JP2004063400A - Negative electrode material for lithium cell, and its manufacturing method - Google Patents

Negative electrode material for lithium cell, and its manufacturing method Download PDF

Info

Publication number
JP2004063400A
JP2004063400A JP2002223182A JP2002223182A JP2004063400A JP 2004063400 A JP2004063400 A JP 2004063400A JP 2002223182 A JP2002223182 A JP 2002223182A JP 2002223182 A JP2002223182 A JP 2002223182A JP 2004063400 A JP2004063400 A JP 2004063400A
Authority
JP
Japan
Prior art keywords
component
negative electrode
electrode material
composite powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002223182A
Other languages
Japanese (ja)
Other versions
JP4022742B2 (en
Inventor
Hitoshi Wada
和田 仁
Mutsumi Shin
新 睦
Tetsuo Sakai
境 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2002223182A priority Critical patent/JP4022742B2/en
Publication of JP2004063400A publication Critical patent/JP2004063400A/en
Application granted granted Critical
Publication of JP4022742B2 publication Critical patent/JP4022742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium cell which keeps a high discharge capacity and achieves a superior cycle characteristic. <P>SOLUTION: A composite powder comprises (1) a component A composed of at least one element selected from Ag, Al, Bi, Sb, and Zn, (2) a component B composed of at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W, (3) Sn, and (4) an alloy composed of two or more elements of the elements of above (1), (2), and (3), wherein the component A, Sn, and an alloy of the component A and Sn are homogeneously distributed in the composite powder, while the component B, and an alloy including the component B are in a state of segregation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池用負極材料、及びその製造方法に関する。
【0002】
【従来の技術】
リチウム二次電池は、起電力が高く、高エネルギー密度を有するものであり、近年、移動体通信機器、携帯用電子機器等の主電源としての利用が拡大している。
【0003】
リチウム電池における負極としては、黒鉛、結晶化度の低い炭素等の各種炭素材料が広く用いられているが、炭素材料からなる電極は、使用可能な電流密度が低く、しかも、理論容量も不十分であり、例えば炭素材料のひとつである黒鉛の理論容量は372mAh/gに過ぎない。
【0004】
一方、リチウム金属をリチウム二次電池の負極材料とする場合には、炭素材料を用いる場合と比べて理論容量は高くなるものの、充電時に負極にデンドライトが析出し、充放電を繰り返すことによって正極側に達して、内部短絡を起こす恐れがある。また、析出したデンドライトは、比表面積が大きいために反応活性度が高く、その表面で電子伝導性を欠いた溶媒の分解生成物からなる界面被膜を形成し、これにより電池の内部抵抗が高くなって充放電効率を低下させる要因となる。これらの理由で、負極材料としてリチウム金属を用いるリチウム二次電池は、信頼性が低く、サイクル寿命が短いという欠点がある。
【0005】
電池性能を更に向上させるためには、理論放電容量の大きい物質を負極材料として用いることが望まれる。例えば錫、珪素、銀などの元素、あるいはこれらの窒化物、酸化物等は、リチウムと合金を形成することによってリチウムを吸蔵することができ、その吸蔵量は炭素よりはるかに大きい値を示すことが知られている。
【0006】
しかしながら、これらの物質を負極材料とする場合には、充電・放電のサイクルを繰り返すうちに、リチウムの吸蔵・放出に伴う大きな膨張・収縮によって電極そのものの瓦解を生じるようになる。
【0007】
したがって、上記物質を負極材料とする場合には、大きな初期放電容量は得られるものの、充放電を繰り返すうちに微細化し、その結果、放電容量が大きく低下するという欠点がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、高い放電容量を維持しつつ、優れたサイクル特性を発揮できるリチウム電池用負極材料を提供することである。
