and 8 from 2 to 10 is set as the number of rolling elements, the maximum rotational asynchronous component value except for 5 peaks is 0, and the rotational asynchronous component of radial runout NRRO can be reduced.

すなわち、第2実施形態の自動調心ころ軸受では、各列の転動体数が、2〜10までの約数を3以上有する数であるので、軸受回転時、回転非同期成分NRROが現れず、特に高速回転時における軸受振動が抑制される。   That is, in the self-aligning roller bearing of the second embodiment, since the number of rolling elements in each row is a number having a divisor of 2 to 10 or more, the rotation asynchronous component NRRO does not appear when the bearing rotates, In particular, bearing vibration during high-speed rotation is suppressed.

以上のように上記各実施形態によれば、各列の転動体50の数は、外輪20の油孔22の数の自然数倍(第1実施形態)、又は2〜10までの約数を3以上有する数(第2実施形態)である。   As described above, according to each embodiment described above, the number of rolling elements 50 in each row is a natural number multiple of the number of oil holes 22 of the outer ring 20 (first embodiment), or a divisor from 2 to 10. It is a number (second embodiment) having 3 or more.

したがって、軸受部品の加工性や組立コストを増大させることなく、軸受回転時、ラジアル振れの回転非同期成分NRROの発生を抑制させることができ、回転の高精度化を図ることができる。これにより、特に高速回転時における軸受振動を低下させることができ、自動調心ころ軸受10の信頼性及び耐久性を向上させることができる。   Therefore, without increasing the workability and assembly cost of the bearing parts, it is possible to suppress the generation of the rotational asynchronous component NRRO of the radial runout during the rotation of the bearing, and to improve the accuracy of the rotation. Thereby, especially the bearing vibration at the time of high speed rotation can be reduced, and the reliability and durability of the self-aligning roller bearing 10 can be improved.

本発明の第1実施形態である自動調心ころ軸受を示す要部断面図である。It is principal part sectional drawing which shows the self-aligning roller bearing which is 1st Embodiment of this invention. 図1の自動調心ころ軸受の外輪の軌道面形状誤差山数と油孔位置の関係を示す概略図である。FIG. 2 is a schematic diagram showing the relationship between the number of raceway surface shape errors of the outer ring of the self-aligning roller bearing of FIG. 1 and the oil hole position. 転動体数Zが形状誤差山数Bの自然数n倍となっている場合において、内輪に作用する力を模式的に示す概略図である。It is the schematic which shows typically the force which acts on an inner ring | wheel, when the number of rolling elements Z is the natural number n times the number B of shape errors. 油孔数が6の場合における外輪軌道面に含まれる形状誤差山数と振幅との関係を示すグラフである。It is a graph which shows the relationship between the number of shape error crests contained in the outer ring raceway surface and the amplitude when the number of oil holes is six. 特許文献1で開示されている自動調心ころ軸受を示す要部断面図である。FIG. 3 is a cross-sectional view of a main part showing a self-aligning roller bearing disclosed in Patent Document 1. 特許文献2で開示されている軸受スピンドルを示す要部断面図である。FIG. 10 is a cross-sectional view of a main part showing a bearing spindle disclosed in Patent Document 2.

符号の説明Explanation of symbols

10 自動調心ころ軸受
20 外輪
21 単列の軌道面
22 油孔
30 内輪
31 複列の軌道面
40 保持器
50 転動体(球面ころ)
DESCRIPTION OF SYMBOLS 10 Self-aligning roller bearing 20 Outer ring 21 Single row raceway surface 22 Oil hole 30 Inner ring 31 Double row raceway surface 40 Cage 50 Rolling element (spherical roller)

Claims (2)

