JP2004058650A - Method for manufacturing member of fiber-reinforced resin and double-sided mold for this member - Google Patents

Method for manufacturing member of fiber-reinforced resin and double-sided mold for this member Download PDF

Info

Publication number
JP2004058650A
JP2004058650A JP2003119533A JP2003119533A JP2004058650A JP 2004058650 A JP2004058650 A JP 2004058650A JP 2003119533 A JP2003119533 A JP 2003119533A JP 2003119533 A JP2003119533 A JP 2003119533A JP 2004058650 A JP2004058650 A JP 2004058650A
Authority
JP
Japan
Prior art keywords
resin
mold
double
fiber
resin flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119533A
Other languages
Japanese (ja)
Other versions
JP4333204B2 (en
Inventor
Shiyouji Murai
村井 彰児
Akihiko Kitano
北野 彰彦
Yoshinobu Kubota
窪田 吉伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003119533A priority Critical patent/JP4333204B2/en
Publication of JP2004058650A publication Critical patent/JP2004058650A/en
Application granted granted Critical
Publication of JP4333204B2 publication Critical patent/JP4333204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an FRP-made member by which a molded product with stable dimensional precision is obtained by rapidly impregnating a fibrous base material 4 with a resin without an unimpregnated part or pits inside a cavity 13 and the volumetric content of the fibrous base 4 is highly stabilized, in an RTM molding process for the FRP-made member, and the halves 1 and 2 of a double-sided mold used for this method. <P>SOLUTION: A base material for a molded member and/or a base material 4 for a core as a reinforcing fiber are arranged inside the cavity 13 of the halves 1 and 2 of the double-sided mold, consisting of a top force 1 and a bottom force 2, which have the cavity 13 for the molded member inside the mold and a resin flow path groove 3 formed in a part or the entirety of the inner face of the cavity 13. After closing both halves 1 and 2 of the double-sided mold, the interiors of the base material for the molded member and/or the base material 4 for the core are impregnated under pressure with the resin at an injection pressure of 0.05 to 5 MPa from the injection gates 10 of the halves 1 and 2 through the resin flow path groove 3. After that, the resin is cured and the molded product is released from the mold. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば移動体用機器、建築材料、各種産業機器の部材などに好適に使用できる、繊維強化樹脂(以下、「FRP」と略記する。)製部材の製造方法および該製造方法で使用する両面金型に関する。
【0002】
【従来の技術】
従来、FRP製成形体を製造する際に用いる加圧注入成形方法として、自動車のボンネットや航空機のドアフレームなどの製造に用いられるいわゆるレジン・トランスファー・モールディング法(RTM)が知られている。この成形方法は、内部に成形すべき所定形状のキャビティを有する型内に樹脂を圧入し、その圧入された樹脂を型内に配置した繊維基材を介して流動・含浸する方法である。このRTM成形方法は、ハンドレーアップ成形方法、スプレーアップ成形方法や真空バッグ成形方法に比べ、製造工程の省力化、製造環境の改善、品質の再現性、成形技能等の制約から脱却できるため、近年、成形効率の良い製造方法として注目を集めている。
【0003】
しかし、RTM成形方法は型内に配置される繊維基材の樹脂流動抵抗が高いため、さらにRTM成形サイクルを短くするべく注入圧力を高くしても飛躍的な樹脂注入時間短縮を望むことができず、また注入圧力が繊維基材に直接負荷するため型内に配置された繊維基材にしわが寄ったり、型内の樹脂の流動しやすい部分、すなわち流動抵抗の低い部分ばかりに樹脂が供給され、成形品の一部に未含浸部分やピットができてしまうなどの問題点があった。
【0004】
これに対し、特許文献1では、片面型(下型)全体を可撓性のあるバギングフィルムで覆い密着させた後、真空吸引した状態でバッグ内の繊維基材に樹脂を含浸させる減圧注入方法を採用し、その際片面型に樹脂の進入溝を設けることにより、未含浸部分を少なくすると共に、短時間で繊維基材全体に樹脂を含浸できることが記載されている。しかし、この方法は樹脂を注入する圧力が負圧であるため、注入圧力を高くしても0.1MPa程度の真空圧であり、樹脂注入速度をそれ以上に早めることができないという問題があった。そこで、加圧注入により樹脂の含浸速度を早める方法をとると、上型として使用しているバギングフィルムが可撓性を有しているため、その加圧力によりバギングフィルムが浮き上がってしまい、正常な寸法精度を持つ成形品を得ることができなかった。また、樹脂の硬化時間を短縮し製造サイクルを短くするため、注入時の樹脂温度を高くしたり、または注入時の型温度を高くしてもよいが、この成形方法においては、大気とバギングフィルム間の熱伝導率が小さいため、バギングフィルム側の熱放出が極めて悪く、型内で発生した樹脂の反応熱の逃げ場がなくなり、成形品の厚みの大きい部分で樹脂の暴走反応が始まる可能性があった。
【0005】
さらに、片面型をバギングフィルムで覆い、型内を真空にすることで所定形状の型を作り出す製造方法では、バギングフィルムが片面型の凹凸に追従できない問題や、片面型とバギングフィルムの隙間からの真空漏れで所定形状ができない問題があり、成形品の寸法精度が安定しないばかりか、成形品における繊維基材の体積含有率が低くなってしまう問題もあった。
【0006】
そればかりか、上記可撓性のあるバギングフィルムは、シリコンシーラントなどの粘着材で製造ごとに片面型に張り付けなくてはいけないため、非常に時間がかかる作業であり、多くの副資材がゴミとして残るため、環境にも良くない製造方法であった。
【0007】
以上のように、FRP製部材のRTM成形方法において、型内に樹脂を未含浸部分やピットなく高速で含浸せしめ、安定した寸法精度のFRP成形品が得られるとともに、繊維基材の体積含有率を高く安定させることのできる改良技術が切望されていた。
【0008】
【特許文献1】特開2001−62932号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記した従来技術の問題点を解決すること、すなわちRTM成形方法において、型内に樹脂を未含浸部分やピットなく高速で含浸せしめ、安定した寸法精度の成形品が得られるとともに、繊維基材の体積含有率を高く安定させることのできる、FRP製部材の製造方法および該製造方法で使用する両面金型を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記した問題点を解決するために、樹脂流路溝を加工した両面金型内で加圧注入成形することで、バギングフィルムを上型としたRTM成形方法では到底達し得なかった短い時間で樹脂を注入・含浸し、また安定した寸法精度および高い繊維基材の体積含有率を持つFRP製部材の製造方法を見いだすに至った。
【0011】
すなわち、本発明に係るFRP製部材の製造方法は、金型内部に成形部材用キャビティを有し、その内面の一部または全面に樹脂流路溝が形成された、上型と下型とからなる両面金型の前記キャビティ内に、強化繊維となる成形部材用基材および/または中子用基材を配置し、両面金型を密閉した後、両面金型の注入口から0.05以上5MPa以下の範囲内の注入圧力で前記樹脂流路溝を経由させて成形部材用基材および/または中子用基材内部に樹脂を加圧含浸し、その後、硬化、脱型することを特徴とするものからなる。
【0012】
また、本発明に係る繊維強化樹脂製部材成形用の両面金型は、上型と下型とからなる両面金型であって、その合わせ面に少なくとも、樹脂の入り口と、均一注入用ランナーと、成形部材用キャビティと、樹脂出口用ベントとからなる樹脂流路系が設けられた両面金型において、キャビティに接する金型内面の一部または全面に、前記ランナーとベントの一方あるいは両方に接続する複数本の樹脂流路溝が形成されており、樹脂流路溝の深さが0.5mm以上30mm以下、幅が0.5mm以上20mm以下であり、かつ樹脂流路溝のキャビティ表面に対する表面積の比率が3%以上30%以下であることを特徴とするものからなる。
【0013】
【発明の実施の形態】
以下に、本発明のFRP製部材の製造方法の望ましい実施の形態を図面を用いて説明する。
(本発明の両面金型の説明)
まず、本発明の製造方法に用いる本発明の両面金型の一例を説明する。図1はキャビティ13に繊維基材4が配置された状態を示している両面金型1、2の縦断面図、図2は図1の金型のA−A矢視の横断面図、図3は両面金型内での樹脂の流動状態を示した図1の金型のB−B矢視の平面図、図4は図2の樹脂流路溝3の部分拡大図である。
【0014】
図1〜4において、1は、内面に樹脂の流路となる樹脂流路溝3が加工された上型、2は、下型であり、これら二つの型で両面金型を構成し、図示しない型締め手段で両金型が一体になるように構成されている。4はキャビティ13内に配置されたFRP製成形部材の補強繊維となる繊維基材であり、必要に応じて図示は省略したがさらに中子用基材が配置される。両面金型1、2の合わせ面17には、この繊維基材4に樹脂を含浸するための注入口10から樹脂を注入し、均一供給のためのランナー6に樹脂を導き、その後ゲート7を通過して上型内面の複数本の樹脂流路溝3(図4参照)に樹脂が供給される樹脂流路系が設けられている。そして樹脂は樹脂流路溝3を流れると同時にキャビティ内13に配置された繊維基材4の内部にその毛細管現象により進入する。キャビティ内13の繊維基材4に樹脂が十分含浸した後、余剰の樹脂は隙間8を通過して樹脂溜め用ランナー9に蓄えられることで、繊維基材4への樹脂含浸工程が終了する。なお、樹脂がキャビティ13内を流動する際にキャビティ13から押し出される空気、ガスや余剰樹脂は、ベント11から排出される。すなわち本発明の両面金型1、2の合わせ面17には、図3に示すように、注入口10→ランナー6→ゲート7→複数本の樹脂流路溝3→繊維基材4→隙間8→樹脂溜め用ランナー9→ベント11からなる樹脂流路系が設けられている。
【0015】
本発明の金型において、注入口10とは両面金型1、2内に樹脂を注入する入り口のことである。注入口の配置される位置および数は、繊維基材4に樹脂が未含浸部分がない状態で含浸すれば特に限定されるものではない。また、ランナー6とは、注入口10から両面金型1、2内に注入された樹脂をキャビティ13の周囲まで導く流路、キャビティ13とは、両面金型1、2のそれぞれの内面に形成された空間により作り出される、これから成形すべきFRP製部材の空間のことである。また、ゲート7とは、ランナー6からキャビティ13に樹脂を均一に供給するための隙間のことであり、ランナー6の長手方向に見た断面積がゲート7の断面積より大きいと、ランナー6よりゲート7を通過する樹脂の流路抵抗が小さくなるため、樹脂をゲート7の幅方向のどの部分においても、ほぼ均一な圧力でキャビティ13内に樹脂を供給できるようになっている。ベント11は、キャビティ13内に残存している空気や、樹脂の反応に伴い発生するガスまたキャビティ13内から押し出された余剰樹脂を排出するための出口であり、キャビティ13内から排出できなかった空気が溜まってできる空気溜まりを少なくすることができ、未含浸部分やピットの少ない成形品とすることができる。
【0016】
本発明の両面金型1、2の概略構成は以上の通りであるが、その特徴を構成要素毎にさらに詳しく説明する。
【0017】
本発明の金型は、上述したように樹脂の加圧注入成形をしても、その注入圧力でキャビティ形状が変形しないように、型締め手段により一体に構成された両面金型となっている。そのため金型材質は、鉄、鋼、アルミニウム、ニッケル、銅、亜鉛合金等の金属製とされている。このような剛直な両面金型を使用し、樹脂を加圧注入成形することで、両面金型1、2内に配置した繊維基材4への樹脂含浸時間を短くすることができるばかりか、得られるFRP製部材が他部材との取り合い時の寸法精度が問題になる組み立て部品の場合においても、金型の加工精度を成形品の寸法精度に直接反映することができ、安定した寸法精度を有した成形品を得ることができる。
【0018】
また、本発明の剛直な両面金型1、2を使用することで、従来の可撓性のあるフィルムを上型とするときとは異なり、キャビティ13内の容積が変化しないので、注入した樹脂には常に均一な圧力がかかり、さらに高い圧力がかけられるため、毛細管現象による繊維基材4への樹脂の含浸が促進される。