【0009】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の3種類の成分をメカニカルアロイング処理によって合金化して得られる粉末では、Li吸蔵量が多い元素やLi吸蔵量が中間的な元素等は均一に分布し、Li吸蔵量が少ない元素及びこれを含む金属間化合物については偏析した状態となり、偏析したLi吸蔵量が少ない元素の存在によって、リチウムの吸蔵・放出に伴う膨張及び収縮が緩和されて、電極の劣化を抑制でき、リチウム電池用負極材料として優れた性能を有するものとなることを見出し、ここに本発明を完成するに至った。
【0010】
即ち、本発明は、下記のリチウム電極用負極材料及びその製造方法を提供するものである。
1. (i)Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素からなるA成分、(ii)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素からなるB成分、(iii)Sn、並びに(iv)上記(i)〜(iii)の元素の二種以上からなる合金、からなる複合粉末であって、各粉末中において、A成分、Sn、及びA成分とSnとの合金は均一に分布し、B成分及びB成分を含む合金は偏析した状態にある複合粉末からなるリチウム電池用負極材料。
2. 複合粉末中の元素の含有率が、A成分5〜60原子%、B成分10〜45原子%、及びSn20〜90原子%である上記項1に記載のリチウム電池用負極材料。
3. A成分がAg、Bi及びSbから選ばれた少なくとも一種の元素であり、B成分が、Fe、Co、Ni、Cu及びMoから選ばれた少なくとも一種の元素である上記項1または2に記載のリチウム電池用負極材料。
4. Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素からなるA成分、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素からなるB成分、及びSnからなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする上記項1〜3のいずれかに記載されたリチウム電池用負極材料の製造方法。
【0011】
【発明の実施の形態】
本発明のリチウム電極用負極材料の有効成分である複合粉末は、(i)Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素からなるA成分、(ii)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素からなるB成分、(iii)Sn、並びに(iv)上記(i)〜(iii)の元素の二種以上からなる合金、からなる複合粉末であって、各粉末中において、A成分、Sn、及びA成分とSnとの合金は均一に分布し、B成分、及びB成分を含む合金は偏析した状態である。
【0012】
この様な複合粉末に含まれる元素の内で、Snはリチウムと化合物を形成し易く、リチウム吸蔵量が多い元素であり、Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素であるA成分は、リチウムと化合するが、リチウム吸蔵量が中間的な元素である。また、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素であるB成分は、リチウムと化合し難く、リチウム吸蔵量が少ない元素である。
【0013】
上記した複合粉末では、この様なリチウム吸蔵量が多いSn、リチウム吸蔵量が中間的なA成分、及びSnとA成分との合金が均一に分布し、リチウム吸蔵量が小さいB成分及びB成分を含む合金が偏析した状態である。この様な複合粉末は、リチウム吸蔵量が多いSn、リチウム吸蔵量が中間的なA成分、及びSnとA成分との合金が均一に分布した状態にあることによって、リチウムの吸蔵・放出が容易である。また、リチウムと化合し難くリチウム吸蔵量が少ない元素であるB成分及びB成分を含む合金が偏析していることによって、リチウムの吸蔵・放出に伴う膨張及び収縮を緩和することができる。その結果、該複合粉末は、放電容量が高く、しかも充放電に伴う劣化が少ないものとなり、リチウム電池用負極材料として用いた場合に、高い放電容量と優れたサイクル特性を両立することができる。
【0014】
尚、リチウム吸蔵量が少ない元素であるB成分及びB成分を含む合金が偏析した状態とは、例えば、各粉末についてX線マイクロアナリシス法によって元素分析をした場合に、B成分が粒子全体に均一に分布することなく、B成分の分布状態が不均一な状態をいう。
【0015】
上記した複合粉末に含まれる成分の内で、SnとA成分との合金とは、SnにA成分が固溶した合金相、SnとA成分の金属間化合物相、A成分にSnが固溶した合金相などから形成され、通常、組成が連続的に変化するものである。
【0016】
また、B成分を含む合金とは、SnにB成分が固溶した合金相、SnとB成分の金属間化合物相、B成分にSnが固溶した合金相などから形成されるB成分とSnとの合金;A成分にB成分が固溶した合金相、A成分とB成分の金属間化合物相、B成分にA成分が固溶した合金相などから形成されるA成分とB成分との合金;SnにA成分とB成分が固溶した合金相、A成分にSnとB成分が固溶した合金相、B成分にSnとA成分が固溶した合金相、Sn、A成分及びB成分の金属間化合物相などから形成されるA成分、B成分及びSnの合金等を意味する。
【0017】
上記複合粉末では、各元素の割合は、A成分5〜60原子%、B成分10〜45原子%、及びSn20〜90原子%であるであることが好ましく、A成分10〜40原子%程度、B成分5〜40原子%程度、及びSn35〜70原子%程度であることがより好ましい。
【0018】
本発明では、特に、A成分としては、Ag、Bi及びSbから選ばれた少なくとも一種の成分が好ましく、B成分としては、Fe、Co、Ni、Cu及びMoから選ばれた少なくとも一種の成分が好ましい。
【0019】
本発明の複合粉末は、その大きさについては、特に限定的ではないが、後述するメカニカルアロイング法で製造した場合に、通常、1μm程度以下の微細な一次粒子が生成し、一次粒子は凝集して二次凝集物となっており、二次凝集物の粒度は、通常はレ−ザ回折法による粒径で最大が38〜150μm程度であり、20〜105μm程度であることがより好ましい。また、該二次凝集物の平均粒径は、45μm程度以下であることが好ましく、10μm程度以下であることがより好ましい。
【0020】
上記した複合粉末における元素の分布状態は、この様な二次凝集物についての元素の分布状態である。
【0021】