内周面に球状凹面である軌道面を有する外輪と、
外周面に複列の軌道面を有する内輪と、
外輪及び内輪の各軌道面間に複列に、円周方向に所定の間隔をあけて複数設けられ、保持器に転動自在に保持された転動体とを備える自動調心ころ軸受において、
外輪の軸方向略中央には、複数の油孔が、円周方向に等配となる所定の位置に、それぞれ径方向に沿って形成されており、かつ、
各列の転動体数が、外輪の油孔数の自然数倍であることを特徴とする自動調心ころ軸受。
An outer ring having a raceway surface which is a spherical concave surface on the inner peripheral surface;
An inner ring having a double-row raceway surface on the outer peripheral surface;
In a self-aligning roller bearing provided with a plurality of rolling elements which are provided in a plurality of rows at predetermined intervals in the circumferential direction between the raceways of the outer ring and the inner ring, and which are rotatably held by a cage,
A plurality of oil holes are formed in a substantially central position in the axial direction of the outer ring at predetermined positions that are equally distributed in the circumferential direction, respectively, along the radial direction, and
A self-aligning roller bearing, wherein the number of rolling elements in each row is a natural number times the number of oil holes in the outer ring.
内周面に球状凹面である軌道面を有する外輪と、
外周面に複列の軌道面を有する内輪と、
外輪及び内輪の各軌道面間に複列に、円周方向に所定の間隔をあけて複数設けられ、保持器に転動自在に保持された転動体とを備える自動調心ころ軸受において、
外輪の軸方向略中央には、複数の油孔が、円周方向に等配となる所定の位置に、それぞれ径方向に沿って形成されており、かつ、
各列の転動体数が、約数を3以上有する数であることを特徴とする自動調心ころ軸受。
An outer ring having a raceway surface which is a spherical concave surface on the inner peripheral surface;
An inner ring having a double-row raceway surface on the outer peripheral surface;
In a self-aligning roller bearing provided with a plurality of rolling elements which are provided in a plurality of rows at predetermined intervals in the circumferential direction between the raceways of the outer ring and the inner ring, and which are rotatably held by a cage,
A plurality of oil holes are formed in a substantially central position in the axial direction of the outer ring at predetermined positions that are equally distributed in the circumferential direction, respectively, along the radial direction, and
A self-aligning roller bearing, wherein the number of rolling elements in each row is a number having a divisor of 3 or more.
JP2007078741A 2007-03-26 2007-03-26 Automatic-aligning roller bearing Pending JP2008240778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078741A JP2008240778A (en) 2007-03-26 2007-03-26 Automatic-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078741A JP2008240778A (en) 2007-03-26 2007-03-26 Automatic-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2008240778A true JP2008240778A (en) 2008-10-09

Family

ID=39912394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078741A Pending JP2008240778A (en) 2007-03-26 2007-03-26 Automatic-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2008240778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100158422A1 (en) * 2007-08-09 2010-06-24 Takeharu Uranishi Roller bearing
CN106763292A (en) * 2016-12-31 2017-05-31 玉环县现代汽车配件厂 A kind of electromagnetic clutch
EP3401562A1 (en) * 2017-05-08 2018-11-14 United Technologies Corporation Bearing with non-uniform cage clearance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100158422A1 (en) * 2007-08-09 2010-06-24 Takeharu Uranishi Roller bearing
US8297849B2 (en) * 2007-08-09 2012-10-30 Jtekt Corporation Roller bearing
CN106763292A (en) * 2016-12-31 2017-05-31 玉环县现代汽车配件厂 A kind of electromagnetic clutch
EP3401562A1 (en) * 2017-05-08 2018-11-14 United Technologies Corporation Bearing with non-uniform cage clearance
US10215232B2 (en) 2017-05-08 2019-02-26 United Technologies Corporation Bearing with non-uniform cage clearance

Similar Documents

Publication Publication Date Title
WO2012099120A1 (en) Roller bearing
TWI771530B (en) Cam gear
JP2009204004A (en) Bearing device for turbocharger
US20120281940A1 (en) Ball bearing cage
JPWO2004055399A1 (en) 4-point contact ball bearing
JP2008240778A (en) Automatic-aligning roller bearing
JP2009036348A (en) Tandem type double-row angular contact ball bearing and bearing device for pinion shaft
JP2008291921A (en) Resin retainer for tapered roller bearing, and tapered roller bearing
US20140056547A1 (en) Rolling bearing
JP2018044646A (en) Ball bearing, bearing unit for dental air turbine, and dental air turbine handpiece
JP2006214456A (en) Roller bearing
JP2003184885A (en) Conical roller bearing and pilot part axis support structure
JP2004092687A (en) Double row angular ball bearing
JP2006220174A (en) Double row ball bearing
JP6696610B2 (en) Cage cage for rolling bearings
JP6064783B2 (en) Rolling bearing
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device
JP3614602B2 (en) Roller bearing cage
JP2006307886A (en) Roller bearing
JP2019173888A (en) Angular contact ball bearing
JP2011179677A (en) Planetary gear transmission
JP2014047865A (en) Bearing device
JP2010133296A (en) Bearing device for turbosupercharger
JP2002081441A (en) Roller bearing
US20230265888A1 (en) Bearing unit