【0019】
さらに、本発明の両面金型は金属製であるので、従来の樹脂や木材やセラミックスからなる型に比べて熱容量が大きく、また熱伝導率も高いため、樹脂をキャビティ内に注入・含浸した後、反応・硬化する際に発生する熱を両面金型1、2で吸収することができ、樹脂反応時の蓄熱により起こる樹脂の暴走反応を防ぐことができるので好ましい。
【0020】
本発明の両面金型は、樹脂流路溝3を両面金型1、2の内面の一部または全面に複数本形成しているので、両面金型1、2内に注入された樹脂の流動抵抗を著しく小さくすることができる。すなわち、繊維基材4等の充填物がない樹脂流路溝3部分の樹脂流動抵抗が、繊維基材4の充填されているキャビティ13内の樹脂流動抵抗よりも小さくなり、その結果、注入樹脂が樹脂流路溝3の方を優先的に流動することになる。その結果、樹脂の注入圧力が繊維基材4に直接作用せず、基材4の周囲から均一な圧力でまんべんなく進入することとなり、樹脂の注入圧力で繊維基材4にしわが発生せず、品質のよいFRP製部材を得ることができる。
【0021】
樹脂流路溝3の金型内面での配置例としては、図3に示すように連続した樹脂流路溝3が平行または放射線状に配列された状態や、連続した樹脂流路溝3がメッシュ状に配列された状態、または放射線状に配列した樹脂流路溝3と環状に配列した樹脂流路溝3が交錯した状態などがあるが、樹脂が樹脂流路溝3に沿ってキャビティ13全体に供給出来るのであればどのような配置方法であっても構わない。
【0022】
図3に示すように、樹脂流路溝3は、キャビティ13内へ注入樹脂がスムーズ流れ込み排出出来るよう、両面金型のゲート7または隙間8を介して、ランナー6とベント11の一方あるいは両方に接続していることが好ましい。ただし、注入樹脂の注入圧力が高い場合は、繊維基材4の内部にその毛細管現象により樹脂が含浸する前に、注入樹脂がベント11に流れ出してしまうことがあり、この現象により未含浸部分やピットが多くなることがあるので、樹脂流路溝3がベント11に接続していない方がより好ましい。好ましくは樹脂流路溝3がベント11の手前5mm以上70mm以下の位置で止まっていると良い。
【0023】
樹脂流路溝3の形状としては、キャビティ13に接する金型内面であれば直線であっても、曲線であっても構わない。キャビティ13表面の幅が場所によって異なる場合は直線形状の樹脂流路溝3だけではキャビティ全面の一部に樹脂流路溝3の全くない部分が出来てしまい、その部分には樹脂が全く供給されないため、未含浸部分となり好ましくない。好ましくは、キャビティの外周形状に沿って曲線の樹脂流路溝3を配置し、さらにキャビティ13の幅方向に対し均等に配置されていると良い。この時、隣り合う樹脂流路溝の間隔が広がることによる、繊維基材4に樹脂の未含浸を避けるため、隣り合う樹脂流路溝3の間隔は500mm以下であると好ましい。さらに好ましくは300mm以下である。
【0024】
樹脂流路溝3の深さとしては、0.5mm以上30mm以下であると良い。樹脂流路溝3の深さとは図4の矢視間寸法14のことである。これが30mmより大きいと、樹脂の成形収縮により成形品の表面に樹脂流路溝3に沿ったひけが発生し、FRP製部材の見栄えが大変悪くなるので好ましくない。0.5mmより小さいと、樹脂の流動抵抗が大きくなり、短時間でキャビティ13内に樹脂を供給することができなくなり好ましくない。好ましくは1mm以上10mm以下の範囲内である。また、樹脂流路溝3の幅としては、0.5mm以上20mm以下であると良い。樹脂流路溝3の幅とは図4の矢視間寸法12のことである。これが20mmより大きいと、繊維基材4が溝に入り込み、実質的に溝の断面積が減ってしまい、溝のサイズに対して期待できる樹脂の流動挙動を満たすことができなくなるばかりか、成形品に繊維基材4のくびれた形状ができてしまい好ましくない。0.5mmより小さいと型を非常に細いドリルで加工することになり、加工作業が困難なものとなるので好ましくない。好ましくは1mm以上15mm以下の範囲内である。
【0025】
樹脂流路溝3のキャビティ13表面全体に対する面積比率としては、3%以上30%以下である両面金型1、2を使用すると良い。3%より小さいと、樹脂の流動抵抗が大きくなり、繊維基材4に注入圧力が直接作用し、繊維基材4にしわが寄るため、成形品内部に生じる残留応力により成形品の変形が生じ、好ましくない。30%より大きいと、成形時に使用する樹脂量が極めて多くなり、重量の重いFRP製部材になるばかりか、両面金型1、2内に注入した樹脂が硬化する前にベント11から排出される、いわゆるウエットスルー現象が顕著に起こるようになるため、使用する樹脂の無駄が多くなり、生産コストが高くなる。好ましくは5%以上25%以下である。
【0026】
また、図3に示すように樹脂流路溝3は、1本の樹脂流路溝3が途中で複数本に分岐していても構わない。上述のように曲線状の樹脂流路溝3を配置し、キャビティ13表面の幅が場所によって異なる製品形状に対応するときは隣り合う樹脂流路溝3の間隔が500mmより大きくなってしまう部分があるが、この場合は、隣り合う樹脂流路溝3の間隔が500mmより大きくならないよう、1本の樹脂流路溝3を複数本に分岐すると解決できる。このとき、分岐後の複数本の樹脂流路溝3の長手方向の断面積の合計と、分岐前の樹脂流路溝3の長手方向の断面積の比が0.5以上2.0以下であると、樹脂流路溝3内での樹脂量の過不足をなくすことが出来る。さらに好ましくは0.7以上1.5以下である。逆に複数本の樹脂流路溝3が途中で1本に結合していても構わない。上述のように曲線状の樹脂流路溝3を配置し、キャビティ表面の幅が場所によって異なる形状に対応するとき、隣り合う樹脂流路溝3の間隔が非常に小さくなる場合、複数本の樹脂流路溝3を1本に結合することで、樹脂流路溝3を合理的に配置することができ好ましい。この時、結合前の複数本の樹脂流路溝3の長手方向の断面積の合計と、結合後の樹脂流路溝3の長手方向の断面積の比が0.5以上2.0以下であると、樹脂流路溝3内での樹脂量の過不足をなくすことが出来好ましい。さらに好ましくは0.7以上1.5以下である。
【0027】
樹脂流路溝3の断面積は、金型内面において変化していても良い。キャビティ13内に配置する繊維基材4には、繊維基材の厚み斑が存在するため、樹脂流路方向に一定の断面積を持つ樹脂流路溝3では未含浸部分の多いFRP製部材しか成形できない場合があり、そのような場合は樹脂流路溝3の断面積を変化させることで、繊維基材4全体に樹脂をまんべんなく供給することが出来るようになり好ましい。その際、樹脂流路溝3の断面積は、得られるFRP製部材に出来る未含浸部分の位置により、局部的にあるいは流路方向に沿ってランダムに適宜制御すべきであり、その断面積を大きくしても小さくしても差し支えない。要は樹脂が繊維基材4の全体にまんべんなく含浸できるように流路断面積を変化させるのである。
【0028】
樹脂流路溝3の抜き勾配θ(図4参照)としては、0.5°以上30°以下であると良い。0.5°より小さいと、脱型時、成形品と両面金型1、2の摩擦大きく脱型することができず、無理矢理脱型すると成形品の表面にひびが入り、健全な製品を得ることができない。30°より大きいと、繊維基材4が樹脂流路溝3に落ち込んでしまい、繊維基材4にしわが寄り好ましくない。断面形状としてはV字、U字、半円、円弧、台形、多角形などを好適に用いることができる。ここで抜き勾配とは、成形品を型から脱型するために、成形品が抜けるよう型に付与するテーパーのことを言う。好ましくは、金型への樹脂の濡れ性の観点から円弧が良い。
【0029】
樹脂流路溝3は上型1と下型2のどちらか一方に加工されていても、また両方に加工されていても構わない。要は上型1と下型2の合わせ面において、どちらかの型のあるいは両方の型のキャビティに接する金型内面に樹脂流路溝3が加工されていればよい。仮に一方の型のみに樹脂流路溝を設けた場合には、樹脂流路溝3のない一方の面を意匠面とすることができ好ましい。また、成形品の厚みが厚いとき、上型1と下型2の両方に樹脂流路溝3を加工することで、繊維基材4の毛細管現象で含浸する距離を軽減することができ、厚み方向の含浸斑を無くすことができるので好ましい。
【0030】
また、両面金型1、2は、密閉できる型構造であれば良いので、上下型だけでなく、左右型や傾斜型などでも良い。
【0031】
また、注入口10、ランナー6、ゲート7、ベント11などは、両面金型を作製した初期の状態では、樹脂の流路が適正化されていなく、得られるFRP製部材に未含浸部分が多発することがほとんどであり、この時両面金型の注入口10、ランナー6、ゲート7、ベント11の一部を埋め、両面金型内の樹脂の流れを強制的に変えることで未含浸部分がなくなることがあり、このような樹脂流路系の形状に変更しても良い。樹脂流路系を一部埋める材料として、例えばポリパテなどの有機系樹脂硬化物や、粘土などの無機系硬化物や、金型と同じ材質の金属などが挙げられる。
(使用する繊維基材および注入樹脂の説明)
FRP製部材を構成する補強繊維としては、ポリアラミド、ナイロン6、ナイロン66、ビニロン、ビリデン、ポリエステル、ポリ塩化ビニル、ポリエチレン、ポリポロピレン、ポリウレタン、アクリル、ポリアラミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルイミド、ポリパラフェニレンベンゾビスオキサドール、ポリベンゾビスオキサドール、ポリグリルアミド、ビニロン、PBT、PVA、PBI、PPSなどからなる有機繊維や、炭素繊維、ガラス繊維、シリコンカーバイド繊維などの無機繊維であっても、実際の製品形状としたとき十分な全体剛性を得ることができればいかなる繊維であっても良い。
【0032】
また、上記の繊維を組み合わせて使用しても差し支えないが、中でも炭素繊維は、耐熱性も高く、繊維の弾性率が高いので、FRP製部材の一部または全部に含まれていると、FRP製部材の軽量化を促進させることができるので好ましい。その繊維形態としては、長繊維、短繊維またはその組み合わせであっても良い。
【0033】
繊維基材の形態としては、マット、織物、ニット、ブレイド、1方向シートなどを好適に使用することができる。また、これら繊維基材を組み合わせて使用しても良い。
【0034】
FRP製部材を構成する樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、ポリウレタン樹脂、変性エポキシ樹脂などの熱硬化性樹脂、または、ナイロン樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリウレタン樹脂などの熱可塑性樹脂、およびこれらの樹脂をアロイ化した変性樹脂などが挙げられるが、どのような樹脂であっても良い。
【0035】
FRP製部材の構成としては、FRP単体で構成される成形品、FRPスキン層および中子基材で構成されるサンドイッチ構造の成形品またはカナッペ構造の成形品などがあげられる。サンドイッチ構造成形品およびカナッペ構造成形品に用いられる中子基材としては、プラスチック、セラミックス、金属の発泡体または多孔質体またはハニカム部材、シンタクチックフォーム、バルサなどの天然多孔質体、またはそれらの組み合わせ等を好適に用いることができる。さらに、無垢の金属、プラスチックや、セラミックからなる部品を適宜配置し、一体製造しても構わない。
【0036】
以上が本発明の両面金型および繊維基材の全体構成である。次に上記両面金型と基材を用いた本発明の製造方法を工程順に具体的に説明する。
(1.金型準備工程)
まず、図1〜4で示した両面金型1、2を準備する。両面金型を開いた後、両面金型1、2内を清掃し、離型処理を行う。この時、樹脂流路溝3の無いキャビティ13表面であれば、ゲルコートやフィルムや表面意匠成形体などの表面意匠膜を形成してもよい。
(2.基材準備工程)
前述した繊維基材4を、キャビティ13内に収納できる所定形状に裁断し、キャビティ13内に所定の積層構成で配置する。この時、基材にできる限りしわが寄らないよう配置する。また、必要な場合は樹脂流路溝3が配置されている型のキャビティ13表面と繊維基材4との間にピールプライ5を介在させる。ピールプライとは得られる成形品から、後に成形品から引き剥がすことのできる不織布のことである。ピールプライ5を補助的に介在させ成形したFRP製部材は、FRP製部材表面に転写された樹脂流路溝3部分の樹脂およびピールプライを一緒に除去することで、成形品に残存する帯状の突起をなくすことができ、表面性状の均一なFRP製部材を得ることができるばかりかFRP製部材の重量を軽減することができ好ましい。ピールプライ5としては、樹脂流路溝3から繊維基材4に樹脂を透過させることができれば良く、ナイロン繊維、ポリエステル繊維、ガラス繊維の織物や不織布などが挙げられる。
【0037】
また、メディアと呼ばれるメッシュ状基材を該ピールプライと型のキャビティ表面との間に配置してもよい。メディアを配置することで、樹脂流路溝3のみ、すなわち線状で型の製品面内に樹脂が供給するのに対して、面状で型の製品面内に樹脂が供給することとなり、さらに均一かつ高速に型のキャビティ13内に樹脂が供給できるようになり、樹脂の未含浸部分が生じる可能性をさらに減らすことができるようになるので好ましい。メディアは、型内での樹脂流動を補助的に促進できればどのようなものであっても構わなく、金属メッシュ、プラスチックメッシュなどがある。
(3.型締め工程)
続いて両面金型1、2を型締めする。両面金型1、2の型締め構造は、樹脂注入圧力に耐えることができれば特に限定されるものではない。例えば、油圧、空気、水圧、真空圧、ボルト、クランプ、上型の自重などの手段である。
(4.樹脂注入工程)
続いて、両面金型内に樹脂を注入する。
【0038】
本発明の樹脂注入圧力は0.05MPa以上5MPa以下の範囲内である。ここで樹脂注入圧力は両面金型の注入口に樹脂が注入される直前の位置で測定した値である。0.05MPaより小さいと、繊維基材4への樹脂の含浸速度が遅いため、繊維基材4全体に樹脂が含浸する前に硬化してしまい、未含浸の多い成形品となり好ましくない。5MPaより大きいと、繊維基材部分が受け持つ樹脂注入圧力が大きくなるため繊維基材4にしわが寄り、成形品中の残留応力によりFRP製部材がそってしまい、寸法精度の良い成形品を得ることができない。好ましくは0.1MPa以上3MPa以下の範囲内である。
【0039】
樹脂の注入時、注入前の樹脂温度および両面金型1、2の温度を温調しておくと良い。注入前の樹脂温度を本範囲内の温度とすることで、樹脂の粘度を下げることができ、注入時の樹脂流動速度を早めることができる。また両面金型を温調しておくことで、その樹脂温度を維持したままキャビティ内へ樹脂を供給することができるため、基材への樹脂含浸を短時間で完了することができるばかりか、大きなサイズの成形品にも樹脂を未含浸部分なく含浸することができるようになり好ましい。温度範囲としては、使用する樹脂の種類によっても異なるが、20℃以上150℃以下の範囲に温調できると良い。20℃より低いと、樹脂の粘度が高すぎ、150℃より高いと樹脂の硬化反応が非常早く起こるため、キャビティ13内全体に樹脂を供給することができない。この時、注入前の樹脂温度と両面金型の温度は同じである必要はない。