本発明負極材料の有効成分である上記した複合粉末は、A成分、B成分及びSnからなる原料物質を混合し、メカニカルアロイング処理を行って、好ましくは一次粒子径を1μm以下とすることによって製造することができる。メカニカルアロイング処理における遠心加速度(投入エネルギー)は、5〜20G程度であることが好ましく、7〜15G程度であることがより好ましい。
【0022】
メカニカルアロイング処理自体は公知の方法をそのまま適用すれば良い。例えば、原料混合物を機械的接合力により混合・付着を繰返しながら複合化(一部合金化)させることによって目的とする複合粉末を得ることができる。使用する装置としては、一般に粉体分野で使用される混合機、分散機、粉砕機等をそのまま使用することができる。具体的には、ライカイ機、ボ−ルミル、振動ミル、アジテ−タ−ミル等が例示される。特に、ネットワ−ク間に存在する電池活物質を主成分とする粉末の積み重なりを少なくするためには、複合化操作中に重なり合ったり、凝集したりした粉末を1粒子づつに効率良く分散させる必要があるので、せん断力を与えることのできる混合機を用いることが望ましい。これらの装置の操作条件は特に限定されるものではない。
【0023】
上記した複合粉末からなる本発明の負極材料は、リチウム電池用の負極材料として有用である。リチウム電池用負極の具体的な構成は、負極材料として本発明材料を用いる他は、公知のものと同様でよい。例えば、必要に応じて樹脂系バインダ−、導電助材等を配合し、銅箔集電体等の公知の集電体上に電極層を形成させて一体化することによって負極を作製することができる。さらに、公知のリチウムイオン電池の電池要素(正極、セパレ−タ−、電解液等)を用い、公知のリチウムイオン電池の組立方法に従ってリチウムイオン電池を製造することができる。
【0024】
【発明の効果】
本発明の負極材料は、優れた放電容量を有し、しかも充放電を繰り返した場合にも微粉化や担持体からの脱落が無く、炭素材料と同等のサイクル特性を維持することができる。
【0025】
このため、本発明の負極材料は、安定した長寿命の充放電サイクル特性を発揮できるものとして有用性の高いものである。
【0026】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0027】
実施例1〜19
(1)複合粉末の合成
下記表1に示す各比率(原子%)となるように金属粉末を混合し、滑剤としてステアリン酸「F2000」(新日本理化製)を0.5質量%添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことにより複合粉末を得た。
(2)電極・電池の作製及び評価
ポリビニリデンフルオライド(PVdF)をN−メチルピロリドン(NMP)に溶解させたペ−スト10質量%、複合粉末85質量%及びカ−ボンブラック5質量%を添加、混合し、スラリ−を調製した。
【0028】
次いで、電解銅箔(福田金属箔粉工業製)に上記スラリ−をのせて、ドクタ−ブレ−ドでラミネ−トし、シ−ト化した。この作製したシ−トを10分間、80℃で乾燥させ、NMPを揮発させた後、ロ−ルプレスをして、強固に密着接合させた。これを1cmの円形ポンチで抜き取り、これを120℃で12時間以上の真空乾燥させて試験電極とした。
【0029】
ドライボックス中で、試験電極をカソ−ドとし、金属リチウムをアノ−ドとし、1モルのLiPF/エチレンカ−ボネ−ト(EC)+ジメチルカ−ボネ−ト(DMC)(EC:DMC=1:2(体積比))溶液を電解液とし、コイン型電池(CR2032タイプ)を作製した。
【0030】
放電容量評価は次のようにして実施した。まず、上記電池を、0.2mA/cm の定電流で0Vに達するまで放電し、10分間の休止後、0.20mA/cm の定電流で1.0Vに達するまで充電させた。これを、1サイクルとして、繰り返し充放電を行って放電容量を調べた。各実施例の複合粉末について、サイクル数と放電容量を表1に示す。尚、表1には、比較として、表1の比較例1〜16に記載した2成分系合金、又は比較例17〜32に記載した単独金属を負極材料として用いた場合についてもサイクル数と放電容量を示す。
【0031】
【表1】

Figure 2004063400
【0032】
表1から明らかなように、各実施例の複合粉末を用いた場合には、初期放電容量が高く、しかも50サイクル後の放電容量も十分維持されていることが判る。
【0033】
また、実施例2の複合粉末(Sn/Ag/Fe(原子%)=48/36.4/15.6)の断面の走査電子顕微鏡写真(SEM)及びX線マイクロアナリシス法による各元素の分布状態を示す分布図を図1に示し、実施例3の複合粉末(Sn/Ag/Fe(原子%)=48/26/26)の断面の走査電子顕微鏡写真(SEM)及びX線マイクロアナリシス法による各元素の分布状態を示す分布図を図2に示す。図1及び図2より、実施例2及び3の各複合粒子では、Ag及びSnは粒子全体に均一に分布しているのに対して、B成分であるFeは部分的に偏析していることが判る。
【0034】
また、実施例2の複合粉末(Sn/Ag/Fe(原子%)=48/36.4/15.6)について、放電容量とサイクル数との関係のグラフを図3に示す。図3には、比較として、Ag/Sn(原子%)=52/48の複合粉末を負極材料として用いた場合の結果、及びSn、Ag及びFeの各金属を単独で負極材料として用いた場合の結果についても示す。
【0035】
図3から明らかなように、実施例2の複合粉末を用いた負極材料は、優れたサイクル特性を有することが判る。
【0036】
更に、図4には、実施例3の複合粉末(Sn/Ag/Fe(原子%)=48/26/26)を負極材料として使用し、300サイクルまで充放電を繰り返した場合について放電容量とサイクル数との関係のグラフを示す。
【0037】
図4から、実施例3の複合粉末を負極材料として用いる場合には、初期容量が550mAh/g程度であって、300サイクル後でも200mAh/gの容量を維持しており、優れたサイクル寿命を有することが判る。
【図面の簡単な説明】
【図1】実施例2で得られた複合粉末の断面の走査電子顕微鏡写真(SEM)及びX線マイクロアナリシス法による各元素の分布状態を示す分布図。
【図2】実施例3で得られた複合粉末の断面の走査電子顕微鏡写真(SEM)及びX線マイクロアナリシス法による各元素の分布状態を示す分布図。
【図3】実施例2で得られた複合粉末について、放電容量とサイクル数との関係を表すグラフ。
【図4】実施例3で得られた複合粉末について、放電容量とサイクル数との関係を表すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a lithium battery and a method for producing the same.
[0002]
[Prior art]
A lithium secondary battery has a high electromotive force and a high energy density, and in recent years, its use as a main power source for mobile communication devices, portable electronic devices, and the like has been expanding.
[0003]
Various carbon materials such as graphite and low crystallinity carbon are widely used as a negative electrode in a lithium battery, but an electrode made of a carbon material has a low usable current density and an insufficient theoretical capacity. For example, the theoretical capacity of graphite, which is one of the carbon materials, is only 372 mAh / g.
[0004]
On the other hand, when lithium metal is used as the negative electrode material of a lithium secondary battery, although the theoretical capacity is higher than when a carbon material is used, dendrite precipitates on the negative electrode during charging, and charging and discharging are repeated, thereby increasing the positive electrode side. To cause internal short circuit. In addition, the precipitated dendrite has a high specific activity due to its large specific surface area, and forms an interfacial coating made of a decomposition product of a solvent lacking electron conductivity on its surface, thereby increasing the internal resistance of the battery. This causes a reduction in charge / discharge efficiency. For these reasons, a lithium secondary battery using lithium metal as a negative electrode material has disadvantages of low reliability and short cycle life.
[0005]
In order to further improve battery performance, it is desired to use a substance having a large theoretical discharge capacity as a negative electrode material. For example, elements such as tin, silicon, and silver, or nitrides and oxides thereof, can occlude lithium by forming an alloy with lithium, and the amount of occlusion shows a value much larger than that of carbon. It has been known.
[0006]
However, when these materials are used as the negative electrode material, the electrode itself collapses due to the large expansion and contraction accompanying the occlusion and release of lithium during repeated charge and discharge cycles.
[0007]
Therefore, when the above-mentioned substance is used as a negative electrode material, a large initial discharge capacity can be obtained, but there is a disadvantage that the charge / discharge is repeated to make finer, and as a result, the discharge capacity is greatly reduced.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned state of the art, and its main object is to provide a negative electrode material for a lithium battery that can exhibit excellent cycle characteristics while maintaining a high discharge capacity. is there.