【0040】
また、加圧注入工程は、高圧注入ステップと低圧注入ステップから構成されていることよい。樹脂の加圧注入時、キャビティ13内の端部に空気が溜まってしまったとき、加圧注入工程で注入圧力が一定であると、空気がキャビティ13内の端部から動くことができなく、未含浸部分の多い成形品となってしまうため、注入時の樹脂に圧力変化を作ることで、キャビティ13内の端部に溜まった空気に動きをつけることができ、両面金型1、2の型外に空気を押し出すことができるようになり好ましい。この高圧注入ステップと低圧注入ステップのサイクルを複数回かけることができればさらに好ましい。ここで、高圧注入ステップと低圧注入ステップの注入圧力は、0.05MPa以上5MPa以下の範囲内の圧力のことである。
【0041】
また、両面金型1、2内を真空吸引すると良い。真空吸引することで型内に残存する空気を吸引除去し、かつ樹脂が型内を流動する際にキャビティ13内の端部へ追いやられる空気を吸引除去することができるため、両面金型1、2内の空気溜まりにより、発生する樹脂の未含浸部分を軽減することができるばかりか、両面金型1、2内を負圧にすることでキャビティ13内の樹脂流動速度を促進でき、より短時間で繊維基材4への樹脂の含浸することができ好ましい。また、真空吸引により樹脂中に含まれる微小気泡を吸引除去することができるので、得られるFRP製部材も、断面にボイドの少ない成形品となり好ましい。好ましい真空圧の範囲は0.05MPa以上0.1MPa以下である。0.05MPaより小さいと、樹脂中に残存する微小気泡を吸引除去することができないので好ましくない。また真空圧はたかだか0.1MPaである。さらに真空吸引に関しても、注入圧力同様、真空圧を0.05〜0.1MPaの範囲内で変動させることで、キャビティ13内の端部に溜まる空気に動きつけ、両面金型1、2の型外に空気を除去することができるので好ましい。
(5.樹脂硬化工程)
両面金型1、2全体を適当な加温手段で注入した樹脂の硬化温度に温調し、両面金型1、2内の樹脂が十分硬化するまで放置する。
(6.脱型工程)
両面金型1、2を開き、成形品を型内から脱型する。両面金型1、2の脱型方法は、特に限定されるものではないが、例えば脱型ピン、エアー、両面金型1、2の温調、人力などである。
(作用および効果の説明)
本発明の金型は、上型と下型とからなる剛直な金属製の両面金型であり、両型の合わせ面17に高い面圧をかけられるため、繊維基材4をキャビティ13内に高密度で詰め込むことができ、よって繊維基材4の体積含有率の高いFRP製部材を製造することができる。
【0042】
また、両面金型1、2内に導かれた樹脂が金型内面に形成された複数本の樹脂流路溝3を流動することで、キャビティ13全体に均一、かつ高速に供給され、その後、繊維基材4にその毛細管現象により繊維基材4の全体にまんべんなく均一に含浸する含浸工程へと移行するため、得られるFRP製部材のサイズが大きなものであろうとも、また、複雑な形状を有するものであろうとも、未含浸部分やピットの少ないFRP製部材を製造することができるようになる。
【0043】
さらに、従来法のバギングフィルムのような可撓製のある上型を使用する成形方法に対して、キャビティ13内の体積がほとんど変化しないため、得られるFRP製部材の繊維基材4の体積含有率の変動率が非常に小さくなり、同じ品質のFRP製部材を安定して生産することができるようになる。
【0044】
さらに、本発明の両面金型を使用することで、従来のバギング法を採用したときのような再利用できないフィルム等の多量のゴミの発生が減ることになり、環境的にも優しい成形型となり好ましい。
【0045】
以上により、本発明により製造されるFRP製部材は、寸法精度が良く、繊維基材の体積含有率が高いことから、自動車や鉄道車輌や航空機などの輸送機器、また壁や床材などの建築材料、および各種産業機器の部材として好適である。
【0046】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
【0047】
(実施例1)
使用した型は、図1の金型において、断面形状が幅3mm、深さが3mm、抜き勾配が2°の台形形状をした樹脂流路溝3を、隣り合う樹脂流路溝の間隔が20〜100mmピッチで30本が放射線状に、かつランナー6とベント11の両方に接続して加工された上型1と、樹脂流路溝の加工が施されていない下型2とからなる両面金型である。
【0048】
まず、金型1、2を離型処理した後、繊維基材4として、目付190g/m2の炭素繊維織物(CK6250E、東レ(株)製)のドライクロスをキャビティ形状に6ply(0/90°方向)切り出し、キャビティ13内に配置した。 続いて、ナイロン製のピールプライ5(AIRTECK社製、Release Ply A)をキャビティ形状に切り出し、キャビティ13内の繊維基材4の上に配置した。その後、上下型を密閉し、油圧プレスによって型締めした。この時の型締め圧は7MPaである。この時、型の温度は90℃に設定した。
【0049】
続いて、30℃に温調した樹脂を注入圧5MPaで型内に注入した。また、ベントからは、真空ポンプでガスの吸引を行った。注入した樹脂は、セロキサイド2021P(ダイセル化学工業(株)製エポキシ樹脂)25.0重量部、ERL−4299(ユニオンカーバイド日本(株)製エポキシ樹脂)75.0重量部、ジエチレングリコール(和光純薬工業(株)製)9.6重量部、SEESORB 704(シプロ化成(株)製、紫外線吸収剤)0.1重量部、リカシッド MH−700(新日本理化(株)製酸無水物)91.3重量部、キュアゾール1,2−DMZ(四国化成工業(株)製イミダゾール)5.7重量部を調合したものである。
【0050】
樹脂がベントからでてきた時点から、3時間、90℃で樹脂の硬化を行い、その後型を開き、脱型し、さらに脱型した成形品13からピールプライおよび溝部分の樹脂14を剥ぎ取り、図5に示す縦1.4m、横2.2m、高さ5mmのFRP製部材15を得た。
【0051】
成形性については、含浸時間は8分であった。また、成形品に未含浸部はなく、繊維基材のしわは見られなかった。さらに、FRP製部材の片面は樹脂流路溝がなく意匠面して十分美しい成形面であり、反対の面は図5に示す樹脂流路溝の跡16が見える成形面となっていた。繊維基材の体積含有率を測定したところ42%であった。得られたFRP製部材は、そりのない品質の優れた成形品であった。
【0052】
(実施例2)
樹脂の注入圧を0.05MPaにしたこと以外は、実施例1と同じ条件でFRP製部材を成形した。
【0053】
成形性については、含浸時間は10分であった。また、成形品に未含浸部はなく、繊維基材のしわは見られなかった。さらに、FRP製部材の片面は樹脂流路溝がなく意匠面して十分きれいな成形面、また片面樹脂流路溝の跡が見える成形面となっていた。繊維基材の体積含有率を測定したところ40%であった。得られたFRP製部材は、そりのない成形品であった。
【0054】
(実施例3)
ベントの手前30mmの部分に位置する樹脂流路溝3をポリパテで埋めて十分硬化させ、ポリパテの不要部分を研磨し、調整し、上型1に加工されている全ての樹脂流路溝3がベントに接続させていない状態にした以外は実施例1と同じ条件でFRP製部材を成形した。なお、成形性については、樹脂の含浸時間は10分であった。
【0055】
得られたFRP製部材に未含浸部はなく、繊維基材のしわは見られなかった。
さらに、FRP製部材の片面は樹脂流路溝がなく、意匠面として十分美しい成形面であり、また、片面樹脂流路溝の跡が見える成形面であり、反対の面は図6に示す樹脂流路溝の跡18が見える成形品となっていた。繊維基材の体積含有率を測定したところ43%であり、そりのない成形品であった。
【0056】
(比較例1)
樹脂の注入圧を0.03MPaにしたこと以外は、実施例1と同じ条件でFRP製部材を成形した。
【0057】
成形性については、含浸時間は15分であった。また、成形品には、繊維基材のしわは見られなかったが、未含浸部があり健全な成形体を得ることができなかった。また片面樹脂流路溝の跡が見える成形面となっていた。繊維基材の体積含有率を測定したところ36%であった。得られたFRP製部材は、そりが有り、寸法精度の正しくない成形品であった。
【0058】
(比較例2)
樹脂の注入圧を6MPaにしたこと以外は、実施例1と同じ条件でFRP製部材を成形した。
【0059】
成形性については、含浸時間は7分であった。成形品には、繊維基材のしわは見られが、未含浸部部分もあり、健全な成形体を得ることができなかった。また片面樹脂流路溝の跡が見える成形面となっていた。繊維基材の体積含有率を測定したところ43%であった。得られたFRP製部材は、そりが有り、寸法精度の正しくない成形品であった。
【0060】
(比較例3)
上型(雄型)に溝が加工されていないこと以外は、実施例1と同じ条件でFRP製部材を成形した。成形性については、含浸時間は60分であった。成形品には一部未含浸部があり、また成形品には繊維基材の大きなしわが見られた。さらに、FRP製部材の片面に溝が無いものの、未含浸部分があるため、意匠面として使えるレベルでは無かった。未含浸のない健全な部分で、繊維基材の体積含有率を測定したところ39%であった。得られたFRP製部材は、そりが有り、寸法精度の正しくない成形品であった。
【0061】
(比較例4)
下型2として、図2で示す幅3mm、深さ3mm、抜き勾配2°の台形形状をした樹脂流路溝3が20〜100mmピッチで40本、放射線状に加工された下型を使用し、上型1としては型全体をポリプロピレンフィルムからなるバギングフィルムで覆い、空気が漏れないようバギングフィルムの周囲をシール材で接着した後、型内を真空ポンプで真空状態とし、バギングフィルムを下型形状に沿わせた。
【0062】
上記の型を用いたこと以外は、実施例1と同じ条件でFRP製部材を製造した。
【0063】
成形性であるが、樹脂の注入圧により、上型として使用しているバギングフィルムが浮き上がり、得られたFRP製部材は、そりが有り、寸法精度の正しい成形品ができなかった。繊維基材の体積含有率を測定したところ5%であった。
【0064】
以上の結果を表1にまとめた。
【0065】
【表1】

Figure 2004058650
【0066】
表1において、まず、評価基準として、液状樹脂の含浸時間については、注入口から樹脂を注入開始した時間とベントから余剰樹脂が出てくる時間のタイム差(分)とした。
【0067】
含浸状態(未含浸)の評価基準は、未含浸部分が成形品の表面積の5%以下を○印とし、5%より大きい場合を×印とした。また、表面状態(表面ピット)の評価基準は、表面ピットの数が50個以下の場合を◎印とし、51個以上100個以下の場合を○印とし、100個より多い場合を×印とした。繊維基材のしわの評価基準は、しわ部分が成形品の表面積の5%以下の場合を○印とし、5%より大きい場合を×印とした。
【0068】
表1に示すように、実施例1、2、3のものは樹脂流路溝の加工が施された両面金型に、適正な注入圧で樹脂を注入することで、樹脂の注入圧力が繊維基材に直接負荷することが無くなるため、しわのない成形品を得ることができ、その成形品はしわにより成形品内部に発生する残留応力により、そりのない成形品を得ることができた。また、両面金型によりキャビティ形状がほとんど変化せず、高い面圧内で成形することが出来たため、繊維基材の体積含有率が高く、安定した成形品を得ることができた。
【0069】
一方、比較例1、2においては樹脂流路溝が加工された両面金型内で、樹脂の注入成形をしても、適正な樹脂の注入圧力外でRTM成形すると、繊維基材にしわが寄ったり、未含浸部分ができるなど、健全なFRP製部材を得ることができなかった。また、比較例3では両面金型に樹脂流路溝が加工されていないため、繊維基材に樹脂の注入圧力が直接負荷されるため、繊維基材にしわができることは避けることができなかった。比較例4では、両面金型ではなく上型としてフィルムを使用しているため、注入圧力をかけることでフィルムが浮き上がってしまい、目的の製品形状のものを得ることができなかった。
【0070】
【発明の効果】
以上説明したように、本発明のFRP製部材の製造方法およびその成形用両面型によれば、RTM成形方法において、型内に樹脂を未含浸部分やピットがない状態で高速で含浸せしめることができ、安定した寸法のFRP製部材を製造することができるとともに、繊維基材の体積含有率を高く安定させることができる。
【図面の簡単な説明】
【図1】本発明の金型内部のキャビティ部分に繊維基材が配置された状態を示す両面金型の縦断面図である。
【図2】図1の金型のA−A矢視の横断面図である。
【図3】図1の金型のB−B矢視の平面図である。
【図4】図2の金型の樹脂流路溝の部分拡大図である。
【図5】本発明の実施例で得られたFRP製部材の概略斜視図である。
【図6】本発明の実施例で得られたFRP製部材の概略斜視図である。
【符号の説明】
1 両面金型の上型
2 両面金型の下型
3 樹脂流路溝
4 繊維基材
5 ピールプライ
6 ランナー
7 ゲート
8 隙間
9 樹脂溜め用ランナー
10 注入口
11 ベント
12 樹脂流路溝の幅
13 キャビティ
14 樹脂流路溝の深さ
15 実施例で成形した成形品の形状
16 実施例で成形した成形品の片表面に残る樹脂流路溝の跡
17 合わせ面
18 実施例で成形した成形品の形状
19 実施例で成形した成形品の片表面に残る樹脂流路溝の跡[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a member made of fiber reinforced resin (hereinafter abbreviated as “FRP”), which can be suitably used for, for example, mobile equipment, building materials, members of various industrial equipment, and the like. Related to double-sided mold.
[0002]
[Prior art]
Conventionally, a so-called resin transfer molding method (RTM) used for manufacturing a hood of an automobile, a door frame of an aircraft, or the like has been known as a pressure injection molding method used when manufacturing a molded body made of FRP. This molding method is a method in which a resin is press-fitted into a mold having a cavity of a predetermined shape to be molded therein, and the press-fitted resin is flowed and impregnated via a fiber base material arranged in the mold. Compared to hand lay-up molding method, spray-up molding method and vacuum bag molding method, this RTM molding method can save the labor of the production process, improve the production environment, reproducibility of quality, and can escape from the constraints of molding skills, etc. In recent years, it has attracted attention as a manufacturing method with good molding efficiency.