[0009]
[Means for Solving the Problems]
The present inventor has made intensive studies to achieve the above-mentioned object. As a result, in a powder obtained by alloying the three specific components by mechanical alloying, elements having a large Li occlusion amount or elements having an intermediate Li occlusion amount are uniformly distributed, and the Li occlusion amount is small. The element and the intermetallic compound containing the element are in a segregated state, and the presence of the segregated element having a small Li occlusion amount reduces expansion and contraction accompanying occlusion and release of lithium, thereby suppressing deterioration of the electrode and preventing lithium deterioration. The inventors have found that the material has excellent performance as a negative electrode material for a battery, and have now completed the present invention.
[0010]
That is, the present invention provides the following negative electrode material for a lithium electrode and a method for producing the same.
1. (I) A component consisting of at least one element selected from Ag, Al, Bi, Sb and Zn; (ii) selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo and W A composite powder comprising: a B component composed of at least one element; (iii) Sn; and (iv) an alloy composed of two or more of the above-mentioned elements (i) to (iii). A negative electrode material for a lithium battery comprising a composite powder in which the component A, Sn, and the alloy of the component A and Sn are uniformly distributed, and the component B and the alloy containing the component B are in a segregated state.
2. Item 4. The negative electrode material for a lithium battery according to the above item 1, wherein the content of the element in the composite powder is 5 to 60 atomic% of the A component, 10 to 45 atomic% of the B component, and 20 to 90 atomic% of Sn.
3. 3. The above item 1 or 2, wherein the A component is at least one element selected from Ag, Bi and Sb, and the B component is at least one element selected from Fe, Co, Ni, Cu and Mo. Anode material for lithium battery.
4. A component consisting of at least one element selected from Ag, Al, Bi, Sb and Zn, and at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo and W The negative electrode material for a lithium battery as described in any one of the above items 1 to 3, wherein a composite powder is formed by mixing a raw material substance consisting of the component B and Sn and performing a mechanical alloying treatment. Method.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The composite powder, which is an active component of the negative electrode material for a lithium electrode of the present invention, comprises (i) an A component comprising at least one element selected from Ag, Al, Bi, Sb, and Zn; and (ii) Ti, V, Cr. , Mn, Fe, Co, Ni, Cu, Mo and W, a B component comprising at least one element selected from the group consisting of: (iii) Sn; and (iv) two or more of the above elements (i) to (iii). In each powder, the A component, Sn, and the alloy of the A component and Sn are uniformly distributed, and the B component, and the alloy containing the B component are segregated in each powder. is there.
[0012]
Among the elements contained in such a composite powder, Sn is an element that easily forms a compound with lithium and has a large lithium storage amount, and is at least one element selected from Ag, Al, Bi, Sb, and Zn. Certain component A is an element that combines with lithium but has an intermediate lithium storage capacity. Further, the B component, which is at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W, is an element that hardly combines with lithium and has a small amount of lithium occlusion.
[0013]
In the above-described composite powder, Sn having a large lithium storage amount, A component having an intermediate lithium storage amount, and an alloy of Sn and A component are uniformly distributed, and B component and B component having a small lithium storage amount are used. Is a state in which the alloy containing is segregated. Such a composite powder is easy to occlude and release lithium because Sn having a large lithium storage amount, an A component having an intermediate lithium storage amount, and an alloy of Sn and the A component are uniformly distributed. It is. In addition, the segregation of the component B and the alloy containing the component B, which are elements that hardly combine with lithium and have a small amount of lithium occlusion, can reduce expansion and contraction accompanying occlusion and release of lithium. As a result, the composite powder has a high discharge capacity and little deterioration due to charge and discharge, and when used as a negative electrode material for a lithium battery, can achieve both a high discharge capacity and excellent cycle characteristics.
[0014]
The state in which the component B having a small lithium storage amount and the alloy containing the component B are segregated means, for example, that when the elemental analysis is performed on each powder by the X-ray microanalysis method, the component B is uniform over the entire particles. And the distribution state of the B component is non-uniform.
[0015]
Among the components contained in the above composite powder, the alloy of Sn and A component is an alloy phase in which A component is dissolved in Sn, an intermetallic compound phase of Sn and A component, and a solid solution of Sn in A component. It is formed from an alloyed phase or the like, and usually has a continuously changing composition.
[0016]
The alloy containing the B component includes an alloy phase in which the B component is dissolved in Sn, an intermetallic compound phase of Sn and the B component, an alloy phase in which Sn is dissolved in the B component, and the like. An alloy phase in which the B component is dissolved in the A component, an intermetallic compound phase of the A component and the B component, and an A phase and a B component formed from an alloy phase in which the A component is dissolved in the B component. Alloy; alloy phase in which A component and B component are dissolved in Sn, alloy phase in which Sn and B component are dissolved in A component, alloy phase in which Sn and A component are dissolved in B component, Sn, A component and B An alloy of the A component, the B component, and Sn formed from the intermetallic compound phase of the component and the like.
[0017]
In the above composite powder, the proportion of each element is preferably 5 to 60 atomic% of the A component, 10 to 45 atomic% of the B component, and 20 to 90 atomic% of Sn, and about 10 to 40 atomic% of the A component. More preferably, the B component is about 5 to 40 atom% and Sn is about 35 to 70 atom%.
[0018]
In the present invention, the A component is particularly preferably at least one component selected from Ag, Bi and Sb, and the B component is at least one component selected from Fe, Co, Ni, Cu and Mo. preferable.
[0019]
The composite powder of the present invention is not particularly limited in its size, but when manufactured by a mechanical alloying method described below, usually, fine primary particles of about 1 μm or less are generated, and the primary particles are aggregated. The secondary agglomerates usually have a maximum particle size of about 38 to 150 μm, more preferably about 20 to 105 μm, as determined by laser diffraction. Further, the average particle size of the secondary aggregate is preferably about 45 μm or less, more preferably about 10 μm or less.
[0020]
The distribution state of the elements in the composite powder described above is the distribution state of the elements in such a secondary aggregate.
[0021]
The above-mentioned composite powder, which is an effective component of the negative electrode material of the present invention, is obtained by mixing the raw materials consisting of the A component, the B component, and Sn and performing a mechanical alloying treatment, preferably to reduce the primary particle diameter to 1 μm or less. Can be manufactured. The centrifugal acceleration (input energy) in the mechanical alloying processing is preferably about 5 to 20 G, and more preferably about 7 to 15 G.
[0022]
For the mechanical alloying process itself, a known method may be applied as it is. For example, a desired composite powder can be obtained by compounding (partially alloying) the raw material mixture while repeating mixing and adhesion by mechanical bonding force. As a device to be used, a mixer, a disperser, a pulverizer and the like generally used in the field of powder can be used as they are. Specifically, a raikai machine, a ball mill, a vibration mill, an agitator mill and the like are exemplified. In particular, in order to reduce the stacking of the powders mainly composed of the battery active material existing between the networks, it is necessary to efficiently disperse the powders that have overlapped or aggregated during the compounding operation one by one. Therefore, it is desirable to use a mixer capable of giving a shearing force. The operating conditions of these devices are not particularly limited.
[0023]
The negative electrode material of the present invention comprising the above composite powder is useful as a negative electrode material for a lithium battery. The specific configuration of the negative electrode for a lithium battery may be the same as a known one except that the material of the present invention is used as a negative electrode material. For example, it is possible to prepare a negative electrode by blending a resin-based binder, a conductive auxiliary material, and the like as necessary, forming an electrode layer on a known current collector such as a copper foil current collector, and integrating them. it can. Furthermore, a lithium ion battery can be manufactured by using a known lithium ion battery battery element (a positive electrode, a separator, an electrolytic solution, etc.) according to a known lithium ion battery assembling method.
[0024]
【The invention's effect】
The negative electrode material of the present invention has excellent discharge capacity, and does not suffer from pulverization or falling off from the carrier even after repeated charge and discharge, and can maintain cycle characteristics equivalent to those of a carbon material.
[0025]
Therefore, the negative electrode material of the present invention is highly useful as a material capable of exhibiting stable and long life charge-discharge cycle characteristics.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0027]
Examples 1 to 19
(1) Synthesis of composite powder The metal powder was mixed so as to have each ratio (atomic%) shown in Table 1 below, and 0.5% by mass of stearic acid "F2000" (manufactured by Shin Nippon Rika) was added as a lubricant, The mixture was charged into a planetary ball mill manufactured by Fricche and subjected to mechanical alloying to obtain a composite powder.
(2) Preparation and evaluation of electrodes and batteries 10% by mass of paste in which polyvinylidene fluoride (PVdF) was dissolved in N-methylpyrrolidone (NMP), 85% by mass of composite powder and 5% by mass of carbon black A slurry was prepared by adding and mixing.
[0028]
Next, the above slurry was placed on an electrolytic copper foil (manufactured by Fukuda Metal Foil & Powder Co., Ltd.), and laminated with a doctor blade to form a sheet. The produced sheet was dried at 80 ° C. for 10 minutes to evaporate NMP, and then roll-pressed to firmly adhere. This was extracted with a 1 cm 2 circular punch, and this was vacuum-dried at 120 ° C. for 12 hours or more to obtain a test electrode.
[0029]
In a dry box, a test electrode is a cathode, metallic lithium is an anode, and 1 mol of LiPF 6 / ethylene carbonate (EC) + dimethyl carbonate (DMC) (EC: DMC = 1) : 2 (volume ratio)) as an electrolytic solution to prepare a coin-type battery (CR2032 type).
[0030]
The discharge capacity evaluation was performed as follows. First, the battery was discharged at a constant current of 0.2 mA / cm 2 until the voltage reached 0 V, and after a pause of 10 minutes, charged at a constant current of 0.20 mA / cm 2 until the voltage reached 1.0 V. This was defined as one cycle, and charge and discharge were repeatedly performed to check the discharge capacity. Table 1 shows the number of cycles and discharge capacity of the composite powder of each example. Table 1 shows, as a comparison, the cycle number and the discharge even when the binary alloys described in Comparative Examples 1 to 16 of Table 1 or the single metal described in Comparative Examples 17 to 32 were used as the negative electrode material. Indicates the capacity.
[0031]
[Table 1]
Figure 2004063400
[0032]
As is evident from Table 1, when the composite powder of each example was used, the initial discharge capacity was high and the discharge capacity after 50 cycles was sufficiently maintained.
[0033]
Further, a scanning electron micrograph (SEM) of a cross section of the composite powder of Example 2 (Sn / Ag / Fe (at.%) = 48 / 36.4 / 15.6) and distribution of each element by an X-ray microanalysis method FIG. 1 shows a distribution diagram showing the state, and a scanning electron micrograph (SEM) and an X-ray microanalysis method of a cross section of the composite powder of Example 3 (Sn / Ag / Fe (atomic%) = 48/26/26) FIG. 2 is a distribution diagram showing the distribution state of each element according to FIG. From FIGS. 1 and 2, in each of the composite particles of Examples 2 and 3, Ag and Sn are uniformly distributed throughout the particles, whereas Fe as the B component is partially segregated. I understand.
[0034]
FIG. 3 is a graph showing the relationship between the discharge capacity and the number of cycles for the composite powder of Example 2 (Sn / Ag / Fe (at.%) = 48 / 36.4 / 15.6). FIG. 3 shows, as a comparison, a result when a composite powder of Ag / Sn (atomic%) = 52/48 was used as a negative electrode material, and a case where each metal of Sn, Ag and Fe was used alone as a negative electrode material. The results are also shown.
[0035]
As is clear from FIG. 3, the negative electrode material using the composite powder of Example 2 has excellent cycle characteristics.
[0036]
Further, FIG. 4 shows the discharge capacity and the discharge capacity when the composite powder of Example 3 (Sn / Ag / Fe (atomic%) = 48/26/26) was used as a negative electrode material and charging and discharging were repeated up to 300 cycles. 4 shows a graph of the relationship with the number of cycles.
[0037]
From FIG. 4, when the composite powder of Example 3 is used as a negative electrode material, the initial capacity is about 550 mAh / g, and the capacity of 200 mAh / g is maintained even after 300 cycles, and excellent cycle life is obtained. It turns out that it has.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph (SEM) of a cross section of a composite powder obtained in Example 2 and a distribution diagram showing a distribution state of each element by an X-ray microanalysis method.
FIG. 2 is a scanning electron micrograph (SEM) of a cross section of the composite powder obtained in Example 3 and a distribution diagram showing a distribution state of each element by an X-ray microanalysis method.
FIG. 3 is a graph showing the relationship between the discharge capacity and the number of cycles for the composite powder obtained in Example 2.
FIG. 4 is a graph showing the relationship between the discharge capacity and the number of cycles for the composite powder obtained in Example 3.

Claims (4)

(i)Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素からなるA成分、(ii)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素からなるB成分、(iii)Sn、並びに(iv)上記(i)〜(iii)の元素の二種以上からなる合金、からなる複合粉末であって、各粉末中において、A成分、Sn、及びA成分とSnとの合金は均一に分布し、B成分及びB成分を含む合金は偏析した状態にある複合粉末からなるリチウム電池用負極材料。(I) A component consisting of at least one element selected from Ag, Al, Bi, Sb and Zn; (ii) selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo and W A composite powder comprising: a B component composed of at least one element; (iii) Sn; and (iv) an alloy composed of two or more of the above-mentioned elements (i) to (iii). A negative electrode material for a lithium battery comprising a composite powder in which the component A, Sn, and the alloy of the component A and Sn are uniformly distributed, and the component B and the alloy containing the component B are in a segregated state. 複合粉末中の元素の含有率が、A成分5〜60原子%、B成分10〜45原子%、及びSn20〜90原子%である請求項1に記載のリチウム電池用負極材料。2. The negative electrode material for a lithium battery according to claim 1, wherein the content of the element in the composite powder is 5 to 60 atomic% of A component, 10 to 45 atomic% of B component, and 20 to 90 atomic% of Sn. A成分がAg、Bi及びSbから選ばれた少なくとも一種の元素であり、B成分が、Fe、Co、Ni、Cu及びMoから選ばれた少なくとも一種の元素である請求項1または2に記載のリチウム電池用負極材料。The component according to claim 1 or 2, wherein the A component is at least one element selected from Ag, Bi, and Sb, and the B component is at least one element selected from Fe, Co, Ni, Cu, and Mo. Anode material for lithium battery. Ag、Al、Bi、Sb及びZnから選ばれた少なくとも一種の元素からなるA成分、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo及びWから選ばれた少なくとも一種の元素からなるB成分、及びSnからなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする請求項1〜3のいずれかに記載されたリチウム電池用負極材料の製造方法。A component consisting of at least one element selected from Ag, Al, Bi, Sb and Zn, and at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo and W The negative electrode material for a lithium battery according to any one of claims 1 to 3, wherein a mixed powder is formed by mixing a B component and a raw material composed of Sn and performing a mechanical alloying treatment. Method.
JP2002223182A 2002-07-31 2002-07-31 Negative electrode material for lithium battery and method for producing the same Expired - Lifetime JP4022742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223182A JP4022742B2 (en) 2002-07-31 2002-07-31 Negative electrode material for lithium battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223182A JP4022742B2 (en) 2002-07-31 2002-07-31 Negative electrode material for lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004063400A true JP2004063400A (en) 2004-02-26
JP4022742B2 JP4022742B2 (en) 2007-12-19

Family

ID=31943010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223182A Expired - Lifetime JP4022742B2 (en) 2002-07-31 2002-07-31 Negative electrode material for lithium battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4022742B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095563A (en) * 2005-09-29 2007-04-12 Sony Corp Negative electrode and battery
US7807292B2 (en) 2006-05-17 2010-10-05 Sony Corporation Secondary battery
KR101366966B1 (en) 2009-12-25 2014-02-24 쥬오 덴끼 고교 가부시키가이샤 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
CN112585699A (en) * 2018-08-21 2021-03-30 住友电气工业株式会社 Covered electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for producing copper alloy wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095563A (en) * 2005-09-29 2007-04-12 Sony Corp Negative electrode and battery
US7807292B2 (en) 2006-05-17 2010-10-05 Sony Corporation Secondary battery
US8168320B2 (en) 2006-05-17 2012-05-01 Sony Corporation Secondary battery
KR101366966B1 (en) 2009-12-25 2014-02-24 쥬오 덴끼 고교 가부시키가이샤 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
CN112585699A (en) * 2018-08-21 2021-03-30 住友电气工业株式会社 Covered electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for producing copper alloy wire
CN112585699B (en) * 2018-08-21 2022-05-13 住友电气工业株式会社 Covered electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for producing copper alloy wire

Also Published As

Publication number Publication date
JP4022742B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4406789B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP5273931B2 (en) Negative electrode active material and method for producing the same
JP4029291B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4654381B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
JPH1186853A (en) Lithium secondary battery
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JPH1186854A (en) Lithium secondary battery
JP4058585B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US10505184B2 (en) Negative electrode active material for electric device and electric device using the same
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
JP5234600B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and method for producing negative electrode for lithium ion secondary battery
JP2010027458A (en) Secondary battery positive electrode material and its manufacturing method
JP2003187798A (en) Lithium secondary battery
JP4022742B2 (en) Negative electrode material for lithium battery and method for producing the same
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004079463A (en) Negative electrode active material for lithium ion secondary battery, its manufacturing method, negative electrode for the same, and lithium ion secondary battery
JP4029265B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6926943B2 (en) Negative electrode active material layer for solid-state batteries
JP3321541B2 (en) Lithium secondary battery
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JPH056765A (en) Nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4022742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term