[0003]
However, in the RTM molding method, since the resin flow resistance of the fiber base material arranged in the mold is high, even if the injection pressure is increased to shorten the RTM molding cycle, a drastic reduction in the resin injection time can be expected. In addition, since the injection pressure directly applies to the fiber base material, the fiber base material arranged in the mold is wrinkled, or the resin is supplied only to the portion where the resin easily flows in the mold, that is, the portion having low flow resistance. However, there is a problem that an unimpregnated portion or a pit is formed in a part of the molded product.
[0004]
On the other hand, in Japanese Patent Application Laid-Open No. H11-163, a vacuum injection method is used in which the entire one-sided mold (lower mold) is covered with a flexible bagging film and closely adhered, and then the fiber base material in the bag is impregnated with resin in a vacuum-sucked state. It is described that the resin impregnation portion is provided in the single-sided mold to reduce the unimpregnated portion and to impregnate the entire fiber base material with the resin in a short time. However, in this method, since the pressure for injecting the resin is a negative pressure, even if the injection pressure is increased, the vacuum pressure is about 0.1 MPa, and there is a problem that the resin injection speed cannot be further increased. . Therefore, if a method of increasing the impregnation rate of the resin by pressurizing injection is adopted, the bagging film used as the upper mold has flexibility, so that the bagging film floats due to the pressing force, and the normal state. A molded product with dimensional accuracy could not be obtained. Also, in order to shorten the curing time of the resin and shorten the production cycle, the resin temperature at the time of injection or the mold temperature at the time of injection may be increased, but in this molding method, the atmosphere and the bagging film are used. The thermal conductivity between the bagging film side is extremely low due to the low thermal conductivity between the bagging film side, and there is no escape for the reaction heat of the resin generated in the mold, and the runaway reaction of the resin may start in the thick part of the molded product. there were.
[0005]
Further, in a manufacturing method in which a single-sided mold is covered with a bagging film and the inside of the mold is evacuated to create a mold having a predetermined shape, a problem that the bagging film cannot follow the irregularities of the single-sided mold, or a gap between the single-sided mold and the bagging film. There is a problem that a predetermined shape cannot be formed due to a vacuum leak, and not only the dimensional accuracy of the molded product is not stable, but also the volume content of the fiber base material in the molded product is reduced.
[0006]
In addition, the above-mentioned flexible bagging film is a very time-consuming operation because it must be adhered to a single-sided mold every time it is manufactured using an adhesive such as a silicone sealant. Since it remains, the manufacturing method was not good for the environment.
[0007]
As described above, in the RTM molding method of the FRP member, the resin is impregnated in the mold at a high speed without any unimpregnated portions or pits, and an FRP molded product with stable dimensional accuracy is obtained, and the volume content of the fiber base material is increased. There has been a long-felt need for an improved technique that can stabilize the temperature.
[0008]
[Patent Document 1] JP-A-2001-62932
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art, that is, in a RTM molding method, a resin is impregnated in a mold at a high speed without an unimpregnated portion or a pit, and a molded product with stable dimensional accuracy can be obtained. In addition, an object of the present invention is to provide a method of manufacturing an FRP member and a double-sided die used in the manufacturing method, which can stably maintain a high volume content of a fiber base material.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has been unable to achieve the RTM molding method using a bagging film as an upper mold by press-injection molding in a double-sided mold in which a resin flow channel has been processed. The present inventors have found a method for producing an FRP member having a stable dimensional accuracy and a high fiber base material volume content by injecting and impregnating a resin in a short time.
[0011]
That is, the method for manufacturing an FRP member according to the present invention comprises a molding member cavity inside a mold, and a resin flow channel formed on part or all of the inner surface thereof. In the cavity of the double-sided mold, a molding member base material and / or a core base material serving as reinforcing fibers are arranged, and after sealing the double-sided mold, 0.05 or more is injected from the injection port of the double-sided mold. The resin is pressurized and impregnated into the base material for the molding member and / or the base material for the core through the resin flow channel at an injection pressure of 5 MPa or less, and then cured and demolded. Consisting of
[0012]
Further, the double-sided mold for molding a fiber-reinforced resin member according to the present invention is a double-sided mold composed of an upper mold and a lower mold, and at least on the mating surface thereof, a resin entrance, and a uniform injection runner. In a double-sided mold provided with a resin flow path system including a molding member cavity and a resin outlet vent, a part or the whole of the inner surface of the mold in contact with the cavity is connected to one or both of the runner and the vent. A plurality of resin flow grooves are formed, the depth of the resin flow groove is 0.5 mm or more and 30 mm or less, the width is 0.5 mm or more and 20 mm or less, and the surface area of the resin flow groove with respect to the cavity surface Is 3% or more and 30% or less.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of a method for manufacturing an FRP member of the present invention will be described with reference to the drawings.
(Description of double-sided mold of the present invention)
First, an example of the double-sided mold of the present invention used in the manufacturing method of the present invention will be described. FIG. 1 is a longitudinal sectional view of double-sided molds 1 and 2 showing a state in which a fiber base material 4 is arranged in a cavity 13, and FIG. 2 is a transverse sectional view of the mold in FIG. 3 is a plan view of the mold shown in FIG. 1 as viewed from the direction of arrows BB, showing a flow state of the resin in the double-sided mold. FIG. 4 is a partially enlarged view of the resin flow channel 3 of FIG.
[0014]
1 to 4, reference numeral 1 denotes an upper mold in which a resin flow channel 3 serving as a resin flow path is machined on the inner surface, and 2 denotes a lower mold. It is configured such that both dies are integrated by a mold clamping means that does not. Reference numeral 4 denotes a fiber base material serving as a reinforcing fiber of the FRP molded member disposed in the cavity 13. Although not shown, a core base material is further disposed as necessary. The resin is injected into the mating surface 17 of the double-sided molds 1 and 2 from the injection port 10 for impregnating the fiber base material 4 with the resin, and the resin is guided to the runner 6 for uniform supply. A resin flow path system is provided through which the resin is supplied to the plurality of resin flow grooves 3 (see FIG. 4) on the inner surface of the upper mold. Then, the resin flows through the resin flow channel 3 and at the same time enters into the fiber base material 4 arranged in the cavity 13 by the capillary phenomenon. After the fiber base material 4 in the cavity 13 is sufficiently impregnated with the resin, the surplus resin passes through the gap 8 and is stored in the resin storage runner 9, thereby completing the resin impregnation process into the fiber base material 4. Air, gas, and excess resin that are pushed out of the cavity 13 when the resin flows in the cavity 13 are discharged from the vent 11. That is, as shown in FIG. 3, the mating surface 17 of the double-sided molds 1 and 2 of the present invention has an inlet 10 → a runner 6 → a gate 7 → a plurality of resin flow grooves 3 → a fiber base 4 → a gap 8. A resin flow path system composed of a runner 9 for storing the resin and a vent 11 is provided.
[0015]
In the mold of the present invention, the injection port 10 is an inlet for injecting resin into the double-sided molds 1 and 2. The position and number of the inlets are not particularly limited as long as the fiber base material 4 is impregnated with no resin-impregnated portion. The runner 6 is a flow path that guides the resin injected into the double-sided molds 1 and 2 from the injection port 10 to the periphery of the cavity 13. The cavity 13 is formed on each inner surface of the double-sided molds 1 and 2. This is the space of the FRP member to be formed, which is created by the formed space. The gate 7 is a gap for uniformly supplying the resin from the runner 6 to the cavity 13. If the cross-sectional area of the runner 6 in the longitudinal direction is larger than the cross-sectional area of the gate 7, the gate 7 Since the flow resistance of the resin passing through the gate 7 is reduced, the resin can be supplied into the cavity 13 at a substantially uniform pressure at any portion of the gate 7 in the width direction. The vent 11 is an outlet for discharging air remaining in the cavity 13, gas generated due to the reaction of the resin, and excess resin pushed out from the cavity 13, and could not be discharged from the cavity 13. It is possible to reduce the amount of air that accumulates in the air, and it is possible to obtain a molded product having few unimpregnated portions and pits.
[0016]
The schematic configuration of the double-sided molds 1 and 2 of the present invention is as described above, and the features will be described in more detail for each component.
[0017]
The mold of the present invention is a double-sided mold integrally formed by mold clamping means so that the cavity shape is not deformed by the injection pressure even if the resin is press-molded as described above. . Therefore, the mold material is made of metal such as iron, steel, aluminum, nickel, copper, and zinc alloy. By using such a rigid double-sided mold and injecting and molding the resin under pressure, not only can the resin impregnation time to the fiber base material 4 arranged in the double-sided molds 1 and 2 be shortened, Even when the obtained FRP member is an assembly part in which dimensional accuracy at the time of connection with other members is a problem, the processing accuracy of the mold can be directly reflected on the dimensional accuracy of the molded product, and stable dimensional accuracy can be obtained. The obtained molded article can be obtained.
[0018]
Also, by using the rigid double-sided molds 1 and 2 of the present invention, unlike the conventional case where a flexible film is used as the upper mold, the volume in the cavity 13 does not change. , A uniform pressure is always applied and a higher pressure is applied, so that the impregnation of the fiber base material 4 with the resin by the capillary action is promoted.
[0019]
Furthermore, since the double-sided mold of the present invention is made of metal, it has a larger heat capacity and a higher thermal conductivity than conventional molds made of resin, wood or ceramics. This is preferable because the heat generated during the reaction and curing can be absorbed by the double-sided molds 1 and 2, and the runaway reaction of the resin caused by the heat storage during the resin reaction can be prevented.
[0020]
In the double-sided mold of the present invention, since a plurality of resin flow grooves 3 are formed on a part or the entire inner surface of the double-sided molds 1 and 2, the flow of the resin injected into the double-sided molds 1 and 2 is increased. The resistance can be significantly reduced. That is, the resin flow resistance in the portion of the resin flow channel 3 where there is no filler such as the fiber base material 4 becomes smaller than the resin flow resistance in the cavity 13 in which the fiber base material 4 is filled. Flows preferentially in the resin flow channel 3. As a result, the injection pressure of the resin does not directly act on the fiber base material 4, but enters the fiber base material 4 evenly from around the base material 4 with a uniform pressure. A good FRP member can be obtained.
[0021]
Examples of the arrangement of the resin flow grooves 3 on the inner surface of the mold include a state where the continuous resin flow grooves 3 are arranged in parallel or radially as shown in FIG. The resin flow grooves 3 arranged radially and the resin flow grooves 3 arranged radially and the resin flow grooves 3 arranged annularly intersect each other. Any arrangement method may be used as long as it can be supplied.
[0022]
As shown in FIG. 3, the resin flow channel 3 is connected to one or both of the runner 6 and the vent 11 through the gate 7 or the gap 8 of the double-sided mold so that the injected resin can flow smoothly into and out of the cavity 13. Preferably, they are connected. However, when the injection pressure of the injected resin is high, the injected resin may flow out to the vent 11 before the resin is impregnated into the interior of the fiber base 4 due to the capillary phenomenon. Since the number of pits may increase, it is more preferable that the resin flow channel 3 is not connected to the vent 11. Preferably, the resin flow channel 3 is stopped at a position 5 mm or more and 70 mm or less before the vent 11.
[0023]
The shape of the resin flow channel groove 3 may be a straight line or a curved line as long as it is the inner surface of the mold in contact with the cavity 13. If the width of the surface of the cavity 13 differs depending on the location, only the linear resin flow channel 3 forms a portion without the resin flow channel 3 on a part of the entire surface of the cavity, and no resin is supplied to that portion. Therefore, it becomes an unimpregnated portion, which is not preferable. Preferably, the resin flow grooves 3 having a curved shape are arranged along the outer peripheral shape of the cavity, and are further preferably arranged evenly in the width direction of the cavity 13. At this time, the interval between the adjacent resin flow grooves 3 is preferably 500 mm or less in order to prevent the resin material from being impregnated into the fiber base material 4 due to the increase in the interval between the adjacent resin flow grooves. More preferably, it is 300 mm or less.
[0024]
The depth of the resin flow channel 3 is preferably 0.5 mm or more and 30 mm or less. The depth of the resin flow channel 3 is the dimension 14 between the arrows in FIG. If it is larger than 30 mm, shrinkage of the resin will cause sink marks along the resin flow channel 3 on the surface of the molded product, and the appearance of the FRP member will be very poor. If it is smaller than 0.5 mm, the flow resistance of the resin increases, and it is not preferable because the resin cannot be supplied into the cavity 13 in a short time. Preferably it is in the range of 1 mm or more and 10 mm or less. The width of the resin channel groove 3 is preferably 0.5 mm or more and 20 mm or less. The width of the resin flow channel 3 is a dimension 12 between the arrows in FIG. If it is larger than 20 mm, the fiber base material 4 enters the groove, and the cross-sectional area of the groove is substantially reduced, so that not only the flow behavior of the resin which can be expected with respect to the size of the groove, but also the molded product cannot be satisfied. The shape of the fiber substrate 4 is constricted, which is not preferable. If it is smaller than 0.5 mm, the die is machined with a very thin drill, which makes the working operation difficult, which is not preferable. Preferably it is in the range of 1 mm or more and 15 mm or less.
[0025]
As the area ratio of the resin flow channel groove 3 to the entire surface of the cavity 13, it is preferable to use the double-sided molds 1 and 2 having an area ratio of 3% or more and 30% or less. If it is less than 3%, the flow resistance of the resin increases, the injection pressure directly acts on the fiber base material 4 and the fiber base material 4 is wrinkled, so that the molded product is deformed due to residual stress generated inside the molded product, Not preferred. If it is more than 30%, the amount of resin used during molding becomes extremely large, and not only is a heavy FRP member formed, but also the resin injected into the double-sided molds 1 and 2 is discharged from the vent 11 before being cured. Since the so-called wet-through phenomenon occurs remarkably, the waste of the resin used increases and the production cost increases. Preferably it is 5% or more and 25% or less.
[0026]
Further, as shown in FIG. 3, the resin flow channel 3 may be such that one resin flow channel 3 is branched into a plurality of portions in the middle. When the curved resin flow grooves 3 are arranged as described above and the width of the surface of the cavity 13 corresponds to a different product shape depending on the location, there is a portion where the distance between the adjacent resin flow grooves 3 becomes larger than 500 mm. However, in this case, it is possible to solve the problem by branching one resin flow groove 3 into a plurality of grooves so that the distance between adjacent resin flow grooves 3 does not become larger than 500 mm. At this time, when the ratio of the sum of the longitudinal cross-sectional areas of the plurality of resin flow grooves 3 after branching to the longitudinal cross-sectional area of the resin flow grooves 3 before branching is 0.5 or more and 2.0 or less. If there is, the amount of resin in the resin flow channel 3 can be prevented from being excessive or insufficient. More preferably, it is 0.7 or more and 1.5 or less. Conversely, a plurality of resin flow grooves 3 may be joined to one in the middle. When the curved resin flow grooves 3 are arranged as described above, and the width of the cavity surface corresponds to a different shape depending on the location, when the space between the adjacent resin flow grooves 3 becomes extremely small, a plurality of resin flow grooves are used. By combining the flow channel 3 into one, the resin flow channel 3 can be rationally arranged, which is preferable. At this time, when the ratio of the total cross-sectional area in the longitudinal direction of the plurality of resin flow grooves 3 before coupling to the longitudinal cross-sectional area of the resin flow grooves 3 after coupling is 0.5 or more and 2.0 or less. This is preferable because the amount of resin in the resin flow channel 3 can be prevented from being excessive or insufficient. More preferably, it is 0.7 or more and 1.5 or less.
[0027]
The cross-sectional area of the resin flow channel 3 may be changed on the inner surface of the mold. Since there is uneven thickness of the fiber base material in the fiber base material 4 disposed in the cavity 13, only the FRP member having many unimpregnated portions in the resin flow passage groove 3 having a constant cross-sectional area in the resin flow direction. In some cases, molding cannot be performed. In such a case, by changing the cross-sectional area of the resin flow channel 3, the resin can be uniformly supplied to the entire fiber base material 4, which is preferable. At that time, the cross-sectional area of the resin flow channel 3 should be appropriately controlled locally or randomly along the flow direction, depending on the position of an unimpregnated portion formed in the obtained FRP member. It can be larger or smaller. The point is that the cross-sectional area of the flow path is changed so that the resin can be evenly impregnated into the entire fiber base material 4.
[0028]
The draft θ of the resin flow channel 3 (see FIG. 4) is preferably not less than 0.5 ° and not more than 30 °. If the angle is smaller than 0.5 °, when the mold is released, the molded article and the double-sided molds 1 and 2 cannot be removed from the mold with great friction. If the molded article is forcibly removed, the surface of the molded article is cracked and a sound product is obtained. I can't. If it is larger than 30 °, the fiber base material 4 falls into the resin flow channel 3, and the fiber base material 4 is wrinkled, which is not preferable. As the cross-sectional shape, a V-shape, U-shape, semicircle, arc, trapezoid, polygon, or the like can be preferably used. Here, the draft angle refers to a taper applied to the mold so that the molded article can be removed in order to remove the molded article from the mold. Preferably, an arc is preferable from the viewpoint of wettability of the resin to the mold.
[0029]
The resin flow channel 3 may be formed on either the upper mold 1 or the lower mold 2 or on both. In short, it is only necessary that the resin flow channel 3 be formed on the inner surface of the mold in contact with the cavity of one or both molds on the mating surface of the upper mold 1 and the lower mold 2. If only one mold is provided with a resin flow channel, one surface without the resin flow channel 3 can be used as a design surface, which is preferable. Further, when the thickness of the molded product is large, by processing the resin flow channel 3 in both the upper mold 1 and the lower mold 2, the distance of impregnation of the fiber base material 4 by the capillary phenomenon can be reduced. This is preferable because uneven impregnation in the direction can be eliminated.
[0030]
Further, since the double-sided molds 1 and 2 only need to have a mold structure that can be hermetically sealed, not only the upper and lower molds but also a left-right mold and an inclined mold may be used.
[0031]
In addition, in the initial state where the double-sided mold was manufactured, the flow path of the resin was not optimized in the initial state in which the double-sided mold was manufactured, and the resulting FRP member had many unimpregnated portions in the injection port 10, the runner 6, the gate 7, the vent 11, and the like. At this time, the injection port 10, the runner 6, the gate 7, and the vent 11 of the double-sided mold are partially filled, and the unimpregnated portion is forced by changing the flow of the resin in the double-sided mold. In some cases, the shape of the resin flow path system may be changed. Examples of the material that partially fills the resin flow path system include an organic resin cured product such as poly putty, an inorganic cured product such as clay, and a metal of the same material as the mold.
(Explanation of fiber base material and injection resin used)
The reinforcing fibers constituting the FRP member include polyaramid, nylon 6, nylon 66, vinylon, viridene, polyester, polyvinyl chloride, polyethylene, polypropylene, polyurethane, acrylic, polyaramid, polyetheretherketone, polyetherketone, and polyether. Organic fibers composed of imide, polyparaphenylene benzobisoxadol, polybenzobisoxadol, polyglyamide, vinylon, PBT, PVA, PBI, PPS, etc., and inorganic fibers such as carbon fiber, glass fiber, silicon carbide fiber, etc. Even if it is, any fiber may be used as long as a sufficient overall rigidity can be obtained in the actual product shape.
[0032]
In addition, the above fibers may be used in combination. Among them, carbon fibers have high heat resistance and a high elastic modulus of the fibers. It is preferable because it is possible to promote the reduction of the weight of the manufacturing member. The fiber form may be a long fiber, a short fiber or a combination thereof.
[0033]
As a form of the fiber base material, a mat, a woven fabric, a knit, a blade, a one-way sheet, or the like can be suitably used. Further, these fiber base materials may be used in combination.
[0034]
Thermoplastic resins such as epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, polyurethane resin, modified epoxy resin, or nylon resin, acrylic resin, polyester resin, polycarbonate Thermoplastic resins such as resins, polyethylene resins, polypropylene resins, polyamide resins, ABS resins, polyvinyl chloride resins, polybutylene terephthalate resins, polyacetal resins, polyurethane resins, and modified resins obtained by alloying these resins. Any resin may be used.
[0035]
Examples of the configuration of the FRP member include a molded product composed of FRP alone, a molded product of a sandwich structure composed of an FRP skin layer and a core substrate, and a molded product of a canapes structure. Core substrates used for sandwich structure molded products and canapé structure molded products include plastics, ceramics, metal foams or porous bodies or honeycomb members, syntactic foams, natural porous bodies such as balsa, or the like. Combinations and the like can be suitably used. Further, components made of pure metal, plastic, or ceramic may be appropriately arranged and integrally manufactured.
[0036]
The above is the overall configuration of the double-sided mold and the fiber base material of the present invention. Next, the production method of the present invention using the double-sided mold and the base material will be specifically described in the order of steps.
(1. Mold preparation process)
First, the double-sided dies 1 and 2 shown in FIGS. 1 to 4 are prepared. After opening the double-sided mold, the insides of the double-sided molds 1 and 2 are cleaned, and a mold release process is performed. At this time, if the surface of the cavity 13 does not have the resin flow channel groove 3, a surface design film such as a gel coat, a film, or a surface design molded product may be formed.
(2. Base material preparation step)
The above-described fiber base material 4 is cut into a predetermined shape that can be stored in the cavity 13, and is arranged in the cavity 13 in a predetermined laminated configuration. At this time, the substrate is arranged so as not to wrinkle as much as possible. If necessary, a peel ply 5 is interposed between the surface of the cavity 13 of the mold in which the resin flow channel 3 is disposed and the fiber base material 4. The peel ply is a nonwoven fabric that can be peeled off from the obtained molded article later. The FRP member molded with the peel ply 5 interposed therebetween removes the resin and the peel ply in the resin channel groove 3 portion transferred to the FRP member surface together, thereby removing the belt-like projections remaining on the molded product. This is preferable because not only can an FRP member having a uniform surface property be obtained, but also the weight of the FRP member can be reduced. The peel ply 5 only needs to be able to transmit the resin from the resin flow channel 3 to the fiber base material 4, and examples thereof include nylon fiber, polyester fiber, and glass fiber woven or nonwoven fabric.
[0037]
Further, a mesh-like base material called a medium may be arranged between the peel ply and the cavity surface of the mold. By arranging the media, the resin is supplied only to the resin flow channel 3, that is, the resin is supplied into the product surface of the mold in a linear shape, whereas the resin is supplied to the product surface of the mold in a planar shape. It is preferable because the resin can be uniformly and rapidly supplied into the cavity 13 of the mold, and the possibility of the resin-unimpregnated portion can be further reduced. The media may be any media as long as it can assist the flow of the resin in the mold, and examples thereof include a metal mesh and a plastic mesh.
(3. Mold clamping process)
Subsequently, the double-sided molds 1 and 2 are clamped. The mold clamping structure of the double-sided molds 1 and 2 is not particularly limited as long as it can withstand the resin injection pressure. For example, there are means such as hydraulic pressure, air, water pressure, vacuum pressure, bolts, clamps, and the weight of the upper die.
(4. Resin injection step)
Subsequently, a resin is injected into the double-sided mold.
[0038]
The resin injection pressure of the present invention is in the range of 0.05 MPa or more and 5 MPa or less. Here, the resin injection pressure is a value measured at a position immediately before the resin is injected into the injection port of the double-sided mold. If it is less than 0.05 MPa, the impregnation rate of the resin into the fiber base material 4 is low, so that the resin is hardened before the resin is impregnated into the entire fiber base material 4, resulting in a molded article with much impregnation. If the pressure is higher than 5 MPa, the resin injection pressure applied to the fiber base portion is increased, so that the fiber base 4 is wrinkled, and the FRP member is warped due to residual stress in the molded product, thereby obtaining a molded product with good dimensional accuracy. Can not. Preferably it is in the range of 0.1 MPa or more and 3 MPa or less.
[0039]
When injecting the resin, it is preferable to control the temperature of the resin before injection and the temperature of the double-sided molds 1 and 2. By setting the resin temperature before injection to a temperature within this range, the viscosity of the resin can be reduced, and the resin flow speed at the time of injection can be increased. Also, by controlling the temperature of the double-sided mold, the resin can be supplied into the cavity while maintaining the resin temperature, so that not only can the resin impregnation of the base material be completed in a short time, It is preferable because a large-sized molded product can be impregnated with a resin without an unimpregnated portion. Although the temperature range varies depending on the type of resin used, it is preferable that the temperature can be controlled in a range of 20 ° C. or more and 150 ° C. or less. If the temperature is lower than 20 ° C., the viscosity of the resin is too high. If the temperature is higher than 150 ° C., the curing reaction of the resin occurs very quickly, so that the resin cannot be supplied to the entire cavity 13. At this time, the temperature of the resin before injection and the temperature of the double-sided mold need not be the same.
[0040]
The pressure injection step may include a high-pressure injection step and a low-pressure injection step. At the time of injection of the resin under pressure, when air has accumulated at the end in the cavity 13, if the injection pressure is constant in the pressure injection step, air cannot move from the end in the cavity 13, Since the molded product has many unimpregnated parts, the pressure accumulated in the resin at the time of the injection can be changed to move the air accumulated at the end in the cavity 13. It is preferable because air can be pushed out of the mold. More preferably, the cycle of the high-pressure injection step and the low-pressure injection step can be performed a plurality of times. Here, the injection pressure in the high-pressure injection step and the low-pressure injection step is a pressure in the range of 0.05 MPa to 5 MPa.
[0041]
Further, it is preferable that the inside of the double-sided molds 1 and 2 is vacuum-suctioned. By vacuum suction, air remaining in the mold can be removed by suction, and air that is driven to the end in the cavity 13 when the resin flows in the mold can be removed by suction. Not only can the unimpregnated portion of the generated resin be reduced by the air pool in the cavity 2, but also the resin flow speed in the cavity 13 can be promoted by setting the inside of the double-sided molds 1 and 2 to a negative pressure, thereby shortening the time. The resin can be impregnated into the fiber base material 4 in a long time, which is preferable. Further, since microbubbles contained in the resin can be suctioned and removed by vacuum suction, the obtained FRP member is also preferably a molded product having few voids in a cross section. The preferable range of the vacuum pressure is 0.05 MPa or more and 0.1 MPa or less. If it is less than 0.05 MPa, it is not preferable because the minute bubbles remaining in the resin cannot be removed by suction. The vacuum pressure is at most 0.1 MPa. Further, as for the vacuum suction, as in the case of the injection pressure, by changing the vacuum pressure within the range of 0.05 to 0.1 MPa, it moves to the air accumulated at the end in the cavity 13 and the mold of the double-sided molds 1 and 2 This is preferable because air can be removed to the outside.
(5. Resin curing step)
The entire temperature of the double-sided molds 1 and 2 is adjusted to the curing temperature of the resin injected by a suitable heating means, and the resin is left until the resin in the double-sided molds 1 and 2 is sufficiently cured.
(6. Demolding process)
The two-sided molds 1 and 2 are opened, and the molded product is removed from the mold. The method of removing the double-sided molds 1 and 2 is not particularly limited, but includes, for example, a release pin, air, temperature control of the double-sided molds 1 and 2, human power, and the like.
(Explanation of action and effect)
The mold of the present invention is a rigid metal double-sided mold composed of an upper mold and a lower mold, and a high surface pressure can be applied to the mating surface 17 of both molds. A high-density FRP member having a high volume content of the fiber base material 4 can be manufactured.
[0042]
In addition, the resin introduced into the double-sided molds 1 and 2 flows through the plurality of resin flow grooves 3 formed on the mold inner surface, so that the resin is uniformly and rapidly supplied to the entire cavity 13. In order to shift to the impregnation step of uniformly impregnating the whole of the fiber base material 4 by the capillary phenomenon in the fiber base material 4, even if the size of the FRP member obtained is large, Even if it has, it becomes possible to manufacture an FRP member having few unimpregnated portions and pits.
[0043]
Further, since the volume in the cavity 13 is hardly changed as compared with the conventional molding method using a flexible upper mold such as a bagging film, the volume content of the fiber base material 4 of the obtained FRP member is reduced. The rate of change of the rate becomes very small, so that FRP members of the same quality can be stably produced.
[0044]
Furthermore, the use of the double-sided mold of the present invention reduces the generation of a large amount of dust such as a non-reusable film as in the case of employing the conventional bagging method, resulting in an environmentally friendly mold. preferable.
[0045]
As described above, the FRP member manufactured by the present invention has good dimensional accuracy and a high volume content of the fiber base material, so that it can be used for transportation equipment such as automobiles, railway vehicles and aircraft, and for building such as walls and flooring materials. It is suitable as a material and a member of various industrial devices.
[0046]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0047]
(Example 1)
The mold used was the same as the mold shown in FIG. 1 except that the resin flow channel 3 having a trapezoidal shape having a cross-sectional shape of 3 mm in width, 3 mm in depth, and a draft of 2 ° was formed with a gap of 20 between adjacent resin flow channels. A double-sided metal plate consisting of an upper die 1 processed by connecting 30 runners 6 and vents 11 in a radial pattern at a pitch of 100100 mm, and a lower die 2 not processed with a resin flow channel groove. Type.
[0048]
First, after releasing the molds 1 and 2, a dry cloth of carbon fiber woven fabric (CK6250E, manufactured by Toray Industries, Inc.) having a basis weight of 190 g / m2 was formed into a cavity shape of 6 ply (0/90 °) as the fiber base material 4. Direction) and cut out and placed in the cavity 13. Subsequently, a nylon peel ply 5 (Release Ply A, manufactured by AIRTECHK) was cut into a cavity shape, and placed on the fiber base material 4 in the cavity 13. Thereafter, the upper and lower molds were sealed and clamped by a hydraulic press. The mold clamping pressure at this time is 7 MPa. At this time, the temperature of the mold was set at 90 ° C.
[0049]
Subsequently, a resin whose temperature was controlled at 30 ° C. was injected into the mold at an injection pressure of 5 MPa. Gas was sucked from the vent by a vacuum pump. The injected resin was 25.0 parts by weight of Celloxide 2021P (Epoxy resin manufactured by Daicel Chemical Industries, Ltd.), 75.0 parts by weight of ERL-4299 (Epoxy resin manufactured by Union Carbide Japan Co., Ltd.), and diethylene glycol (Wako Pure Chemical Industries, Ltd.) 9.6 parts by weight, SEESORB 704 (manufactured by Cipro Kasei Co., Ltd., ultraviolet absorber) 0.1 parts by weight, RIKACID MH-700 (acid anhydride manufactured by Nippon Rika Co., Ltd.) 91.3 Parts by weight, 5.7 parts by weight of Cureazole 1,2-DMZ (imidazole manufactured by Shikoku Chemicals Co., Ltd.).
[0050]
From the time when the resin came out of the vent, the resin was cured at 90 ° C. for 3 hours, then the mold was opened, the mold was released, and the peel ply and the resin 14 in the groove portion were peeled off from the molded product 13 thus removed. An FRP member 15 having a length of 1.4 m, a width of 2.2 m, and a height of 5 mm shown in FIG. 5 was obtained.
[0051]
Regarding moldability, the impregnation time was 8 minutes. In addition, there was no unimpregnated part in the molded product, and no wrinkles of the fiber base were observed. Further, one surface of the FRP member is a molding surface having no resin flow grooves and a sufficiently beautiful design surface, and the opposite surface is a molding surface in which traces 16 of the resin flow grooves shown in FIG. 5 can be seen. The volume content of the fiber substrate was measured and found to be 42%. The obtained FRP member was a molded product excellent in quality without warpage.
[0052]
(Example 2)
An FRP member was molded under the same conditions as in Example 1 except that the injection pressure of the resin was 0.05 MPa.
[0053]
Regarding moldability, the impregnation time was 10 minutes. In addition, there was no unimpregnated part in the molded product, and no wrinkles of the fiber base were observed. Further, one surface of the FRP member has a design surface which has no resin flow grooves and is sufficiently clean as a design surface, and a molding surface on which traces of the resin flow grooves are visible on one surface. The volume content of the fiber substrate was measured and found to be 40%. The obtained FRP member was a molded product without warpage.
[0054]
(Example 3)
The resin flow channel 3 located at a position 30 mm before the vent is filled with poly putty and hardened sufficiently, and unnecessary portions of the poly putty are polished and adjusted. An FRP member was formed under the same conditions as in Example 1 except that the FRP member was not connected to the vent. Regarding the moldability, the resin impregnation time was 10 minutes.
[0055]
There was no unimpregnated part in the obtained FRP member, and no wrinkles of the fiber base material were observed.
Further, one side of the FRP member has no resin channel groove and is a molding surface which is sufficiently beautiful as a design surface, and one side is a molding surface on which traces of the resin channel groove are visible, and the opposite surface is a resin surface shown in FIG. The molded product was such that traces 18 of the flow channel could be seen. When the volume content of the fiber base material was measured, it was 43%, and it was a molded product without warpage.
[0056]
(Comparative Example 1)
An FRP member was molded under the same conditions as in Example 1 except that the injection pressure of the resin was 0.03 MPa.
[0057]
Regarding moldability, the impregnation time was 15 minutes. Although no wrinkles of the fibrous base material were found in the molded product, there was an unimpregnated portion and a sound molded product could not be obtained. Also, the molding surface was such that traces of the resin flow channel groove on one side could be seen. The measured volume content of the fiber base material was 36%. The obtained FRP member was a molded product having warpage and incorrect dimensional accuracy.
[0058]
(Comparative Example 2)
An FRP member was molded under the same conditions as in Example 1 except that the injection pressure of the resin was 6 MPa.
[0059]
Regarding moldability, the impregnation time was 7 minutes. In the molded product, wrinkles of the fiber base material were observed, but there were unimpregnated portions, and a sound molded product could not be obtained. Also, the molding surface was such that traces of the resin flow channel groove on one side could be seen. The volume content of the fiber substrate was measured and found to be 43%. The obtained FRP member was a molded product having warpage and incorrect dimensional accuracy.
[0060]
(Comparative Example 3)
An FRP member was molded under the same conditions as in Example 1 except that no groove was formed in the upper mold (male mold). Regarding moldability, the impregnation time was 60 minutes. The molded product had a part that was not impregnated, and the molded product showed large wrinkles of the fiber base material. Furthermore, although there was no groove on one side of the FRP member, there was an unimpregnated portion, so that it was not at a level usable as a design surface. The volume content of the fibrous base material was measured at a sound portion without any impregnation, and was found to be 39%. The obtained FRP member was a molded product having warpage and incorrect dimensional accuracy.
[0061]
(Comparative Example 4)
As the lower mold 2, a lower mold having a width of 3 mm, a depth of 3 mm, and a trapezoidal shape having a trapezoidal shape of 2 ° with 40 trapezoidal resin flow grooves 3 at a pitch of 20 to 100 mm and radially processed is used. Then, as the upper mold 1, the entire mold is covered with a bagging film made of a polypropylene film, and the periphery of the bagging film is adhered with a sealing material so that air does not leak. It conformed to the shape.
[0062]
FRP members were manufactured under the same conditions as in Example 1 except that the above-described mold was used.
[0063]
In terms of moldability, the bagging film used as the upper mold was lifted by the injection pressure of the resin, and the obtained FRP member was warped, and a molded product with correct dimensional accuracy could not be obtained. The volume content of the fiber substrate was measured and found to be 5%.
[0064]
Table 1 summarizes the above results.
[0065]
[Table 1]
Figure 2004058650
[0066]
In Table 1, first, as an evaluation criterion, the impregnation time of the liquid resin was a time difference (minute) between the time when the resin was started to be injected from the injection port and the time when the surplus resin came out from the vent.
[0067]
The evaluation criteria for the impregnated state (unimpregnated) were as follows: o when the unimpregnated portion was 5% or less of the surface area of the molded article; The evaluation criteria of the surface state (surface pits) are as follows: when the number of surface pits is 50 or less, ◎; when the number of surface pits is 51 or more, 100 or less; did. The evaluation criteria of the wrinkles of the fiber base material were evaluated as ○ when the wrinkled portion was 5% or less of the surface area of the molded article, and as X when the wrinkled portion was larger than 5%.
[0068]
As shown in Table 1, in Examples 1, 2, and 3, the resin was injected into the double-sided mold having the resin flow channel processed at an appropriate injection pressure, so that the injection pressure of the resin was increased. Since no direct load was applied to the base material, a molded product without wrinkles could be obtained, and due to residual stress generated inside the molded product due to wrinkles, a molded product without warpage could be obtained. Moreover, since the cavity shape was hardly changed by the double-sided mold and molding could be performed within a high surface pressure, a stable molded product having a high volume content of the fiber base material could be obtained.
[0069]
On the other hand, in Comparative Examples 1 and 2, even if resin injection molding was performed in a double-sided mold in which a resin flow channel was machined, if the RTM molding was performed outside of an appropriate resin injection pressure, the fiber base material became wrinkled. A sound FRP member could not be obtained, for example, due to the formation of unsaturated portions or unimpregnated portions. Further, in Comparative Example 3, since the resin flow channel was not formed in the double-sided mold, the resin injection pressure was directly applied to the fiber base material, so that it was not possible to avoid wrinkling of the fiber base material. In Comparative Example 4, since the film was used not as a double-sided mold but as an upper mold, the film was lifted by applying injection pressure, and a product having a desired product shape could not be obtained.
[0070]
【The invention's effect】
As described above, according to the method for producing an FRP member of the present invention and the double-sided mold for molding the same, in the RTM molding method, it is possible to impregnate the resin at high speed without any unimpregnated parts or pits in the mold. Thus, a FRP member having stable dimensions can be manufactured, and the volume content of the fibrous base material can be stabilized stably.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a double-sided mold showing a state in which a fiber base material is arranged in a cavity portion inside a mold of the present invention.
FIG. 2 is a cross-sectional view of the mold shown in FIG.
FIG. 3 is a plan view of the mold shown in FIG.
FIG. 4 is a partially enlarged view of a resin flow channel of the mold of FIG. 2;
FIG. 5 is a schematic perspective view of a member made of FRP obtained in an example of the present invention.
FIG. 6 is a schematic perspective view of an FRP member obtained in an example of the present invention.
[Explanation of symbols]
1 Upper mold of double-sided mold
2 Lower mold of double-sided mold
3 Resin channel groove
4 Fiber base material
5 peel ply
6 runners
7 Gate
8 gap
9 Runner for resin reservoir
10 Inlet
11 vent
12 Resin channel groove width
13 cavities
14 Depth of resin channel groove
15 Shape of molded article molded in Example
16 Traces of resin flow channel remaining on one surface of the molded product molded in Example
17 mating surface
18 Shape of Molded Article Formed in Example
19 Traces of resin flow channel remaining on one surface of molded article molded in Example

Claims (13)

(A)金型内部に成形部材用キャビティを有し、その内面の一部または全面に樹脂流路溝が形成された、上型と下型とからなる両面金型の前記キャビティ内に、強化繊維となる成形部材用基材および/または中子用基材を
配置し、
(B)両面金型を密閉した後、
(C)両面金型の注入口から0.05以上5MPa以下の範囲内の注入圧力で前記樹脂流路溝を経由させて成形部材用基材および/または中子用基材
内部に樹脂を加圧含浸し、
(D)その後、硬化、脱型すること、
を特徴とする繊維強化樹脂製部材の製造方法。
(A) A double-sided mold having an upper mold and a lower mold, in which a cavity for a molding member is formed inside the mold and a resin flow channel is formed on a part or the entire inner surface thereof, is reinforced. Placing a molding member substrate and / or core substrate to be fibers,
(B) After sealing the double-sided mold,
(C) A resin is applied from the injection port of the double-sided mold to the inside of the molding member base material and / or the core base material through the resin flow channel at an injection pressure within the range of 0.05 to 5 MPa. Pressure impregnation,
(D) then curing and demolding,
A method for producing a member made of fiber reinforced resin, characterized by comprising:
樹脂流路溝の深さが0.5mm以上30mm以下、幅が0.5mm以上20mm以下であり、かつ樹脂流路溝のキャビティ外表面に対する表面積の比率が3%以上30%以下である両面金型を使用することを特徴とする請求項1に記載の繊維強化樹脂製部材の製造方法。Double-sided metal in which the depth of the resin flow channel is 0.5 mm or more and 30 mm or less, the width is 0.5 mm or more and 20 mm or less, and the ratio of the surface area of the resin flow channel to the outer surface of the cavity is 3% or more and 30% or less. The method for producing a fiber-reinforced resin member according to claim 1, wherein a mold is used. 加圧注入工程(C)が、高圧注入工程と低圧注入工程とから構成されていることを特徴とする請求項1または2に記載の繊維強化樹脂製部材の製造方法。The method for producing a fiber-reinforced resin member according to claim 1 or 2, wherein the pressure injection step (C) includes a high pressure injection step and a low pressure injection step. 両面金型のキャビティ内部を真空吸引した状態で、樹脂を基材に注入することを特徴とする請求項1〜3のいずれかに記載の繊維強化樹脂製部材の製造方法。The method for producing a fiber-reinforced resin member according to any one of claims 1 to 3, wherein the resin is injected into the substrate while the inside of the cavity of the double-sided mold is vacuum-sucked. 真空吸引の圧力が0.05MPa以上0.1MPa以下の範囲内であることを特徴とする請求項1〜4のいずれかに記載の繊維強化樹脂製部材の製造方法。The method for producing a fiber-reinforced resin member according to any one of claims 1 to 4, wherein the pressure of vacuum suction is in a range of 0.05 MPa or more and 0.1 MPa or less. 成形部材用基材および/または中子用基材と、樹脂流路溝が形成された金型表面との間に、ピールプライを介在させることを特徴とする請求項1〜5のいずれかに記載の繊維強化樹脂製部材の製造方法。The peel ply is interposed between the molding member base material and / or the core base material and the mold surface on which the resin flow channel is formed, the peel ply being interposed therebetween. A method for producing a fiber reinforced resin member. 成形部材用基材の一部または全部が炭素繊維であることを特徴とする請求項1〜6のいずれかに記載の繊維強化樹脂製部材の製造方法。The method for producing a fiber-reinforced resin member according to any one of claims 1 to 6, wherein a part or the whole of the base material for the molded member is carbon fiber. 上型と下型とからなる両面金型であって、その合わせ面に少なくとも、樹脂の入り口と、均一注入用ランナーと、成形部材用キャビティと、樹脂出口用ベントとからなる樹脂流路系が設けられた両面金型において、
(A)キャビティに接する金型内面の一部または全面に、前記ランナーとベントの一方あるいは両方に接続する複数本の樹脂流路溝が形成されてお
り、
(B)樹脂流路溝の深さが0.5mm以上30mm以下、幅が0.5mm以上
20mm以下であり、かつ
(C)樹脂流路溝のキャビティ表面に対する表面積の比率が3%以上30%以
下であること、
を特徴とする繊維強化樹脂製部材成形用の両面金型。
A double-sided mold composed of an upper mold and a lower mold, and at least a resin inlet, a uniform injection runner, a molding member cavity, and a resin outlet vent formed on the mating surface thereof. In the provided double-sided mold,
(A) A plurality of resin flow grooves connected to one or both of the runner and the vent are formed on a part or the whole surface of the mold in contact with the cavity,
(B) The depth of the resin flow channel is 0.5 mm or more and 30 mm or less, the width is 0.5 mm or more and 20 mm or less, and (C) the ratio of the surface area of the resin flow channel to the cavity surface is 3% or more and 30%. That:
A double-sided mold for molding a member made of fiber reinforced resin.
樹脂流路溝は、金型内面において、1本の樹脂流路溝が複数本に分岐および/または複数本の樹脂流路溝が1本に結合していることを特徴とする請求項8に記載の繊維強化樹脂製部材成形用の両面金型。9. The resin flow channel according to claim 8, wherein one resin flow channel is branched into a plurality of resin flow channels and / or a plurality of resin flow channels are combined into one on the inner surface of the mold. A double-sided mold for molding a member made of the fiber-reinforced resin described in the above. 樹脂流路溝の断面積が、金型内面において、変化していることを特徴とする請求項8または9に記載の繊維強化樹脂製部材成形用の両面金型。The double-sided mold for molding a fiber-reinforced resin member according to claim 8 or 9, wherein a cross-sectional area of the resin flow channel is changed on an inner surface of the mold. キャビティに接する金型内面の温度を20℃以上150℃以下の範囲に加熱する加熱手段を有していることを特徴とする請求項8〜10に記載の繊維強化樹脂製部材成形用の両面金型。The double-sided metal for molding a fiber-reinforced resin member according to claim 8, further comprising a heating unit configured to heat the inner surface of the mold in contact with the cavity to a temperature of 20 ° C. or more and 150 ° C. or less. Type. 樹脂流路溝部分の抜き勾配が0.5°以上30°以下であることを特徴とする請求項8〜11のいずれかに記載の繊維強化樹脂製部材成形用の両面金型。The double-sided mold for molding a fiber-reinforced resin member according to any one of claims 8 to 11, wherein a draft angle of the resin flow channel groove portion is 0.5 ° or more and 30 ° or less. 樹脂の入り口と、均一注入用ランナーと、成形部材用キャビティおよび樹脂流路溝と、樹脂出口用ベントとからなる樹脂流路系の一部を埋めることで、樹脂流路系の形状を変更することを特徴とする請求項8〜12のいずれかに記載の繊維強化樹脂製部材成形用両面金型の調整方法。The shape of the resin flow path system is changed by filling a part of the resin flow path system including the resin inlet, the uniform injection runner, the molding member cavity and the resin flow path groove, and the resin outlet vent. The method for adjusting a double-sided mold for molding a member made of a fiber-reinforced resin according to any one of claims 8 to 12, characterized in that:
JP2003119533A 2002-06-07 2003-04-24 Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof Expired - Fee Related JP4333204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119533A JP4333204B2 (en) 2002-06-07 2003-04-24 Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002166716 2002-06-07
JP2003119533A JP4333204B2 (en) 2002-06-07 2003-04-24 Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof

Publications (2)

Publication Number Publication Date
JP2004058650A true JP2004058650A (en) 2004-02-26
JP4333204B2 JP4333204B2 (en) 2009-09-16

Family

ID=31949410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119533A Expired - Fee Related JP4333204B2 (en) 2002-06-07 2003-04-24 Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof

Country Status (1)

Country Link
JP (1) JP4333204B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001179A (en) * 2005-06-24 2007-01-11 Toyota Industries Corp Method for molding molded article
JP2009220577A (en) * 2003-03-13 2009-10-01 Toho Tenax Co Ltd Method of resin transfer molding
WO2013011884A1 (en) * 2011-07-21 2013-01-24 三菱重工業株式会社 Composite material of fiber-reinforced resin and weight-saving core, and method and apparatus for producing same
WO2013011885A1 (en) * 2011-07-21 2013-01-24 三菱重工業株式会社 Method and device for producing at least two products including fiber-reinforced resin
JP2015003502A (en) * 2013-06-24 2015-01-08 三菱電機株式会社 Method and apparatus for production of fiber-reinforced plastic molding and wall of elevator
JP2016068309A (en) * 2014-09-29 2016-05-09 東レ株式会社 Method for producing fiber-reinforced plastic
JP2016135573A (en) * 2015-01-23 2016-07-28 日産自動車株式会社 Molding method and molding device of composite material
JP2018518403A (en) * 2015-06-16 2018-07-12 レオンハード クルツ シュティフトゥング ウント コー. カーゲー Manufacturing method of plastic molded product, plastic molded product, and mold
CN110948910A (en) * 2019-12-11 2020-04-03 长春市佳运汽车零部件有限公司 Multi-mold-core molding forming mold for vehicle battery bracket and forming method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220577A (en) * 2003-03-13 2009-10-01 Toho Tenax Co Ltd Method of resin transfer molding
JP4515526B2 (en) * 2003-03-13 2010-08-04 東邦テナックス株式会社 Resin transfer molding method
JP2007001179A (en) * 2005-06-24 2007-01-11 Toyota Industries Corp Method for molding molded article
JP4548243B2 (en) * 2005-06-24 2010-09-22 株式会社豊田自動織機 Molding method of molded products
WO2013011884A1 (en) * 2011-07-21 2013-01-24 三菱重工業株式会社 Composite material of fiber-reinforced resin and weight-saving core, and method and apparatus for producing same
WO2013011885A1 (en) * 2011-07-21 2013-01-24 三菱重工業株式会社 Method and device for producing at least two products including fiber-reinforced resin
JP2015003502A (en) * 2013-06-24 2015-01-08 三菱電機株式会社 Method and apparatus for production of fiber-reinforced plastic molding and wall of elevator
JP2016068309A (en) * 2014-09-29 2016-05-09 東レ株式会社 Method for producing fiber-reinforced plastic
JP2016135573A (en) * 2015-01-23 2016-07-28 日産自動車株式会社 Molding method and molding device of composite material
JP2018518403A (en) * 2015-06-16 2018-07-12 レオンハード クルツ シュティフトゥング ウント コー. カーゲー Manufacturing method of plastic molded product, plastic molded product, and mold
US11260567B2 (en) 2015-06-16 2022-03-01 Leonhard Kurz Stiftung & Co. Kg Method for producing a plastic molded article, plastic molded article and mold
CN110948910A (en) * 2019-12-11 2020-04-03 长春市佳运汽车零部件有限公司 Multi-mold-core molding forming mold for vehicle battery bracket and forming method thereof

Also Published As

Publication number Publication date
JP4333204B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
KR101151966B1 (en) Rtm molding method and device
JP4904346B2 (en) Method for manufacturing composite parts using fluid density and pressure
JP5509212B2 (en) Manufacturing of structural composite elements
US9120253B2 (en) Methods of RTM molding
US6656411B1 (en) Grooved core pattern for optimum resin distribution
US7785518B2 (en) Method and apparatus for molding composite articles
KR20130111552A (en) Method for producing fiber-reinforced plastic
KR20050106493A (en) Method of resin transfer molding
JP2008179150A (en) Composite and metal component production, forming and bonding system
WO2000041866A1 (en) Grooved mold apparatus and process for forming fiber reinforced composite structures
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP4333204B2 (en) Manufacturing method of fiber reinforced resin member and double-sided mold for molding thereof
JP6154670B2 (en) Method and apparatus for molding fiber reinforced plastic member
JP2011031481A (en) Fiber-reinforced resin component and method and apparatus for manufacturing the same
JP2005193587A (en) Resin transfer molding method
JP4471672B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP2005246902A (en) Resin transfer molding (rtm) method
JP2008137179A (en) Method for manufacturing fiber-reinforced plastic
JP2012245623A (en) Method and device of molding composite material using porous mold
JP4370797B2 (en) FRP thin plate manufacturing method
JP6048967B2 (en) Manufacturing method and manufacturing apparatus for fiber-reinforced plastic molded body, and elevator wall
JP2005067089A (en) Method for molding molded product
JP4572676B2 (en) Manufacturing method of fiber reinforced resin molding by VaRTM manufacturing method and manufacturing apparatus thereof
JP2010214878A (en) Apparatus for manufacturing member of fiber-reinforced resin
JP5906082B2 (en) Method for producing resin impregnated material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees